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Abstract— In this paper, we introduce distributed caching of 
videos at the base-stations of the Radio Access Network (RAN) as 
a way to reduce the need to bring requested videos from Internet 
CDNs, thereby reducing backhaul transmission, improving video 
quality of experience – delay and video stalling – and increasing 
overall network capacity to support more number of simultaneous 
video requests. Unlike Internet CDNs that can store millions of 
videos in a relatively few large sized caches, our proposed caching 
architecture consists of a very large number of micro-caches, with 
each base-station micro-cache being able to store only 1000s of 
videos, and hence may not be able to have high cache hit ratio. To 
address this challenge, we propose two new caching policies based 
on the User Preference Profile (UPP) of users in a cell: R-UPP 
(Reactive UPP) and P-UPP (Proactive UPP). Further, for videos 
that result in cache misses and need to be fetched from Internet 
CDNs, we develop a video scheduling approach that allocates the 
RAN backhaul resources to the video requests so as to reduce 
video latency and increase network capacity. We develop a 
discrete event statistical simulation framework using MATLAB to 
study the performance of RAN caching. Our simulation results 
show that RAN micro-caches with the proposed UPP-based 
caching policies, together with the proposed scheduling approach, 
can improve the probability of video requests that can meet initial 
delay requirements by almost 60%, and the number of concurrent 
video requests that can be served by up to 100%. The results also 
show that UPP based policies can enhance network capacity by up 
to 30% compared to conventional caching policies.  
 

Keywords: User Preference Profile, Proactive/Reactive Caches, 
Wireless Network Capacity, Video Quality of Experience 

I.  INTRODUCTION 
With the world-wide growth in the adoption of smart phones 

and tablets, access to Internet video and video applications from 
mobile devices is projected to grow very significantly [1]. 
When Internet video is accessed by a mobile device, the video 
has to be fetched from the servers of a content delivery network 
(CDN)[2][3]. CDNs help reduce Internet bandwidth 
consumption and associated delay/jitter, but the video must 
additionally travel through the wireless carrier Core Network 
(CN) and Radio Access Network (RAN) before reaching the 
mobile device. Besides adding to video latency, bringing each 
requested video from the Internet CDNs can put significant 
strain on the carrier’s CN and RAN backhaul, leading to 
congestion, significant delay, and constraint on the network’s 
capacity to serve large number of concurrent video requests.   

To facilitate the tremendous growth of mobile video 
consumption without the associated problems of congestion, 

delay, and lack of capacity, in this paper we introduce caching 
of videos at (e)NodeBs at the edge of the RAN, shown in Fig. 
1, such that most video requests can be served from the RAN 
caches, instead of having to be fetched from the Internet CDNs. 
However, since the proposed approach will lead to thousands of 
caches, with each (e)NodeB in the carrier RAN having a cache 
(and may be Access Points in Wi-Fi hot spots), we need to use 
much smaller sized “micro-caches” for RAN caching, capable 
of storing 1000s of videos, compared to the much larger sized 
caches used in Internet CDNs capable of holding millions of 
videos. Hence, there may be a problem with enabling high 
cache hit ratio for the RAN micro-caches, which may erode the 
benefits of caching at the edge of the wireless network.  

To address the above challenge, we propose novel caching 
policies, based on new concepts we introduce in the paper: the 
preference of current video users in a cell, and what videos are 
least likely and most likely to be watched by the cell users. For 
those video requests that cannot be found in RAN caches, and 
hence need to be fetched from Internet CDNs, we propose a 
video scheduling approach that allocates the RAN backhaul 
resources to the video requests such that the overall capacity of 
the network in terms of the number of concurrent video 
requests can be enhanced, while satisfying video Quality of 
Experience (QoE) – meeting an initial delay and ensuring no 
stalling during playback. Our numerical results show that RAN 
caching with the proposed caching policies can lead to 
significant improvements in terms of video delay and system 
capacity.

