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Abstract—Given the significant energy consumption in oper-
ating base stations (BSs), improving their energy efficiency is
an important problem in cellular networks. To this end, this
paper proposes a novel framework, called DCR (dynamic cell
reconfiguration) that dynamically adjust the set of active BSs
and user association according to user traffic demand for energy
conservation. In order to overcome prohibitive computational
complexity in finding an optimal solution, we take an approach
to design simple yet effective algorithms. We demonstrate that
the proposed framework is not only computationally efficient but
also can achieve the performance close to the optimum solution
from an exhaustive search. Through simulations based on a real
dataset of BS topology and utilization, we show that DCR can
yield about a 30-40% reduction compared to the conventional
static scheme where all BSs are always turned on.

I. INTRODUCTION

With the explosive growth in wireless communication usage

and infrastructure, energy use of cellular wireless networks has

lately become a critical issue [1]. Designers of communication

and networking algorithms and protocols have traditionally ig-

nored the complexity and power consumption at base stations

(BSs) and instead focused on improving energy efficiency

to prolong battery life-time of mobile terminals (MTs) only.

Today, however, the situation has changed. Pushed by ever

increasing energy costs and environmental concerns, all in-

dustries are seeking ways to reduce their energy consumption.

Therefore, improving the energy efficiency of BSs, which have

been identified to be the most power consuming part in current

cellular networks [2], [3], is as important as in MTs.

In recent years, there have been many researches on green

cellular networks, which includes different techniques pre-

sented in [2]–[14]. For example, the authors in [4]–[6] in-

vestigate the micro BSs or relay deployment strategy in terms

of energy, capacity and cost. In [2], [8]–[10], several load-

aware BS switching on/off algorithms were proposed. The

greening effect of interference management with combinations

of spatial and temporal power budget sharing is investigated

in [11]. In [12], a computation unit deceleration technique has

been proposed, which can conserve dynamic power effectively

without turning off BSs. With cell zooming [13], the coverage

of each active BS is dynamically varied so that the overall

power consumption in the network can be minimized. There

has also been work on modeling the component-level power

consumption in BSs [14].

In this paper, we consider a problem of minimizing the

total power consumption in BSs while satisfying the quality of

service (QoS) requirements for all users in the network. To this

end, we develop a novel framework for energy conservation,

called DCR (dynamic cell reconfiguration), which includes the

active BS selection and user association algorithms. Because

solving the problem is computationally intensive, we take an

approach to design simple yet effective algorithms. Through

analytical and simulation studies, we demonstrate that the

proposed DCR framework is not only computationally efficient

but also can achieve the performance close to the optimal

solution that could be obtained from an exhaustive search.

The rest of this paper is organized as follows. Section II

formally describes our system model and general problem.

In Section III, we propose a dynamic cell reconfiguration

framework. In Section IV, we present simulation results for

the proposed algorithm. In Section V, we conclude the paper

with our notes and observations.

II. SYSTEM MODEL

A. Network and Channel Model

Let us consider a cellular wireless network with a set of

BSs B. Let x ∈ L denote a user location and i ∈ B be the

index of the i-th BS. In this paper, although we concentrate

on downlink communication that is a primary usage mode for

mobile Internet, i.e., from BSs to MTs.

The time-averaged transmission rate of a user at location

x served by BS i is denoted by ci(x) [bits/sec]. It depends

on the set of active BSs Bon and their transmit power ptx =
(ptx

1 , · · · , p
tx
|B|). Further, note that ci(x) can capture the effect

of shadowing.

