
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 6, JUNE 2015 1017

Joint Work and Voltage/Frequency Scaling for
Quality-Optimized Dynamic Thermal Management

Ali Mirtar, Member, IEEE, Sujit Dey, Fellow, IEEE, and Anand Raghunathan, Fellow, IEEE

Abstract— Dynamic thermal management (DTM) is commonly
used to ensure reliable and safe operation in modern computing
systems. DTM techniques are based on slowing down or shutting
down parts of a system; hence, they effectively reduce system
performance and thereby adversely impact applications. In this
paper, we focus on real-time applications in which degradation
in performance translates to a loss in application quality, and
address the problem of quality-optimized DTM, wherein the
objective of DTM is to satisfy specified temperature constraints
while optimizing application quality metrics. We first introduce
a new DTM method called dynamic work scaling (DWS),
which is based on modulating an application’s computational
requirements. Next, we observe that application quality and
platform temperature are effectively determined by two key
parameters, viz., the application’s computational requirement
and the platform’s computing capacity, and formulate the rela-
tionship between them. Finally, we propose a quality-optimized
DTM based on joint dynamic work and voltage/frequency
scaling (DWVFS). We have implemented the proposed DTM
technique and evaluated it for two applications: 1) H.264 video
encoding and 2) turbo decoding. Our results demonstrate that
DWVFS can provide superior results in terms of application
quality compared with both DVFS and DWS-based DTM at
identical temperature constraints.

Index Terms— Application adaptation, dynamic thermal
management, dynamic voltage scaling.

I. INTRODUCTION

THE increase in complexity of integrated systems, together
with an inability to sustain classical scaling have sub-

stantially elevated power density and temperature concerns in
computing platforms [1]–[21]. Operating under high tempera-
ture reduces the reliability and durability of chips [3]. To avoid
these adverse effects, cooling systems, such as heat sinks and
fans, have been used since early generations of computing
platforms. However, either due to battery or size limitations
for mobile devices or due to very high cooling requirements for
servers and datacenters, conventional cooling methods alone

Manuscript received December 21, 2013; revised April 15, 2014; accepted
June 9, 2014. Date of publication August 28, 2014; date of current version
May 20, 2015. This work was supported by the National Science Foundation
under Grant CNS-0917354.

A. Mirtar and S. Dey are with the Department of Electrical and Computer
Engineering, University of California at San Diego, La Jolla, CA 92093 USA
(e-mail: amirtar@ucsd.edu; sdey@ucsd.edu).

A. Raghunathan is with the School of Electrical and Computer Engi-
neering, Purdue University, West Lafayette, IN 47907 USA (e-mail:
raghunathan@purdue.edu).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. This includes a document
file, which contains the proofs of theorems mentioned in the manuscript. This
material is 251 KB in size.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2014.2333741

cannot fully address the thermal needs of modern designs.
Therefore, dynamic thermal management (DTM) is used either
as a supplement or as a replacement for cooling methods.

Many DTM methods have been developed for general
purpose processors [6], [7], servers and data centers [4], [5],
mobile platforms [8], and embedded systems [9]. Even though
they vary in their approaches, a common attribute is that
they all negatively affect the performance of the computing
platform, leading to an increase in the runtime of tasks. In the
case of many real-time applications, longer runtimes result in
a loss of the application’s functional quality, which we broadly
define as a metric of how well an application is performing the
task that it is supposed to perform. For instance, we define the
functional quality of a video encoder as the visual quality of
the video; the functional quality of a turbo decoder is defined
as its effective decoding throughput. The efficacy of previous
DTM methods has been mostly quantified by the runtime
increase [1]–[21].

In this paper, we directly focus on optimizing the functional
quality of a real-time application rather than its tasks’ run-
times. We observe that complex real-time applications, such
as video encoding, gaming (3-D rendering), communication
coding, and so on, present parameters that can be used to
tune their computing requirement, i.e., the workload pre-
sented to the computing platform. Based on this insight, we
first introduce a DTM method called dynamic work scaling
(DWS), an application level DTM technique in which we
scale the computing requirements of an application by tuning
its parameters, and hence the workload that it presents, to
manage the temperature of the underlying platform. Then, we
motivate and propose a hybrid method based on DWS and
conventional dynamic voltage and frequency scaling (DVFS).
The proposed approach is called joint dynamic work and
voltage/frequency scaling (DWVFS). We formulate this hybrid
DTM as a multidimensional constrained optimization problem
and present an analytical solution. Furthermore, we propose a
fast algorithm to solve the optimization problem in real time
to perform quality-optimized DTM. Overall, the contributions
of this paper are twofold:

1) viewing DTM from the lens of its impact on an appli-
cation’s functional quality, and formulation of quality-
optimized DTM as a constrained optimization problem;

2) proposal of a hybrid DTM technique based on joint
DWS and DVFS, and demonstration of its benefits over
conventional DTM techniques.

In the rest of this paper, we first review related work on
dynamic thermal management (Section II). Then, we introduce
DWS as a DTM method and show its utility in thermal

1063-8210 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1018 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 6, JUNE 2015

management (Section III). We then formulate quality-
optimized DTM as a constrained optimization problem, dis-
cuss the relationship between work and voltage/frequency
scaling with the application’s quality and the platform’s tem-
perature and describe an analytical solution (Section IV). Next,
we present a fast algorithm to perform quality-optimized DTM
using DWVFS in real-time (Section V). Finally, we apply
the proposed DTM approach to two real-time applications—a
video encoder and a turbo decoder—and compare its efficacy
with conventional DTM methods (Section VI).

II. RELATED WORK

A variety of techniques have been proposed for DTM,
including instruction fetch gating [10], DVFS [10], [13],
scheduling [11], [12], [14], [34]–[38], and thermal aware
load balancing [14]. Many hybrid methods also have been
introduced to combine the benefits of multiple approaches and
to avoid their drawbacks [10]–[15].

Application-specific DTM methods have been extensively
studied in the context of video encoding/decoding applications
[3], [16]–[21]. In these studies, common DTM techniques
were adopted and the timing characteristics of video encod-
ing/decoding applications were used to guarantee real-time
execution.