 
Figure 1: Video Micro-caches at the edge of the RAN 

A. Related Work and Paper Outline 
Significant work has been done in developing content 

delivery networks (CDNs) for Internet content [2][3], as well as 
caching techniques and locations suitable for Internet content 
delivery [4][5][6][7]. As explained earlier, Internet CDNs, and 
caching at Internet CDNs, do not address the problems of delay 
and capacity for video delivery in wireless networks. Moreover, 
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as explained earlier, and shown in Section V, conventional 
caching techniques, which assume large caches, may not be 
effective for the smaller and distributed RAN micro-caches 
proposed in this paper.  

There has been some research in caching web content in 
wireless networks [8] and on mobile devices [9]. However, 
these techniques do not consider the challenges of video 
caching and delivery. Caching techniques have been also 
developed for ad-hoc networks, like [10][11], which are not 
applicable to the problem of video caching and delivery in 
cellular networks. Recently, carriers have started caching online 
video content in as a way to address the delay and capacity 
problems arising from growing video consumption from mobile 
devices. However, to the best of our knowledge, video caching 
has not yet been attempted in the RANs. Similarly, we are not 
aware of published research in RAN video caching and 
delivery, including caching policies aware of the preferences of 
users in a RAN cell, and scheduling of videos to maximize 
video capacity while satisfying QoE, which are the problems 
we address in this paper. 

The remainder of the paper is organized as follows: In 
section II, we first review relevant prior results on popularity of 
online video and video categories. Based on these results, we 
define the video category preferences of active users in a cell, 
and most likely requested and least likely requested videos of 
such users. In section III, we provide an overview of the 
conventional caching policies, and the user preference based 
policies we introduce. Subsequently, in section IV, we 
introduce our video scheduling approach, which allocates the 
RAN backhaul resources to the video requests that result in 
cache misses, such that the overall number of concurrent video 
requests that can be served by the RAN is maximized, while 
meeting desired video QoE. Section V outlines our simulation 
framework, and provides experimental results. We conclude the 
paper in section VI.  

II. VIDEO PREFERENCE OF USERS IN A CELL SITE 
In this section, we first review previous research on video 

popularity characteristics and users’ video access patterns. We 
highlight the conclusions that lead us to define our user 
preference based approach for video caching. Towards that end, 
we identify the most likely and least likely requested videos in a 
cell site, given the current set of active users in the cell.  

A. Popularity of Online Videos and Video Categories 
Recently, there have been several studies done on the 

popularity of online videos. Using empirical analysis, [12] 
studied several characteristics of videos from popular online 
video sites YouTube and Daum, such as the overall popularity 
distribution and distribution within each video category, 
correlation between age of a video and its popularity, and 
temporal locality of the videos. One of the relevant results from 
the study is that video popularity follows a Zipf distribution: 
10% of the online videos account for nearly 80% of the views, 
while the remaining 90% of the videos account for only a total 
20% of views [12]. In [13], the authors studied users’ access 
patterns in video traffic from a campus network. Among other 
interesting conclusions, their results showed that local video 
popularity can differ significantly from national video 

popularity. Separately, market research [14] has shown that 
some video categories can be significantly more popular than 
others. For example, popular video categories such as “Auto” 
and “Entertainment” have a 90 days average cumulative views 
number that is 10 times more than less popular video categories 
such as Travel, revealing a strong bias towards some video 
categories.   

From the above research, we conclude that: 1) video 
popularity follows a Zipf distribution, 2) national video 
popularity does not reflect local video popularity, so the video 
popularity in different cell sites may be different from each 
other and the national popularity distribution and 3) users may 
have strong preferences towards specific video categories. 
These results motivate us to define and identify video 
preferences of the active users in a cell in terms of video 
categories that they prefer to watch. 

B. Cell Site Video Preference 
To understand local video popularity in a cell site, we define 

Active User Set (AUS) of a cell as a set of mobile users in the 
cell who either have an active video session, or have watched 
and likely to again watch video when present in the cell. AUS 
changes as users enter or leave the cell site. For example, in 
LTE, (e)NodeBs know the location of the UEs in connected 
mode, or the general location of UEs in idle mode. We 
associate a User Preference Profile, UPP, with each individual 
user, which we define as the probability that the user, 𝑢𝑘 , 
requests videos of a specific video category 𝑣𝑐𝑗, 𝑝�𝑣𝑐𝑗�𝑢𝑘�, for 
all  available video categories. The probability that a video 
belonging to video category 𝑣𝑐𝑗  is requested by the active users 
in a cell, AUS, is the sum of probabilities that 𝑣𝑐𝑗  is being 
selected by each user in the AUS, and is given by: 