B. Traffic Demand and BS Utilization

We assume that a user at location x have the required rate

γ(x) [bits/sec]. Then, in order to guarantee the QoS level of

the user, the fraction of resource blocks (i.e., time/frequency)

allocated by BS i would be γ(x)/ci(x).
We now define a routing probability πi(x) which dictates

the user at location x is routed to BS i. As can be seen later in
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Section III-A, the optimal πi(x) would be either two extremes

0 or 1. The BS utilization, the average occupied percentage of

the BS resource blocks, can be defined as follows:

ρi
.
=

∫

L

γ(x)

ci(x)
πi(x)dx. (1)

Definition 2.1 (Feasible set): When the set of active BSs

Bon and their transmit power ptx are given, the set F(Bon, p
tx)

of feasible utilization ρ can be defined as follows:

F(Bon, p
tx)

.
=

{

ρ = (ρ1, · · · , ρ|B|) | 0 � ρ � 1,

∀x∈L, 0 � π(x) � 1,

∀x∈L,
∑

i∈B πi(x) = 1,

∀x∈L, ∀i ∈ B\Bon, πi(x) = 0
}

.

(2)

where we use ”�” to denote element-wise inequality for the

vectors.

C. Power Consumption Model

We consider the BS power consumption model that can

capture both dynamic power and static power as follows. The

former is proportional to BS’s utilization. On the other hand,

the latter is the fixed amount of power that BSs dissipate while

even inactive.

Pi = (1− qi)ρiP
max
i

︸ ︷︷ ︸

dynamic

+ qiP
max
i

︸ ︷︷ ︸

static

, (3)

where qi ∈ [0, 1] is the portion of the static power for BS

i, and Pmax
i is the maximum power consumption when it is

fully utilized. According to [14], Pmax
i is again a function of

the transmit power

Pmax
i = aip

tx
i + bi, (4)

where the coefficient ai accounts for the power consumption

that scales with the average transmit power due to amplifier,

cooling, feeder losses, etc.

We would like to emphasize that our model given in (3) is

general enough to grasp a variety of BS power consumption.

• Energy-proportional BS with qi = 0: Assuming ideally

equipped with energy-proportional devices, the BS does

not consume any power when idle, and proportionally

consume more power as its utilization increases.

• Non-energy-proportional BS with qi > 0: In practice,

several hardware devices inside a BS dissipate standby

power even though the BS does not serve any traffic. As

an extreme case of qi = 1, the model becomes a constant

consumption, which has been widely used in many works

in literature [2], [3], [9], [10].

D. General Problem Statement

We consider a general problem that minimizes the total BS

power consumption while guaranteeing QoS requirements for

all users in a sense that all of their traffics are guaranteed to

be served.

[GP]: min
∑

i∈Bon

Pi (5)

subject to Bon ⊆ B, (6)

ptx � ptx,max, (7)

ρ ∈ F(Bon, p
tx). (8)

Our ultimate goal is to develop a framework for BS energy

conservation that encompasses (i) active BS selection, (ii) user

association and (iii) transmit power control. As a first step

towards this goal, in this paper, we focus on building solutions

for the first two subproblems assuming all BSs are operating

at the maximum transmit power, i.e., ptx = ptx,max instead of

the constraint (7). We plan to integrate the transmit power

control into a single unified framework in future work. Note

that we drop the transmit power ptx to keep our notations

simple throughout the paper.

III. DYNAMIC CELL RECONFIGURATION FRAMEWORK

In this section, we present details on our framework, called

dynamic cell reconfiguration (DCR), that includes the user

association and active BS section algorithms.

A. User Association

We shall start by considering a given set of active BSs Bon.

In this case, the static power consumption term can be ignored.

So the remaining subproblem in [GP] is to determine which

BS each user should be associated to, or equivalently, to find

an optimal BS utilization ρ.

min
∑

i∈Bon

[(1− qi)P
max
i ρi + Li(ρi)]

subject to ρ ∈ F(Bon),

(9)

where Li(ρi) is a penalty function we intentionally introduce.

By adding the penalty into the objective, we can allow the

system to balance the traffic load among BSs and avoid a cell

getting too congested. Although there may be other method of

penalizing the congested cell for the purpose of load balancing,

in this paper, we introduce the following penalty function with

three configurable parameters.