The main difference between this paper and most of the
above efforts [1]–[21], [34]–[38] arises from the objective
function. In previous work, the objective has been to maximize
performance in the presence of thermal constraints. Note that
the term performance has been quantified by application run
time, response time, whether deadlines are met, or other
timing metrics of an application. Instead, we propose to
look at the end user experience and maximize the functional
quality that is required from an application. This matters
especially in the context of real-time applications where dif-
ferent timing violations (e.g., dropping of different frames in a
video stream) may affect the application’s quality differently.
In addition, we use an application layer approach compared
with scheduling approaches which are OS level methods
[11], [12], [34]–[38]. This enables us to exploit application
properties to design a quality-aware method, compared with
other methods [11], [12], [15], [34]–[38] which are oblivious
to their effects on application quality and only optimize for
timing metrics. Furthermore, we change the application itself
to not only help with thermal management, but also improve
application quality while computing capacity is limited. In
contrast, other scheduler-based methods affect the order and
the time in which tasks are being executed and they do not
modify the application tasks themselves. Another contribution
of this paper is a more generic formulation and treatment
of DWS for real-time applications. Previous DTM methods
[3], [16]–[21] that have been applied to just real-time video
encoding/decoding are dependent on application specifics.
Therefore, they cannot easily be adapted to other real-time
applications. In this paper, we formulate the relationships
between application-level functional quality and temperature
on one hand and the computational requirement and computing
capacity on the other, and utilize them to propose a DTM

technique that is applicable to a broad range of real-time
applications.

III. DWS: A KNOB FOR THERMAL MANAGEMENT

As we mentioned, many hardware and software (scheduling)
methods have been developed and used for DTM. These
methods may adversely affect the quality of the application
running on the system1 by reducing the system’s performance;
however, they do not actually change the running application
itself. In this section, we introduce a new method of thermal
management by modifying an application’s tasks through its
parameters. This modification results in changing the com-
puting requirements of a real-time application running on the
system, and thereby changing the application’s workload on
the system.

There are many real-time and complex applications whose
computing requirements can be controlled by their parameters.
For example, quantization level for H.264 video encoder [22],
view distance for 3-D graphics rendering [23], and number of
decoding iterations for a turbo decoder [24] in a Software
Defined Radio [25] can affect the computing requirements
of the application. We study the effects of workload change
on a system’s temperature in Section III-A and then we
briefly discuss how changing these parameters can affect user
experience and the application’s functional quality.

A. DWS Concepts

In real-time applications, specific tasks should be completed
in a given time interval or within a deadline. For instance, in
video encoding with the frame rate of 30 frames/s, all the
tasks required for encoding a frame should be completed in
less than a 1/30th of a second. In such applications, if the
platform does not have enough computing capacity for the
application’s tasks to finish on time, the functional quality
of the application would be degraded. On the other hand,
if the system’s computing capacity is more than the computing
requirements of the application, the platform is not fully
utilized. Modern computing platforms have various hardware
techniques that exploit even fine-grained intervals of less-than-
complete utilization for power reduction (e.g., through clock
gating). Note that this is orthogonal to DVFS techniques,
which are applied at a coarser granularity and under software
control. This reduced power dissipation under lower utilization
in turn leads to lower thermal load. This characteristic of real-
time applications is the foundation of the DWS. We try to
control the computing requirements of a real-time application
and thereby tradeoff the functional quality of the application
against the thermal load that it generates.

Thermal dynamics of junction temperature in an integrated
circuit can be described as follows [26]:

�
′ = P

Cth
− �

Cth · Rth
(1)

where P is the power consumed in the silicon, Cth is the
thermal capacitance of the silicon, Rth is the thermal resistance

1The two terms platform and system have been used interchangeably in this
paper.

MIRTAR et al.: JOINT WORK AND VOLTAGE/FREQUENCY SCALING 1019

Fig. 1. Greedy implementation of DVFS and DWS.

Fig. 2. Effects of DWS and DVFS on an H.264 video encoder application’s functional quality and platform’s temperature. (a) Visual quality for DVFS.
(b) Visual quality for DWS. (c) Platform temperature with DVFS. (d) Platform temperature with DWS.

of the silicon, � is the silicon junction temperature relative
to the ambient temperature, and �

′
is the rate of change in

junction temperature.
In a short time window that power is constant, the solution

of (1) is

�(t) = Rth P + (�i − Rth P)e− t
τ (2)

where �i is the initial temperature and τ = RthCth is the
thermal time constant.

We formulate the periodic characteristic of real-time appli-
cations mentioned earlier as follows. The time interval in
which the application needs to perform a set task is called T .
For instance, T can be the required time to encode a frame
in case of real time video encoding, or the time needed to
decode a packet of data in the case of turbo decoder in a
wireless communication. We define the stress ratio, u, as the
percentage of the time that the application is stressing the
platform, where 0 ≤ u ≤ 1. Therefore, the percentage of
the time that system is in rest is (1 − u). Hence, u is equal
to one when the computing requirement of the application is
equal or more than the computing capacity of the platform.

We define the average power consumed during the appli-
cation stress time as Ps and the average power consumed
during the rest time as Pr (where Pr < Ps). In practice,
the time interval T for real-time applications is in the order
of microseconds or milliseconds; however the thermal time
constant is usually in the order of seconds (T � τ). With this

assumption, it can be proven that the platform would reach
to a steady temperature θss that is in linear relationship with
application stress ratio.

�ss(u) = Rth(Pr (1 − u) + Psu). (3)

The proof of equation (3) is shown in an appendix provided
in supplementary material.

In summary, the parameters of a real-time application can
be used to change its computing requirements and hence its
work load. Thereby, the portion of time that the application
stresses the platform can be affected. Furthermore, the steady
temperature of the platform is a linear function of the stress
ratio. This means by controlling the application’s workload
through changing its parameters, one can control and manage
the temperature of the platform (DTM).

B. DWS Implementation

As we mentioned, work scaling is a potential control
knob for thermal management. In this section, we define the
objective of DWS as a DTM technique, and by using a greedy
implementation will show its effectiveness.

Since changing the work load of a real-time application
by scaling its computational requirements/complexity can
also affect its functional quality, we define the objective
of DWS with respect to application function quality as
follows.

1020 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 6, JUNE 2015

Fig. 3. Using DVFS and DWS for turbo decoder application. (a) Platform
temperature in degree Celsius. (b) Turbo decoder throughput in bps.