𝑝𝐴𝑈𝑆�𝑣𝑐𝑗� = �𝑝(𝑢𝑘)𝑝�𝑣𝑐𝑗�𝑢𝑘�                      (1)
|𝑈|

𝑘=1

 

In the above equation, |U| is the cardinality of AUS, and 𝑝(𝑢𝑘) 
is the probability that user, 𝑢𝑘 , generates a video request. 
Following this definition, we define the UPP of an AUS as the 
selection probability of each available video category by the 
AUS: { 𝑝𝐴𝑈𝑆�𝑣𝑐𝑗�|∀ 𝑗 = 1: |𝑉𝐶| }. We assume all users are 
equally likely to generate a video request, so we can rewrite 
equation (1) as:  𝑝𝐴𝑈𝑆(𝑣𝑐𝑗) = 1

|𝑈|
∑ 𝑝(𝑣𝑐𝑗|𝑢𝑘)|𝑈|
𝑘=1 . 

Next, given the overall video popularity distribution, and the 
category of each video, we identify the video popularity 
distribution within each category. Let 𝑝(𝑣𝑖)  be the overall 
popularity of video 𝑣𝑖  across all videos and video categories. 
Let 𝑝𝑣𝑐𝑗(𝑣𝑖) = 𝑝(𝑣𝑖) if 𝑣𝑖 belongs to category 𝑣𝑐𝑗 , else 𝑝𝑣𝑐𝑗(𝑣𝑖) =
0.  We can then express popularity of video 𝑣𝑖   within video 
category, 𝑣𝑐𝑗 , by: 

𝑝(𝑣𝑖,𝑗) =
𝑝𝑣𝑐𝑗(𝑣𝑖)

∑ 𝑝𝑣𝑐𝑗(𝑣𝑖)
|𝑉|
𝑖=1

       (2) 

where |V| is the total number of videos, and the denominator is 
the sum of the probabilities of all videos belonging to 𝑣𝑐𝑗 . Note 
that video popularity distribution may be available for each 
category [12], else it can be calculated using (2). Knowing the 
probability of request of different video categories in a cell 
corresponding to the current AUS (1), and the popularity of 
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videos in each category, we can now derive 𝑃𝑅(𝑣𝑖), which is the 
probability that video 𝑣𝑖 is requested given the AUS of the cell: 

𝑃𝑅(𝑣𝑖) = �𝑝(𝑣𝑖,𝑗)𝑝𝐴𝑈𝑆�𝑣𝑐𝑗�
|𝑉𝐶|

𝑗=1

                       (3) 

We next define two sets that we use for the UPP based 
caching policies that we define in the next section: Most Likely 
Requested (MLR) and Least Likely Requested (LLR) sets. 
MLR is a subset of videos with  𝑃𝑅  values greater than a 
threshold; and LLR is a subset of videos from the cache with 
the least 𝑃𝑅 value.  

III. CELL SITE AWARE CACHING ALGORITHMS 
In this section, we outline four different caching algorithms; 

two that are conventionally used by Internet CDNs, MPV and 
LRU, and two that we propose based on preferences of active 
users in the cell, P-UPP and R-UPP.  
A. MPV 

MPV is a proactive caching policy, which caches the “most 
popular videos” using the (nation-wide) video popularity 
distribution described before. MPV neither updates the caches 
based on the user requests nor implements any cache 
replacement policy. The only changes that require cache update 
are changes in the video popularity distribution. Since the 
number of videos that are cached depends on the cache size, the 
performance of MPV in terms of cache hit ratio can be high if 
implemented for large caches possible for Internet CDNs.  
However, because of the limited size of the RAN micro-caches 
proposed in this paper, and because videos requested by active 
users of a cell may be very different from nation-wide most 
popular videos, the cache hit ratio achieved by MPV policy 
may not be high when used for RAN micro-caches.  