Li(ρi) =







0, ρ < ρth,

Lmax ·

(
ρi − ρth
1− ρth

)β

, ρ ≥ ρth,
(10)

where Lmax ≥ 0 is the maximum penalty value and ρth ∈
[0, 1] is the BS utilization threshold we start penalizing the

BS; β > 0 controls the sharpness of the penalty function. It is

worthwhile mentioning that the modified problem given in (9)

is asymptotically equivalent to the original subproblem without

the penalty function Li in any of the following conditions: as

Lmax goes to zero, ρth goes to one, or β goes to infinity.

2023



Theorem 1: When the problem given in (9) is feasible,

Then, the optimal policy is for user at location x to associate

with BS i∗(x), given by

i∗(x) = argmax
i∈Bon

ci(x) · [(1− qi)P
max
i + L′

i(ρ
∗
i )]

−1, (11)

where ρ∗ is the optimal BS utilization.

But the subtlety is here that we have a chicken-and-egg

problem because the policy in (11) needs requires the optimal

utilization ρ∗ in advance. However, the following iterative

algorithm does not require such an assumption and converges

to the global optimum without knowing ρ∗.

User Association Algorithm

MTs: At the k-th iteration, MTs measure the average trans-

mission rate ci(x) and receive the BS utilization ρ[k]. Then,

the MTs select the BS i[k](x) according to (11) by using the

current ρ[k] instead of the optimal utilization ρ∗.

BSs: During k-th period, each BS estimates its average

utilization ρ
[k+1]
i . Then, the BS broadcast this information to

MTs for the next iteration.

With a slight modification of the technique used in [15], we

can generalize the optimality and convergence proofs of the

proposed user association algorithm, although they are omitted

here due to space limitations.

B. Active BS Selection

We investigate another piece of subproblem in DCR, i.e.,

active BS selection. By solving this problem, we will be able

to answer which BSs remain turning on to guarantee the

QoS level of users and which BSs need to minimize energy

consumption in the network.

[P1]: min
Bon⊆B

UA(Bon) +
∑

i∈Bon

qiP
max
i ,

where UA(Bon)
.
= minρ∈F(Bon)

∑

i∈Bon
(1 − qi)ρiP

max
i , which

is the optimal objective value of user association problem.

There is a technical challenge in solving this problem be-

cause it can be reduced from a vertex cover problem which is

theoretically known as NP-complete [16]. In order to overcome

such a high computational complexity, we consider the design

of an efficient heuristic algorithm in this section. To that end,

we move the static power consumption term in the objective

to the constraint with a nonnegative budget.

[P2]: min
Bon⊆B

UA(Bon)

subject to
∑

i∈Bon

qiP
max
i ≤ Z/λ.

As can be easily noticed, there is a close relationship between

[P1] and [P2] as primal/dual problems with a Lagrangian

multiplier λ. In order to further convert [P2], let us introduce

an intuitive diminishing returns property that is formalized by

the concept of submodularity [17] as follows.

Definition 3.1: For a real-valued set function H , we define

the discrete derivative at A ⊆ S in direction s ∈ S as ds(A) =
H(A ∪ s)−H(A). The H is said to be submodular if

A1 ⊆ A2 ⊆ S ⇒ ds(A1) ≥ ds(A2) for all s ∈ S \ A2.

Now we rewrite [P2] in the standard form of submodular

maximization problem as follows.

[P3]: max
A⊆B\Binit

H(A)

subject to c(A) =
∑

i∈A

c(i) ≤ C.

where A = Bon \ Binit, H(A) = UA(Binit) − UA(Binit ∪ A),
c(i) = qiP

max
i and C = Z/λ−

∑

i∈Binit
c(i).

It is worthwhile mentioning that there exist a very intuitive

yet efficient greedy algorithm for [P3] only if H is a non-

decreasing submodular. It works as follows: starting from the

empty set A = ∅, it iteratively adds the element with the

highest value of metric
H(A∪i)−H(A)

c(i) while the total cost is

within the budget C. Mathematically, it has been shown in

[17], [18] that this greedy heuristic can give a suboptimal

solution with an approximation factor of (1− 1/e).