The objective of DWS for thermal management is to maxi-
mize the functional quality of the real-time application while
making sure the temperature of the platform does not exceed
a given critical temperature.

The above statement can be described in the following
mathematical form:

Maximize : Q(p) s.t. : �(p) ≤ �c

where Q is the application’s functional quality, and � is
the platform’s temperature, as a function of the application’s
parameter p. Therefore, the control variable in the DWS is the
application parameter that would vary application computing
requirement and workload.

Fig. 1 shows a greedy implementation of DWS and DVFS
for DTM. Both DWS and DVFS algorithms will control
platform temperature (perform DTM), but they use different
control variables. We have used the DTM algorithms on
two applications, H.264 video encoder and turbo decoder.
Both DTM schemes were evaluated for these two applica-
tions executing on a Macbook Alr platform with the Intel
Core2Duo processor. In the case of the H.264 video encoder,
the application parameter p is constant rate factor (CRF), and
the functional quality Q is the encoded video stream’s peak
Signal-to-noise ratio (PSNR). The number of iterations in the
decoding loop is the application parameter for turbo decoder
and its effective throughput is its functional quality. The details
and description of these applications, their parameters and their
functional quality along with the platform specifications are
provided in the results section (Section VI).

Fig. 2 compares the results of DWS and DVFS implemen-
tations described in Fig. 1 for four test conditions. One test
is without any DTM and the other three tests are with 70 °C,
75 °C, and 80 °C as critical temperature. Fig. 2(a) and (b)
shows the visual quality of the encoded stream (in PSNR) over
time for DVFS and DWS, respectively. It is clear that in this
example, quality drop in DVFS is faster than DWS and eventu-
ally, the video stream produced under DWS has a better quality
(higher PSNR). On the other hand, from Fig. 2(c) and (d)

we observe that DVFS controls the temperature better than
DWS meaning the violation of critical temperature occurs less
frequently.

Fig. 3 shows the result of using DWS and DVFS for a
turbo decoder application for a critical temperature of 75 °C.
Fig. 3(a) shows that both DWS and DVFS can control the tem-
perature around the target temperature while without DTM, the
temperature rises above 100 °C. Fig. 3(b) shows the effects of
each DTM method on the functional quality which in this case
is decoder’s effective throughput. In this scenario, the negative
effect of DWS on application quality is more than DVFS.

These examples are provided as proofs of concept to
show that DWS can be used as a DTM tool in practice.
In addition, in the case of video encoder, DWS produces better
quality results than DVFS while in the case of turbo decoder,
DVFS produces better functional quality. The results tell us
that while both DWS and DVFS can be used for DTM, their
effectiveness and impact on application quality can be different
under different application conditions. We investigate these
conditions in the rest of this paper and study the joint effects
of DWS and DVFS on both application’s functional quality
and platform temperature.

IV. QUALITY OPTIMIZED DTM

Our goal is to provide a method that best utilizes both
DWS and DVFS in order to obtain a quality optimized DTM
methodology. To achieve this goal, we first study the joint
effects of DWS and DVFS on temperature as well as functional
quality of a real-time application. Next, we formulate quality-
optimized DTM in the form of a constrained optimization
problem, whose solution is the new joint DWVFS approach
for DTM.

A. Quality and Thermal Contour Lines

We start with some definitions that will help in quantifying
different behaviors of any real-time application in general
terms, and eventually develop a generic DTM algorithm.
Changing a platform’s voltage/frequency affects the computing
capacity of the platform. Therefore, we define our first variable
as the computing capacity or Cc, which represents the effect
of DVFS on the platform. On the other hand, when we
change a parameter of an application, we affect a change
in the amount of computation requested from the platform.
Therefore, we define our second variable as the application’s
computing requirements or Cr to represent the effect of
DWS. Hence, the application’s functional quality and plat-
form’s temperature can be described as functions of these two
variables

Application functional quality : Q(Cc, Cr)

Platform temperature : �(CcCr).

Since both Q(CcCr) and �(CcCr) are functions of two
variables, we use contour lines to study their general behavior.
A contour line (or isoline) of a function with two variable, is
a curve in which the value of the function is the same [27].
Contour lines can be used to show the general behavior of
a two-variable function like its extremums or rate of change.

MIRTAR et al.: JOINT WORK AND VOLTAGE/FREQUENCY SCALING 1021

Fig. 4. Contour plots of an H.264 encoder. (a) Functional quality in PSNR.
(b) Platform temperature in degree Celsius.

For example, Fig. 4 shows the contour lines plots of Q(CcCr)
and �(CcCr) for an H.264 video encoder application. The
horizontal axis is the CPU frequency; as frequency increases,
the computing capacity of the platform increases. The vertical
axis is the CRF, which is one of the H.264 video encoder’s
parameters. The increase in CRF decreases the computing
requirements of the encoder (more information about CRF is
provided in Section VI). These plots illustrate that peak quality
and temperature occur at minimum CRF and maximum CPU
frequency. We first derive the general shape of temperature
contour lines and then study functional quality contour lines.
Then, we will use them in the next section to formulate the
quality optimized dynamic thermal management.

1) Temperature Function: As we mentioned earlier, plat-
form temperature is a function of Cc and Cr . In addition, it is
self-evident that increasing computing requirements of appli-
cation increases the platform utilization as long as computing
capacity is available

⎧
⎪⎨

⎪⎩

∂u

∂Cr
= 0 Cr ≥ Cc

∂u

∂Cr
> 0 Cr < Cc.

(4)

From (3) (Section III-A) and (4), we derive that by increas-
ing computing requirements while computing capacity is
available, the temperature increases

⎧
⎪⎨

⎪⎩

∂�

∂Cr
= 0 Cr ≥ Cc

∂�

∂Cr
> 0 Cr < Cc.

(5)

The same type of relationship holds between temperature
and computing capacity. Computing capacity is proportional to
platform’s frequency and the platform’s temperature increases
by increasing its frequency and voltage

∂�

∂Cc
> 0. (6)

Equations (5) and (6) provide us with enough information
to find out the general thermal behavior of a platform. In fact,
the contour lines characteristics can be extracted from the
function’s partial derivatives as described in the following
corollaries.