B. LRU 
LRU [15] is a reactive caching policy, which fetches the 

video from the Internet CDN and caches it if there is a cache 
miss. If the cache is full, LRU replaces the video in the cache 
that has been least recently used. The cache hit ratio of a micro-
cache associated with a cell that uses LRU policy depends on 
the overlap of the video requests of the active users in the cell, 
and influenced by the degree of overlap of their UPP. The 
backhaul bandwidth and delay needed to bring videos to the 
cache will depend on the cache hit ratio, since there is no pre-
fetching bandwidth.  

C. R-UPP 
We propose R-UPP as a reactive caching policy based on 

the UPPs of the active users in a cell. For a video requested that 
is not present in the cache, R-UPP fetches the video from the 
Internet CDN and caches it. If the cache is full, R-UPP replaces 
videos in the cache depending on the UPP of the active users 
using LLR set introduced in section II.B, and in case of ties 
according to the LRU replacement policy. More specifically, 
when there is a cache miss, we calculate the request 
probabilities of the videos in the cache as well as the requested 
video, forming a LLR subset. We replace the least likely 
requested video of the cache with the requested video only if 
the newly requested video is not the one with least 𝑃𝑅. If there 
are multiple videos that have the same min 𝑃𝑅 value in the LLR 

(|LLR|>1), we use the LRU policy to select the one to be 
replaced. The above approach ensures that the cached videos 
have the highest probability of being requested again by the 
current active users of the cell. The proposed R-UPP algorithm 
is shown below.  

R-UPP 
For new Video Request V 

If V ϵ Cache 
   Download from Cache 
Else 
   Find cell site UPP based on AUS 
   Calculate PR for V and the cached videos and generate LLR subset  
   If |LLR| >1,  
      LLR = LRU(LLR) 
   End 
   If LLR==V 
      Do not cache V 
   Else 
      Cache = Cache + V – {LLR} 
   End, End 

D. P-UPP 
We propose P-UPP as a proactive caching policy, which 

preloads the cache with videos that are most likely to be 
requested, based on the UPP of the active users of the cell. At 
the beginning, and every time the AUS changes due to user 
arrival or departure, video request probabilities are calculated 
using (3), and videos belonging to the Most Likely Requested 
set, MLR, are loaded in the cache. However, if the AUS 
changes frequently, this proactive policy may lead to high 
computational complexity, and more importantly, high 
backhaul bandwidth. Hence, we propose a hybrid solution 
where the cache is only updated if the expected cache hit ratio 
improvement due to replacement exceeds a preset threshold. 
More specifically, for each video i from the MLR set to be 
added to the cache, we calculate the difference between its 
request probability and the request probability of the subset of 
LLR videos from the cache with least 𝑃𝑅values that need to be 
evicted to free up space for the new video; only if the difference 
is greater than a threshold, we effectuate the cache update. The 
proposed P-UPP algorithm is shown below.  

P-UPP 
If AUS changed 
    Find cell site UPP based on AUS 
    Calculate request probability PR based on cell site UPP 

    Calculate MLR and LLR sets based on cell site UPP 
    for each video i  in sorted list of MLR set, 𝑀𝐿𝑅𝑖 
        𝐿𝐿𝑅𝑗: subset of LLR videos with least 𝑃𝑅 that has to be evicted from 
cache to fit 𝑀𝐿𝑅𝑖  
       if 𝑃𝑅(𝑀𝐿𝑅𝑖) − ∑𝑃𝑅�𝐿𝐿𝑅𝑗� > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 
           Update the cache with 𝑀𝐿𝑅𝑖 and evict  𝐿𝐿𝑅𝑗; update MLR and LLR; 
       End, End, End 
For Video Request V: 
 If V ϵ {Cache} 
     Download V from Cache 
Else 
    Download from Backhaul 
End 

While we expect the UPP based cache policies, R-UPP and 
P-UPP, to result in higher cache hit ratios than conventional 
MPV and LRU policies, still all videos not found in the cell 
cache need to be brought from the Internet CDNs, traversing 
through the core and backhaul network. In the next section, we 
will discuss the implication on video delay, and hence video 
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QoE. We propose a scheduling approach that coordinates with 
requesting video clients and allocates backhaul resources in a 
way that increases the overall capacity of the system.  