We can fortunately show the set function H is nondecreas-

ing submodular under a reasonable assumption that adding

or removing one additional BS has marginal impact on the

total amount of interference. This implies the greedy heuristic

would work well in our active BS selection problem as well.

After some tweaking to suit [P1] better, we propose a greedy-

style active BS selection algorithm that borrows the metric

(i.e., the decrement per unit cost when removing BS i) as

follows.

Active BS Selection Algorithm

1: Initialize: Bon = B
2: Repeat:

3: Find i∗ = argmini∈Bon

UA(Bon\{i})−UA(Bon)
qiP

max
i

4: If UA(Bon \ {i})− UA(Bon) < qiP
max
i ,

5: then Bon ← Bon − {i∗}
6: Else,

7: go the Finish.

8: Finish: Bon is the set of active BSs.

Our proposed algorithm starts from the point where all BSs

are turning on and finds the best BS as a turning-off candidate

for energy conservation in line 3. Note that the denominator is

the amount of static power consumption saving from turning

off when BS i. On the other hand, the numerator is the

increment of dynamic power consumption, which comes from

the fact that MTs originally associated with the switched-off

BS would see possibly lower transmission rate ci(x) due to

father distance to the new serving BS. In line 4, the algorithm

checks whether there is a net energy saving (in other words,

the decrement in static power consumption is larger than the
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increment in dynamic power consumption). If so, we turn off

BS i. Otherwise, we stop the algorithm.

IV. SIMULATION RESULTS

We evaluate the performance of the proposed DCR frame-

work though simulations. Typical transmit power for macro

BSs and their maximum operational power are considered

to be 20W and 865W according to [14], respectively. The

static power portion qi is assumed to be 0.5 unless explicitly

mentioned, but we will examine the effect of varying this

parameter in Section IV-C.

A. Load balancing via Penalty-based User Association

Consider a simple network composed of five active BSs

and spatially heterogeneous traffic loads, i.e., the required rate

∝ (max(r)−r)5 where r is the distance from the center. So the

area in the middle, mostly covered by BS 1, can be interpreted

as hotspot. In order to see how the proposed user association

algorithm balances traffic loads, we plot Fig. 1 illustrating

snapshots of BSs’ coverage areas for the cases (a) without

and (b) with penalty function. We can easily notice the effect

of introducing the penalty function Li into the reconfiguration

algorithm by comparing two figures. With penalty, some users

leave the congested BS 1, as indicated by the shrinking of cell

1 in Fig. 1, and associate with neighboring BSs 2-5, which are

actually under-utilized.
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Fig. 1. Snapshots of cell coverage: Lmax =
∑

i∈B
Pmax
i

and β = 2.

Such a load balancing comes at the cost of slight increase

in dynamic power consumption. In Fig. 2, we calculate the

average delay to transfer a filesize of 100 Kbyte and the

worst delay in the network as a yardstick of load balancing.

The less delay means the less congestion (i.e., the more

effective load balancing). As shown in Fig. 2, the power cost

is marginal compared to the delay benefit we can expect. For

example, in the case of ρth = 0.7, there are 39% and 47%

reductions in the average and worst delay, with 0.56% (2838W

to 2854W) increase in power consumption. Note that this

tradeoff graph may also be used to choose ρth in practice based

on the maximum tolerable delay. In the following simulation

of Section IV-B, we set ρth = 0.7.
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Fig. 2. Tradeoff between delay and total power consumption by varying the
BS utilization threshold ρth from 0.5 to 1.0.

B. Energy Saving by the Proposed DCR Framework

Now let us investigate the performance of the whole DCR

framework including both user association and active BS

selection. To have more realistic results, a topology with fifteen

BSs in 4.5 × 4.5 km2, a part of 3G network in metropolitan

area [19], is adopted (see Fig. 3). For comparison, we also

consider three other schemes:

• All-On (baseline scheme): always turning on all BSs

• Util-based: turning off the least utilized BS one by one

which is shown to be an effective heuristic in [8]

• Exhaustive: the optimal solution from an exhaustive search

Fig. 3 shows snapshots of the active BSs and their coverage

areas at the normalized traffic load1 = 0.3. All-On still keeps

turning on all BSs at such a low load, which naturally leads

to the energy inefficiency. However, DCR and Exhaustive turn

off eight and nine BSs for energy conservation, respectively.