Fig. 5. General shapes of contour lines with respect to the function’s partial
derivatives with the conditions specified in (a) Corollary 1, (b) Corollary 2,
(c) Corollary 3, and (d) Corollary 4.

Fig. 6. Contour lines plot of platform’s temperature executing a real-time
application with respect to computing capacity and computing requirements.
The diagonal dashed-line represents Cr = Cc .

The contour lines plot of a two-variable function f (x, y) in
a domain (D), where the sign of the partial derivatives does
not change and at least one of them is nonzero, will be (Fig. 5).

Corollary 1: Noncrossing decreasing lines if ∂ f /∂x ×
∂ f /∂y > 0.

Corollary 2: Noncrossing increasing lines if ∂ f /∂x ×
∂ f /∂y < 0.

Corollary 3: Parallel horizontal lines if ∂ f /∂x = 0.
Corollary 4: Parallel vertical lines if ∂ f /∂y = 0.
The proofs of above corollaries are shown in an appendix

provided in supplementary material. By applying the above
corollary on (5) and (6), we come up with the general thermal
behavior of a real-time application. We define the maximum
computing capacity of the platform as CM . Therefore, the
domain of temperature function D is defined as

D = {(Cc, Cc)|0 ≤ Cc ≤ CM , 0 ≤ Cr ≤ CM }.
This domain does not fall into any of the categories men-

tioned in the corollary. Therefore, we break it into two sub
domains

D1 = {(Cc, Cc)|0 ≤ Cc ≤ CM , 0 ≤ Cr < Cc}
D2 = D − D1. (7)

The first domain, D1, follows Corollary 1 formulation
and the second domain, D2, follows Corollary 4 formulation
(5) and (6). Fig. 6 displays the general shape of the temperature
contour lines of a real-time application where the contour lines
in D1 and D2 are made from Fig. 5, Corollary 1 and 4 plots.

2) Quality Function: We start analysis of the quality
function, Q(CcCr), with the subdomain defined in (7), D1.
In this subdomain, the computing requirement is smaller
than computing capacity of the platform. Therefore, a slight
change in the computing capacity will not affect the qual-
ity of the application. This phenomenon can be represented

1022 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 6, JUNE 2015

Fig. 7. Contour lines plot of a real-time application’s quality function
Q with respect to computing capacity and computing requirements. The
diagonal dashed line represents Cr = Cc. (a) Quality contour lines plot
when ∂Q/∂Cr > 0 for all the points in D2. (b) Quality contour lines plot
when ∂Q/Cr changes sign in D2. The dashed-dot line represents these points
(Cr = f (Cc)).

mathematically as

∂ Q

∂Cc
= 0, if: Cr < Cc. (8)

Using Corollary 3, we conclude that the contour lines of the
quality function are horizontal lines in D1 (Fig. 7). Next, we
study the D2 domain where the computing capacity is less than
computing requirements. Let us consider an arbitrary point in
this domain. Since the computing capacity is less than the
computing requirements, the functional quality of application
would be less than expected. Now, if the computing capacity
drops, the functional quality suffers even more due to higher
limitations induced by the platform. Therefore, we can derive

∂ Q

∂Cc
> 0, if: Cr > Cc. (9)

Now, we take a look at computing requirements of an appli-
cation and its role on the application’s quality. An application
is usually designed in a way that the increase in computing
requirements is going to increase the application’s functional
quality unless it faces any limitations from the platform.
It means

∂ Q

∂Cr
> 0, while: Cr < Cc (10)

when Cr > Cc, the effects of Cr change on quality function
would be complex. One would expect to see higher quality in
response to Cr increase; however, due to limited computing
capacity, not only we may not achieve as much quality increase
as we expected, but we may also lose quality due to application
tasks that may not be completed. We know the rate of quality
change with respect to computing requirement is positive right
before entering D2 (10). Therefore, ∂ Q/∂Cr in D2 is either
always positive, or it starts positive and changes to negative
at some point in D2. We show the points where the derivative
sign changes with the following notation:

Cr = f (Cc) for (Cc, Cr) ∈ D2. (11)

In summary, there would be two scenarios. First scenario
is when ∂ Q/∂Cr > 0 for all the points in D2 (13.1). Using
(9) and Corollary 1, we conclude that the general shape of
quality contour lines would be in the form of Fig. 7(a) for

Fig. 8. Superimposition of temperature and quality contour lines plots. Solid
line is the contour plot of the platform’s temperature at critical temperature.
The dashed-dot lines are functional quality contour lines. The points in the
red area will violate the thermal constraint and conversely, the points in the
blue area will not violate the thermal constraint. (a) When ∂Q/∂Cr (Cc, Cr)
does not change sign. (b) When ∂Q/∂Cr (Cc, f (Cc)) changes sign.

this scenario. The second scenario would be if the sign of
∂ Q/∂Cr changes from positive to negative at some points
in D2 described by (11). Therefore, we divide D2 into two
smaller subdomains based on (11)

D21 = {(Cc, Cr)|0 ≤ Cc ≤ CM , Cc < Cr < f (Cc)}
D22 = D2 − D21 . (12)

Accordingly, the application quality change with respect to
computing capacity will be (13.2)

∂ Q

∂Cr
> 0 while Cc < Cr < CM (13.1)

⎧
⎪⎨

⎪⎩

∂ Q

∂Cr
> 0 while Cc < Cr < f (Cc)

∂ Q

∂Cr
< 0 while f (Cc) < Cr < CM .

(13.2)

Using (9), Corollary 1 and Corollary 2, we conclude that the
general shape of quality contour lines would be in the form of
Fig. 7(b) for the second scenario. Next, we formulate quality
optimized DTM into an optimization problem and solve it
using the contour plots we introduced in this section.

B. Quality and Thermal Management: Problem Formulation

As we mentioned earlier, we are interested to come up
with a quality optimized DTM based on joint DWVFS. The
objective of DWVFS for DTM can be described in the
following statement.

The objective of DWVFS for thermal management is to
maximize the functional quality of the real-time application
while making sure the temperature of the platform does not
exceed a given critical temperature.

The above statement can be described in the following
mathematical form:

Maximize: Q(Cc, Cr) s.t: �(Cc, Cr) ≤ �c. (14)

In the rest of this section, we derive a solution for the above
optimization problem. The proofs of lemmas and theorems are
shown in an appendix provided in supplementary material.