IV. SCHEDULING APPROACH FOR DELAY AND CAPACITY 
For each video request that results in a cache miss, the 

corresponding video needs to be fetched from an Internet CDN. 
For proactive policies, MPV and P-UPP, bringing the missed 
videos is in addition to the videos that need to be fetched 
proactively to the cache. Depending on the number of 
concurrent video requests, the number of cache misses, and the 
number of proactively fetched videos and frequency of pre-
fetching, the backhaul bandwidth may not be sufficient for all 
the videos that need to be brought through the backhaul. There 
can be various possible ways of scheduling the video fetches 
and allocating the backhaul bandwidth. One approach is to 
satisfy all the pending fetches, which may result in some 
fetches getting significantly delayed, resulting in unacceptable 
video playback delay. In this paper, we take an alternative 
approach. Our proposed scheduling approach aims to maximize 
the number of videos that can be served, while ensuring each 
served video meets certain QoE requirements, including initial 
delay. In this section, we first define video QoE requirements 
and capacity. Next, we describe our proposed scheduling 
approach. 

A. Video QoE and Capacity 
We consider video QoE as consisting of two aspects: the 

initial delay the player has to wait before it can start playing, 
and the number of stalls during the video session. The initial 
delay is needed to fill the client buffer to a certain level so to 
absorb any variations in the network’s data transmission rate, 
and the decoding process can proceed smoothly without any 
stalls once playback has started.  

In this paper, we use Leaky Bucket Parameters (LBPs) to 
determine the initial delay requirement. In most video coding 
standards [16][17], a compliant bit stream must be decoded by a 
HRD (Hypothetical Reference Decoder) connected to the 
output of the encoder emulating a decode buffer, a decoder and 
a display unit. The HRD [16] generates LBPs that consist of N 
3-tupples (R, B, F) corresponding to N sets of transmission 
rates and buffer size parameters for a given bit stream. An LBP 
tuple guarantees that as long as the average transmission rate is 
maintained at R bits/second, the client has a buffer size of B 
bits, and the buffer is initially filled with F bits before video 
playback starts, the video session will proceed without any 
stalling. Consequently, F/R is the initial delay that the decoder 
needs to wait to guarantee a stall free playback. Fig. 2 shows 
example LBPs associated with a video client buffer, and the 
resulting initial delays. For example, if the transmission rate is 
400Kbps, the initial delay is 15.54 seconds. 

A video client, at the beginning of a video session can use 
the LBPs for the requested video to request a data rate, and 
select the corresponding initial delay. As shown in Fig. 2, the 
higher the data rate requested, the less the initial delay. 
However, if all the video clients greedily select the highest data 
rates, there may be more congestion in the RAN backhaul, 
leading to fewer requests that can be served. Consequently, we 
RAN backhaul bandwidth constraint, and a distribution of video 

Figure 2: Example scheduling scenarios: LBPs for video requests, 
Backhaul congestion states, and Initial Delays 

requests, we define capacity as the number of concurrent 
requests that can be served while meeting each request's QoE 
requirement (maximum acceptable initial delay, and no 
stalling). Our scheduling approach is to maximize capacity by 
allocating to each requesting video client the lowest valid LBP 
bit rate that satisfies its maximum acceptable initial delay, and 
hence also ensuring no stalling during the video session. 