As a consequence, the remaining BSs dynamically reconfigure

their cells (i.e., cell zooming). In our simulations under various

configurations, DCR often finds a suboptimal solution that has

the same number of active BSs as Exhaustive and just one or

two more in the worst case. It is also worthwhile investigating

the static and dynamic power consumption breakdown: DCR

(4.46kW = 3.03kW + 1.43kW) vs. Exhaustive (4.25kW =

2.60kW + 1.65kW).

Fig. 4 shows the total power consumption of the cellular

network as a function of the normalized traffic load in both

(a) uniform and (b) non-uniform2 traffic distribution. Our

results show that a brute-force Util-Based works well in the

uniform environment, but not in non-uniform environment.

However, the proposed DCR always outperforms Util-Based,

and moreover its performance is very close to that of the

exhaustive search solution. Compared to static All-On, DCR

1In our simulation, the normalized traffic load [no unit] is the traffic load
normalized by the traffic load at peak time.

2A linearly decreasing traffic along the diagonal direction from left top
to right bottom in Fig. 3 is considered to generate non-uniform environment.
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Fig. 3. Snapshots of the active BSs and their coverage areas at the normalized traffic load = 0.3 for different schemes.
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Fig. 4. Normalized traffic load vs. total power consumption.

yields the potential energy savings of 10-60% depending on

the amount of traffic and its spatial distribution.

In order to calculate the overall energy saving per day from

DCR, in TABLE I, we analyze the fraction of time that the

BS utilization is observed to be in different ranges between

0 and 1 based on the sample traffic traces from [3]. Using

these numbers as weighting factors along with the results of

total power consumption in Fig. 4, we can obtain that about

30-40% savings are realistically achievable during one day.

TABLE I
FRACTION OF TIME IN THE RANGES OF BS UTILIZATION BASED ON THE

SAMPLE TRAFFIC TRACES FROM [3]

BS Utilization Fraction of Time

0.0∼0.1 0.313

0.1∼0.2 0.061

0.2∼0.3 0.077

0.3∼0.4 0.083

0.4∼0.5 0.049

0.5∼0.6 0.038

0.6∼0.7 0.103

0.7∼0.8 0.047

0.8∼0.9 0.184

0.9∼1.0 0.045

C. Effect of the portion of static power consumption qi

Fig. 5 illustrate the effect of static power fraction qi on

the maximum energy saving (at a very low load ∼ 0.1).

As expected, there is no gain at qi = 0 because those

energy-proportional BSs have no standby power dissipation.

However, we can obtain much saving when the static power

consumption contributes to a significant portion of the total

consumption, e.g., nearly 70% possible at q = 1. Given that

recent measurement in [14] (implying high qi) that the BS

power consumption varies only about 5% over time regardless

of its utilization, the proposed DCR framework would bring

huge benefit to the current cellular networks.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel dynamic cell reconfig-

uration framework for BS energy saving that includes both

user association and active BS selection algorithms in cellular

wireless networks. Through analytical and simulation studies,

we showed that our DCR framework is not only computa-

tionally efficient but also can achieve the performance close

to the optimum solution. We also made several interesting

observations that high energy savings are expected, especially,

when the average traffic load is low and/or the portion of static

power consumption is high.
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Fig. 5. Effect of static power portion qi on the maximum energy saving.

The proposed framework brings about many interesting

future research opportunities. We are currently working on

integrating transmit power control into a unified framework

to further improve the energy efficiency of BSs. Additionally,

we would like to investigate the impacts presented by DCR

on the cellular uplink transmissions.
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