Lemma 1: The solution of the optimization problem is
located on the critical temperature contour line:

�(Cc, Cr) = �c. (15)

MIRTAR et al.: JOINT WORK AND VOLTAGE/FREQUENCY SCALING 1023

Fig. 9. Joint work and voltage/frequency scaling block diagram showing offline and online steps.

Lemma 2: For any point (Cc0 , Cr0) ∈ D1, on the contour
line �(Cc, Cr) = �c, there exist another point (Cc1 , Cr1) ∈
D1 on the contour line �(Cc, Cr) = �c, which is closer to
the D1 boundary Cr = Cc and Q(Cc1 , Cr1) > Q(Cc0 , Cr0).

Lemma 2 tells us for any point to be assumed as the
solution of (14) in D1, there will be another point with better
quality, which contradicts the initial assumption. Therefore,
the solution of (14) is not in D1. To identify the solution
in D2, we first analyze applications with general contour lines
of Fig. 7(a) where ∂ Q/∂Cr > 0 for all points in D2.

Theorem 1: For a real-time application where ∂ Q/∂Cr >0,
the solution to the optimization problem (14) is the following
point:

(Cc, Cr) : Cr = CM and �(Cc, CM) = �c

The solution given in Theorem 1 can be achieved by
superimposing the two contour lines plots of quality and
temperature as shown in Fig. 8(a), where CQ and C� curves
are quality and temperature contours, respectively. It is evi-
dent that Q(CQ3) > Q(CQ2) > Q(CQ1). However, none of
the points on the contour line CQ3 can be used for (14)
solution due to lying in the red area and violating the thermal
constraint. When walking across the quality contour lines from
CQ3 to CQ1 the quality drops. Therefore, the solution of (14)
can be found when the first quality contour line intersects
with the critical temperature contour line. This occurs with
CQ2 contour line. As it is shown in the plot, the first point in
which a quality contour line intersects with critical temperature
contour line is when Cr = CM . This point is the same solution
point given in Theorem 1.

Theorem 2: For a real-time application where ∂ Q/∂Cr

changes sign at the points with Cr = f (Cc), the solution
to the optimization problem (14) is the following:

(Cc, Cr) : �(Cc, f (Cc)) = �c and Cr = f (Cc)

Fig. 9(b) helps to visually understand the proof of
Theorem 2.

Fig. 8(b) helps to visually understand the proof of
Theorem 2. In fact, the visual proof of Theorem 2 follows

Fig. 10. Accuracy of functional quality and work load models for three test
videos of Wild life, Soccer, and Mobile sequence.

the exact same steps of proof of Theorem 1. The solution is
at the intersection of the first quality contour line with the
critical temperature contour line, when walking across quality
contour lines from CQ3 toward CQ1 . From Fig. 8(b), we see
this point is located on the border of D21 and D22 which is
Cr = f (Cc).

In this section, we formulated DWVFS as a constrained
optimization problem (14) and analytically characterized its
solution. However, the derivation was performed under the
assumption that quality and temperature, and the parameters
they depend upon, are all continuous variables, which is not
true in practice. Furthermore, even overlooking this assump-
tion, (11) and (15) need to be solved numerically in real time to
perform DTM decisions. Therefore, in the following section,
we propose an efficient algorithm to solve the optimization
problem described in (14).

V. JOINT DWVFS

In this section, we introduce a fast and real time method
for DWVFS based on the solution of optimization problem
described in (14). Our method is a combination of offline
steps and online steps. Fig. 9 shows the block diagram of the
proposed method. In the offline steps, we collect the necessary
data to develop three models. The first model captures the
relationship of application’s functional quality with respect to

1024 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 6, JUNE 2015

the application parameter and the platform voltage/frequency.
The second model describes the relationship between the
application parameter and its work load. The last model is used
to model platform’s temperature with respect to the applica-
tion’s work load and platform’s voltage/frequency. After a brief
description of these models, we introduce the algorithm which
finds the solution for (14), thereby maximizing application
quality while performing thermal management.

A. Offline Models

1) Quality/Work Model: We model work load, L̂, and
functional quality, Q̂, as functions of two variables, application
parameter p and platform frequency f in the following way:

D = {(p, f)|p ∈ P, f ∈ F}
L̂ : D → R

+

Q̂ : D → R
+. (16)

P is the set of possible values for the application parameter
and F is the set of possible frequencies the platform can use.

We measure workload and functional quality of the appli-
cation using a set of training data for all the points in D.
The results of these measurements are populated in two lookup
tables (LUTs) used for reference

Lref(p, f), Qref (p, f), where (p, f) ∈ D.

The model uses these reference LUTs and linearly scales them
based on the measurements of the functional quality, Q∗, and
work load, L∗, of the application during execution time

L̂(p, f) = L∗

Lref (p∗, f ∗)
· Lref (p f)

Q̂(p, f) = Q∗

Qref (p∗, f ∗)
· Qref (p f) (17)

where p∗ and f ∗ are application parameter and platform
frequency used in the last measurement of Q∗ and L∗.
Equation (17) estimates load (L̂) and quality (Q̂) for any
p and f in D based on the measured L∗ and Q∗ for
p∗ and f ∗. We validate the accuracy of the above models
by applying them on the H.264 video encoder, whose quality
function can be challenging to model as it is highly dependent
on individual video streams and their content. The application
parameter used is CRF and the functional quality metric is
PSNR. We collected the reference LUT from a set of training
video streams. Then, we applied the reference LUT for the
modeling of three other test video streams. Fig. 10 shows
the % error of the quality and load values estimated by the
models from the actual measurements, which are only 4% and
2%, respectively, demonstrating accuracy of the models. Please
note that the DWVFS algorithm proposed later is independent
of how these models are developed.

2) Thermal Model: In this section, we describe our assump-
tions for thermal model that is incorporated in DWVFS.
We discussed the thermal formula in (2) for a time period in
which the power consumption is constant. Silicon power con-
sumption is primarily composed of two components: dynamic,
Pdyn and static Psta

P = Pdyn + Psta. (18)

Fig. 11. Measured and modeled junction temperature of MacBook Air
platform with Core2 Duo processor at 100% work load.

Fig. 12. Pseudocode of DWVFS algorithm (online steps).