B. Backhaul Scheduling Approach 
The goal of our backhaul scheduling approach is to support 

as many concurrent videos served as possible while ensuring 
initial delay below an acceptable threshold. We define three 
backhaul utilization states: not congested, normal congested, 
and highly congested, associating a maximum delay to each of 
these states. At any given time, the backhaul is in one of the 
above utilization states, depending on the videos that need to be 
fetched through the backhaul (including videos that need to be 
pre-fetched). Fig. 2 shows an example of backhaul utilization 
states and associated delays. For a video request which results 
in a cache miss, depending on the current utilization state, the 
scheduler sends the corresponding maximum delay as part of 
the initial handshaking to the client. From the LBPs available, 
the client selects a transmission bit rate R that results in an 
initial delay F/R right below the backhaul delay threshold, and 
communicates it back to the scheduler. Subsequently, the 
scheduler allocates the RAN backhaul resource at the 
transmission rate selected by the client, only if enough space 
bandwidth is available. For example, consider a scenario where 
the backhaul is in normal utilization state and a video request 
needs to be served which has an acceptable initial delay 
threshold of 25 seconds. According to the example in Fig. 2, the 
scheduler asks the requesting video client to select a data rate 
that corresponds to a delay less than 20 seconds. According to 
the client’s LBP table, the video client will select the date rate 
of 400 kbps, which will yield an initial delay of 15.54 seconds. 
The 400kpbs is also the backhaul data rate that will be allocated 
by the scheduler to this client if enough backhaul bandwidth is 
available. Note different video requests will have different 
LBPs and hence the data rate selected will be different. If the 
scheduler cannot allocate the requested bandwidth, the request 
will be blocked. 

Note that the LBP should span useful delay/rate pairs which 
are the delays that the scheduler could be interested in 
achieving for the initial delay. Intermediate values not directly 
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available in the table may be derived using interpolation of 
existing table values.  

In the next section, we report on experimental studies we 
have performed using a simulation framework to assess the 
performance of the caching policies described in section III, 
and the RAN backhaul scheduling approach outlined in this 
section. 

V. SIMULATION FRAMEWORK AND RESULTS 
A statistical simulation framework was developed using 

MATLAB to compare the relative performance of the caching 
policies. We use Monte Carlo simulation, where the 
implementation consists of a number of iterations where the 
innermost loop corresponds to one video request per iteration 
which is being evaluated for all the cache policies. There is an 
outer loop over a set of different cache sizes, and finally the 
outermost loop repeats the entire simulation using a new set of 
inputs for increased statistical significance. Next, we explain 
our simulation parameters and present the results.  

Table 1 lists the parameters used for our simulation results. 
We discuss briefly some aspects of the parameters used, and 
then proceed to report the results. Though the results are based 
on a Zipf distribution with parameter 0.8 (to model video 
distribution according to [12]), our experiments with other Zipf 
parameter values confirm the trends and conclusions reported 
here. Similarly, to ensure simulation speed, though we restrict 
the total number of videos available for request to 20,000, and 
the total number of mobile users to 5000, we expect the trends 
reported here to hold for higher values. User arrival and 
departure follow a Poisson process, and we use an M/M/∞ 
queuing model [18] to find the total number of concurrent 
active users. To generate a video request, a user is selected 
randomly from the AUS, and a video request is generated based 
on the user’s UPP and the popularity ranking of videos. For the 
results reported below, we assume a backhaul bandwidth of 
100Mbps, and the micro-cache size varies between 50 to 
400Gbits. 

Fig. 3(a) shows the performance of the different cache 
policies in terms of cache hit ratio achieved for a given cell, for 
different cache sizes. It is evident that the UPP-based cache 
policies perform significantly better than the conventional 
cache policies for all cache sizes. For example, when the cache 
size is 250Gbit, P-UPP and R-UPP achieve cache hit ratios of 
0.67 and 0.65 respectively, compared to the LRU and MPV 
policies achieving cache hit ratios of 0.50 and 0.25 respectively.  

A Cache hit ratio of 0.75 is achieved by P-UPP when the 
cache size is 400Gbit. Note that though Fig. 3(a) shows P-UPP 
and R-UPP achieving similar cache hit ratios, from other 
simulation results not presented in this paper due to space 
limitation, with different parameters like lower P-UPP update 
threshold (Section III.D), we observe that P-UPP can perform 
up to 10 percentage point better than R-UPP in terms of cache 
hit.  

Fig. 3(b) shows the mean RAN backhaul bandwidth 
required by the different policies. For example, with cache size 
of 250Gbits, we require 62Mbps backhaul bandwidth for R-
UPP, 81Mbps for P-UPP, 79Mbps for LRU, and around 
94Mbps for MPV cache policy. Note that if there was no video 
caching at the edge of the RAN (no cache in Fig. 3(b)), the 

Table 1: Simulation Parameters 

backhaul bandwidth needed to bring all the requested videos 
would be 98Mbps. 

Fig. 3(c) shows the blocking probability (probability that 
requested videos could not be scheduled) when the cache size 
varies from 50 to 400Gbits. An ideal system should achieve a 
low blocking probability while satisfying the desired initial 
video delay, here 30 seconds, for all users. For cache size of 
250Gbits, R-UPP and P-UPP achieve blocking probabilities of 
less than 0.0001 and 0.004 respectively, while the blocking 
probability for LRU is around 0.02 and 0.15 for MPV. While 
the previous results demonstrate the superiority of the UPP-
based cache policies in terms of cache hit ratios, and reduced 
backhaul traffic overhead and thereby higher chances of being 
successfully served, we next study their performances in terms 
of the initial delay needed by the scheduled videos, a key 
contributor to QoE. Specifically, Fig. 3(d) shows the probability 
that the delay of a successfully scheduled video is below a 
certain value when the cache size is 200GBits, and also when 
no RAN cache is used. For example, the probability of 
achieving an initial delay of 5 second or less is about 0.56 when 
no RAN cache is available, 0.66 for MPV, 0.74 for LRU, 0.80 
for R-UPP, and 0.82 for P-UPP. Fig. 3(d) clearly shows that 
using micro-caching at the RAN significantly improves the 
probability of video requests that can meet initial delay 
requirements, in particular when the desired initial delay is low. 
The results also show the superiority of the UPP based policies, 
compared to MPV and LRU policies, in achieving better initial 
delay.  

To better understand the impact of RAN caching and our 
proposed policies on the capacity of the wireless network, we 
performed a set of experiments to measure the capacity for 
different cache sizes and initial buffering delays. Fig. 3(e) 
shows capacity vs. cache size; note that each point in this graph 
captures the case where the blocking probability is exactly 0.01, 
which is achieved by changing the user inter-arrival rate such 
that the steady state target blocking rate is achieved and noting 
the number of concurrent video requests generated at that 
specific user inter-arrival rate. For cache size of 150Gbits, the 
capacity is 84 concurrent videos served in the cell without RAN 
caching, 113 with MPV, 151 with LRU, 175 with P-UPP, and 
206 with R-UPP. We can infer from Fig. 3(e) that R-UPP 
performs about 18% better than P-UPP, about 36% better than 
LRU, about 82% better than MPV, and 145% better than when 
there is no RAN caching. The superiority of the R-UPP in terms 
of capacity is due to the high cache hit ratio that it can achieve 

Variable Distribution/Parameters Value 
Total Number of Video Requests Const, 100,000 
Total Number of Videos Const, 20,000 
Video Popularity Distribution Zipf, 0.8  
Video Frame Size Distribution As proposed in [19] 
Total Number of Video Categories Const, 250 
Video Size Exp, min=2, mean=8, max=30(minutes) 
Video Bit Rate Uniform, 200kbps (QVGA), 2Mbps (HD) 
Total number of mobile users Const, 5,000 
UPP Distribution Across VCs Exponential, mean=2 
User Arrival/Departure Model Poisson: User inter-arrival time=100s, User 

active time= 2800s 
Video Request Arrival Poisson, Mean inter-arrival time per user = 120s  
Backhaul Delay Thresholds Const, [10,20,30] seconds 
Max Cache Size Const, Up to 400Gbits 
Backhaul Bandwidth Const, 100 Mbps 
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(comparable to P-UPP) while having no overhead (like 
proactively filling the cache as done by P-UPP and MPV). 

Fig. 3(f) shows the capacity when we change the target 
delay of the not-congested region (Section IV.B). As the target 
delay increases, the capacity increases for all caches. For delay 
of 30 seconds, the total number of concurrent videos served 
without cache is 91, with MPV 114, with LRU 144, with P-
UPP around 172, and with R-UPP 188. We can infer from the 
figure that R-UPP performs about 10% better than P-UPP, 
about 30% better than LRU, and more than 100% better than 
when no caching is performed at the RAN edge. 