TABLE I

VOLTAGE AND FREQUENCY LEVELS

The dynamic power is proportional to the hardware work
load L as well as its frequency and voltage squared

Pdyn ∝ V 2 f L . (19)

The static power is proportional to the platform voltage
and leakage current where the leakage current itself increases
exponentially with increase in temperature [28]

Psta ∝ V Ileak ∝ V eα� (20)

where α is the exponential proportionality coefficient and �
is the temperature in degree Celsius. Therefore, based on
(2) and (18)–(20), we get the following formula for estimating
the junction temperature of the platform after a time interval of
�t with initial temperature of �∗ and the ambient temperature
of �a :

�̂(�t)=�∗+(
�a −�∗+K1V 2 f L+K2V eα�∗)(

1−e
−�t

τ
)
.

(21)

MIRTAR et al.: JOINT WORK AND VOLTAGE/FREQUENCY SCALING 1025

Fig. 13. Results of encoding wild life video clip with H.264 encoder using different thermal management algorithms. (a) Effects on the temperature. Due to
thermal sensor limitation, it cannot report values more than 103 °C. NoDTM∗ plot is the projection of temperature as it rises. (b) Effects of different DTM
methods on the encoding quality. (c) Frequency levels used during different thermal management algorithms. (d) CRF values used during different thermal
management algorithms.

The model provided in (21) follows the same characteristics
mentioned in Section IV for thermal contour lines (Fig. 6).
When Cr < Cc (L is variable) then the contour lines are
decreasing and when Cr > Cc (L is constant at 100%) the con-
tour lines are vertical. The next step is to find the coefficients
of the model described in (21) for a given platform. These
coefficients are extracted for a MacBook Air (test platform)
by stressing it in different conditions and using curve fitting
methods. Fig. 11 shows the plots of the model provided in (21)
and the measured temperature of this test platform in different
operating conditions. Each curve on the plot corresponds to
different frequency/voltages of the platform where these levels
are predefined by manufacturer. The mean squared root errors
of the model versus measurements are about 1 °C.

B. Online DWVFS Steps

Fig. 12 shows the pseudocode of the online steps for the
joint DWVFS method which involves selecting the applica-
tion’s parameter and platform’s voltage/frequency. The follow-
ing paragraphs describe the proposed algorithm.

The algorithm selects the application parameter from a set
P = {p1, p2, . . . , pn}, sorted in decreasing order of computing
requirement (Cr (p1) > Cr (p2) > · · · > Cr (pn)). The
frequency is also selected from a set F = { f1, f2, . . . , fm}
sorted in increasing order (f1 < f2 < · · · < fm). The outputs
of the DWVFS algorithm are the new application parameter
p, and platform’s frequency f . The voltage of the platform is
predefined for each frequency level.

The proposed algorithm is a combination of two nested
searches in the directions of computing capacity and com-
puting requirement (horizontal and vertical axes, respectively,
in Fig. 8). We have mentioned that the temperature of the

platform is an increasing function with respect to its computing
capacity (6). We use this property and run a binary search in
the direction of computing capacity over the temperature func-
tion, �̂(Cc, Cr) as the inner search loop. In fact, the inner loop
is based on Lemma 1 and the algorithm uses the thermal model
to identify the points that are closest to the critical temperature
contour line (�̂(p̂, f̂) ≤ �c). Please note the computing
capacity is represented by platform’s frequency in Fig. 12.

Then, the selection process completes with a linear search
in the direction of computing requirement over the quality
function, Q(Cc, Cr), as the outer loop. Computing requirement
is represented by the application parameter in Fig. 12. Since
P is sorted in decreasing order of computing requirement,
the outer loop sweeps the critical temperature contour line
in the direction of point a to point b in Fig. 8. By using
functional quality model, it compares the functional quality
of the points on θc contour line, (p̂, f̂), and ends as soon as
the quality drops. At the end, we have identified all the points
on the critical temperature contour line (Cθc in Fig. 8) and
selected the point which produces the maximum functional
quality among them (CQ2 and Cθc intersect in Fig. 8).

The proposed DWVFS algorithm is correct for both types
of applications in Fig. 8. For the first type of application
(∂ Q/∂Cr > 0), Theorem 1 says the solution is the point on the
θc contour line with the highest computing requirement. As we
mentioned, this algorithm sweeps computing requirement in
the decreasing order from point a to b. In the first iteration, it
chooses the parameter with the highest Cr and the frequency
which is located on θc contour line. In the next loop iteration,
algorithm compares the next point of critical temperature
contour line and since it has smaller quality than the first
point (Theorem 1), the algorithm ends. For the second type
of application, Theorem 2 claims that the functional quality

1026 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 6, JUNE 2015

Fig. 14. Normalized average of the selected CRF and frequency values with
different DTM and video streams.

Fig. 15. Visual quality of the different video streams under different thermal
managements.

Fig. 16. Block diagram of the turbo coding system.

Fig. 17. Turbo decoder block diagram consisting of two MAP decoders.

increases from point a and somewhere in middle of θc contour
line it drops. Again the algorithm captures the same behavior
and finds the solution provided in Theorem 2. The above
discussion shows that the DWVFS algorithm finds the solution
for both types of applications and is correct by construction.

The proposed DWVFS algorithm has a time complexity of
O(n log(m)), where n is the number of values of application
parameter, and m is the number of available frequency levels
for the platform. Since the value of n is not large for typical
applications (for, e.g., 11 and 10 for the H264 encoder and

turbo decoder, respectively), and the value of m for typical
platforms is small (like 5 for the MacBook Air platform),
the algorithm can execute in real time. For example, the
execution of the algorithm takes about 10–15 ms on the test
platform depending on the CPU frequency; it is <0.04% of
the decoding time for one H.264 frame. In the next section,
we have used different DTM methods and shown the efficacy
of DWVFS compared with other DTM methods.

VI. EXPERIMENTAL RESULTS

In this section, we show how the proposed thermal man-
agement technique can be used on two different real-time
applications, namely a video encoder and a turbo decoder.
First, we briefly introduce the experimental setup that is used
in this paper. Then, we discuss the results of applying the
proposed thermal management algorithm on the video encoder
and turbo decoder.

A. Experimental Setup

We evaluated the proposed thermal management technique
using a MacBook Air laptop with an Intel Core2 Duo dual
core processor, 2 GB of RAM, and a solid state disk. The
operating system is Mac OS X 10.5. The laptop has a fan
and a heat sink, which help with thermal control; however,
they are not sufficient while running highly compute-intensive
applications, as shown in the following section. The speed of
the fan can reach up to 6200 rounds per minute. During all
of our experiments, the fan operated at the maximum speed
constantly.

The platform provides eight different frequency levels.
The four main frequency levels are 1200, 1400, 1600, and
1800 MHz. In addition, by enabling an internal clock divider
we can set platform frequency to 600, 700, 800, and 900 MHz.
The selection of voltage level for each of these frequency
levels are given by the vendor as specified in Table I.

For DVFS-based thermal management, we used the two
frequency levels of 1200 and 1800 MHz. The reason for this
selection is twofold. First, as mentioned in [10], effective ther-
mal management is possible with only two frequency levels.
In addition, the test results show that, having more number of
frequencies reduces the application functional quality.

The temperature sensor in the platform reports the temper-
ature with one degree Celsius accuracy up to 103°. If the
temperature rises over 103°, it reports the constant value
of 103. Therefore, for temperatures above 103, we extrapolated
the curves in the plots.

B. H.264 Video Encoder

The first application used in this paper is an H.264 video
encoder. We used an open source and highly efficient imple-
mentation of the H.264 standard called x264 [29]. The applica-
tion parameter used for controlling video encoder’s computing
requirement is the CRF. The CRF is the default rate control
method of x264 which tries to achieve the same perceptual
quality throughout a video stream [33]. The CRF parameter
can vary from 0 to 51, where a CRF of 0 produces a lossless
compression and a CRF of 51 produces the lowest quality

MIRTAR et al.: JOINT WORK AND VOLTAGE/FREQUENCY SCALING 1027

Fig. 18. Effect of changing the number of iterations in the turbo decoder on its throughput and temperature.

Fig. 19. Contour plots of the turbo decoder (a) functional quality measured
as throughput in bps and (b) platform temperature.

result. We chose a range from 16 to 36 for CRF, with an
increment of 2. It is evident that increasing CRF will decrease
the computing requirement and vice versa.

To measure the functional quality, we used PSNR, which is
one of the most widely used video quality metrics. To calculate
PSNR, the original video stream is compared with the encoded
video stream and the difference is measured in dB.

The video encoder’s behavior is highly dependent on its
input stream. For example, encoding a video stream with very
little motion is less complex and easier than a high motion
video stream. We used different video streams to capture this
dependency. The first video stream is called wild life. Fig. 13
shows the results of encoding the wild life clip when different
thermal management algorithms are used.

Fig. 13(a) shows the temperature versus time using different
thermal management methods. As mentioned in Section VI-A,
temperatures above 103 °C cannot be measured by the
platform’s temperature sensor. The dots in the plot are the
projected values for temperature which cannot be read from
the sensor. The critical temperature in this test is 80 °C.
As shown in Fig. 13(a), all the DTM algorithms are able
to control the temperature around the critical temperature.
However, this comes with different penalties in the video
quality. Fig. 13(b) shows the measured quality of the video
stream over the duration of the encoding process. As we
can see, DWVFS-based thermal management produces better
quality compared with DWS and DVFS. In addition, DWS
produces better quality compared with DVFS at all times.
Fig. 13(c) and (d) shows the selection of frequency and
CRF for different DTM algorithms. In the absence of DTM,
the platform always runs with the maximum frequency and
nominal CRF of 21. Comparing DWVFS with DWS and
DVFS, we can see that DWVFS utilizes a combination of
scaling frequency and CRF. Initially, DWVFS reduces the
CRF (leading to higher quality) and as time passes it increases

the CRF (leading to lower quality) for thermal management
purposes. Concurrently, it also decreases the frequency in order
to control the temperature while achieving higher quality.
As shown in Fig. 13(c) and (d), the amount of increase in
CRF in the case of DWVFS is not as much as in the case
of DWS.

Since the complexity and quality of a video encoder is
highly dependent on the video stream, we used three video
clips to compare the thermal management techniques. Fig. 14
shows the normalized averages of the selected CRF and
frequency values. Normalized average of selected frequency is
the ratio of the average frequency used during a video encoder
run to the nominal frequency of the platform (1.8 GHz). Since
the CRF has inverse correlation with the video quality, we
have used the ratio of the nominal CRF to the average of the
selected CRF values as the normalized average CRF. As shown
in Fig. 14, in the absence of any DTM algorithm, processor
is always at its highest frequency and CRF is constantly at
its nominal value. When DVFS is used, the CRFs for all
the streams are still at the nominal values, but the average
frequencies can go as low as 80% of the nominal frequency
depending on the stream. On the other hand, the frequency is
always at the nominal value when DWS is in use for all the
streams but the average CRF used varies. The plot for DWVFS
is always in between DVFS and DWS for both frequency
and CRF. This means that DWVFS uses each control knob
moderately to ensure that the drop in quality is minimized.
Eventually, the different selection of CRF and frequency in the
different DTM techniques leads into different stream quality,
as shown in Fig. 15.

As shown in Fig. 15, the maximum quality drop due to the
thermal management is about 10 dB. However, DWVFS helps
to maintain a higher video quality and reduces the negative
effects of thermal management. In addition, we should note
that the high quality in the absence of DTM has been achieved
with the price of increasing the processor’s temperature over
110 °C. In practice, this will not happen if thermal protection
is enabled, since a thermal management technique would be
triggered when the platform reaches a maximum allowed
temperature.