VI. CONCLUSION 
In this paper, we demonstrated the feasibility and 

effectiveness of using micro-caches at the edge of the RAN, 
coupled with new caching policies based on video preference of 
users in the cell and a new scheduling technique that allocates 
RAN backhaul bandwidth in coordination with requesting video 
clients. Our simulation results show that the new RAN micro-
caching based video delivery approach can significantly 
increase the number of concurrent video requests that can be 
served while meeting initial delay requirements. In the future, 
we plan to extend our approach to consider mobility of users 
across cells. We also plan to expand our approach to consider 
bandwidth constraints in the RAN RF links.  

Acknowledgements: This research was supported by Cisco 
Systems, Inc, by Intel Corp. and by the UC Discovery Grant 
program. 

REFERENCES 
[1] White Paper,“Cisco Visual Networking Index: Global Mobile Data”, 

2010-2015. 
[2] G. Pallis, A. Vakali,“Insight and perspectives for content delivery 

networks”, Communications of the ACM, vol. 49, issue 1, January 2006. 

[3] M. Pathan, R. Buyya,“A Taxonomy of CDNs, Content Delivery 
Networks”, Springer-Verlag, Germany, 2008. 

[4] S. Sen et. al,“Proxy prefix caching for multimedia streams”, in Proc. of 
IEEE INFOCOM, March 1999. 

[5] A. Wierzbicki,“Internet Cache Location and Design of Content Delivery 
Networks”, In Web Engineering and Peer-to-Peer Computing, Lecture 
Notes in Computer Science, vol. 2376/2010, 2002. 

[6] A. Balamash and M. Krunz,“An Overview of Web Caching Replacement 
Algorithms”, IEEE Commun. Surveys and Tutorials, vol. 6, no. 2, 2004. 

[7] Mitch Cherniack, et al., “Profile-Driven Cache Management”, In 
Proceedings of ICDE'2003. 

[8] J. Z. Wang, et al.,“Network Cache Model for Wireless Proxy Caching”, In 
Proceedings of the 13th IEEE International Symposium on Modeling, 
MASCOTS, Sept 2005. 

[9] Hui Chen and Yang Xiao,“Cache Access and Replacement for Future 
Wireless Internet”, IEEE Communications Magazine, May 2006. 

[10] W.H.O. Lau, et al.,“Cooperative cache architecture in support of caching 
multimedia objects in MANETs”, In Proceedings of International 
Symposium on a World of Wireless, Mobile and Multimedia Networks, 
WoWMoM,  2002. 

[11] N. Wakamiya, et al.,“Video Streaming Systems with Cooperative Caching 
Mechanisms”, in Proceedings of SPIE International Symposium, 2002. 

[12] M. Cha et. al.,“Analyzing the Video Popularity Characteristics of Large-
Scale User Generated Content Systems”, IEEE/ACM Transactions on 
Networking, Vol. 17, No. 5, Oct. 2009. 

[13] Michael Zink, et al.,“Watch Global Cache Local: YouTube Network 
Traces at a Campus Network - Measurements and Implications.” In 
Proceedings of MMCN 2008, San Jose, CA, USA, Jan 2008. 

[14] Reelseo. Available: http://www.reelseo.com/most-popular-video-sites-
categories/ 

[15] N. Laoutaris,“A Closed-Form Method for LRU Replacement under 
Generalized Power-Law Demand”,  presented at CoRR, 2007. 

[16] J. Ribas-Corbera, et al.,“A Generalized Hypothetical Reference Decoder 
for H.264/AVC”, IEEE Transactions on Circuits and Systems, vol. 13, no. 
7, July 2003. 

[17]  JM Codec. [Online]. Available: http://iphome.hhi.de/suehring/tml/ 
[18] R. Gallager and Bertsekar, “Data Networks”, Prentice Hall, 1992. 
[19] D. M. B. Masi, et al.,“Video Frame Size Distribution Analysis”, The 

Telecommunications Review 2008, Volume 19, Sept 2008.  

 
Figure 3: Performance of the caching policies (a) Cache Hit Ratio vs. Cache Size (b) Mean Backhaul BW Required vs. Cache Size (c) Blocking Probability 
vs. Cache Size (d) CDN of the Delay of Scheduled Video Requests when Cache Size=200Gbits (e) Capacity vs. Cache Size (f) Capacity vs. Delay when cache 
size=100Gbits,  blocking probability=0.01 
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