C. Turbo Decoder

The second application we used to verify the proposed
thermal management scheme is a turbo decoder used in a turbo
coding-based hybrid automatic repeat request (HARQ) [30]
communication system. Fig. 16 shows the block diagram of
the HARQ turbo coding system. The HARQ is a hybrid
method that uses both forward error-correcting (FEC) codes
and ARQ error controlling mechanism. In ARQ, the data are

1028 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 6, JUNE 2015

Fig. 20. Results of running the turbo decoder using different thermal management algorithms. (a) Effect on temperature. (b) Effect of different DTM methods
on the turbo decoder throughput. (c) Average of frequency levels used by different thermal management algorithms. (d) Average number of decoder iterations
by different thermal management algorithms.

sent with some error detecting (ED) code bits such as parity
bits or cyclic redundancy check (CRC) bits [31]. When the
receiver detects an error in the data stream using ED codes,
it requests a retransmission. On the other hand, FEC codes help
to not only find errors in the bit stream, but also help to correct
the errors to some extent. In HARQ, the receiver first tries to
detect and correct errors using the FEC codes. If the bit stream
is not successfully retrieved using FEC codes, then the receiver
requests retransmission. The receiver communicates with the
sender through ACK or NACK messages (Fig. 16). Xk is the
source information. The turbo encoder produces two series
of parity bits: P1k and P2k . The information and parity bit
symbols go through the channel and the noisy information and
parity symbols (x ′

k, p′
1k, p′

2k) are received by the decoder.
We considered an additive white Gaussian noise channel with
a noise distribution of N(0, σ 2), with σ = 0.95. The decoded
bits are denoted by X̂k .

In our experiments, we focus on the turbo decoder in the
receiver side. Fig. 17 shows the block diagram of the turbo
decoder. In this figure, L(Xk) is the likelihood of finding the
source information, Xk . The turbo decoder uses an iterative
algorithm; every iteration of the loop increases the likelihood
of finding the correct source information. Eventually, a deci-
sion will be made whether to request for a retransmission or
the decoding is successfully completed.

The number of decoder iterations is the application para-
meter that is used in the DWS and DWVFS. The functional
quality of turbo decoder application is its effective throughput.
The effective throughput is the number of decoded bits, X̂k ,
per second. We have used the terms effective throughput and
throughput interchangeably throughout this paper. When the
platform gets too hot, by dropping the number of iterations, we
reduce the work load and hence the platform temperature drops
(Fig. 18). However, by reducing the number of iterations, the

likelihood of correctly decoding source information decreases
and we need more retransmissions. Higher number of
retransmissions translates to a drop in the decoder’s through-
put. Therefore, the objective is to maximize the decoder’s
throughput while controlling the platform temperature. In this
exercise, the frame size is 4701 bits and the interleaver is
designed based on the UMTS standard [32].

Fig. 19 shows the quality versus temperature contour
plots for the turbo decoder. The contour plots for the video
encoder were presented earlier in Fig. 4. As shown in
Figs. 4 and 19, the contour plots of the video encoder and
turbo decoder follow the general shape that we discussed
in Figs. 6 and 7.

Fig. 20 shows the results of running the turbo decoder with
different thermal management algorithms on the MacBook
Air platform. As shown in Fig. 20(a), the platform becomes
very hot (over 100 °C) without thermal management which
can deteriorate the reliability of the platform, necessitating
the use of thermal management. Fig. 20(a) also shows that
all the DTM methods control the temperature to the specified
critical temperature of 75 °C. However, as we see in Fig. 20(b),
different DTM methods affect the effective throughput of
the decoder differently. Fig. 20(c) and (d) shows how the
average values of frequency and application-level parameter
(number of decoder iterations) vary across DTM algorithms.
We see that in the case of DWVFS, the average frequency is
higher than DVFS and average number of decoding iterations
is higher than DWS. This suggests that DWVFS uses the
best of both knobs to ensure that the functional quality,
i.e., throughput, is maximized.

Fig. 21 compares the throughput of different DTM
methods. In this scenario, the throughput of DVFS is better
than DWS. However, DWVFS again achieves the best results
compared with other DTM methods. According to this

MIRTAR et al.: JOINT WORK AND VOLTAGE/FREQUENCY SCALING 1029

Fig. 21. Effects of different DTM methods on the throughput of the
transmission.

figure, the throughput can drop by about 33% by using DWS
but with the help of DWVFS the drop is limited to 22% only.
In fact, DWVFS improves the throughput by 8% and 33%
compared with DVFS- and DWS-based DTMs, respectively.

VII. CONCLUSION

In this paper, we showed how joint dynamic work/
complexity scaling of real-time applications can be used as
a new DTM method. We analyzed the effects of the plat-
form’s computing capacity and the application’s computing
requirements on both the platform’s temperature and the
application’s functional quality. We showed how one can use
these parameters to achieve a quality-optimized DTM. In addi-
tion, we formulated and analytically solved the optimization
problem. We also proposed a fast algorithm to implement
DWVFS.

In this paper, we only considered DVFS as the mechanism
to change the computing capacity. However, there are other
parameters that can be used to vary computing capacity, for
example, the number of active cores. In addition, we only
considered one parameter to scale the application’s complexity.

In future work, the proposed approach can be extended to:
1) cover other mechanisms to vary computing capacity such as
throttling number of CPU cores; 2) have multiple parameters
affecting the workload of the application at the same time; and
3) scenarios when multiple real-time applications are running
on the platform concurrently.

REFERENCES

[1] D. Shin, S. W. Chung, E. Y. Chung, and N. Chang, “Energy-optimal
dynamic thermal management: Computation and cooling power
co-optimization,” IEEE Trans. Ind. Informat., vol. 6, no. 3,
pp. 340–351, Aug. 2010.

[2] A. Kumar, L. Shang, L.-S. Peh, and N. K. Jha, “System-level dynamic
thermal management for high-performance microprocessors,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 1,
pp. 96–108, Jan. 2008.

[3] Y. Ge and Q. Qiu, “Dynamic thermal management for multimedia
applications using machine learning,” in Proc. 48th ACM/EDAC/IEEE
Design Autom. Conf. (DAC), Jun. 2011, pp. 95–100.

[4] E. Pakbaznia, M. Ghasemazar, and M. Pedram, “Temperature-aware
dynamic resource provisioning in a power-optimized datacenter,” in
Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE), Mar. 2010,
pp. 124–129.

[5] W. Huang et al., “TAPO: Thermal-aware power optimization techniques
for servers and data centers,” in Proc. Int. Green Comput. Conf.
Workshops (IGCC), Jul. 2011, pp. 1–8.

[6] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan, “Temperature-aware microarchitecture: Modeling and
implementation,” ACM Trans. Archit. Code Optim., vol. 1, no. 1,
pp. 94–125, Mar. 2004.

[7] A. K. Coskun, “Efficient thermal management for multiprocessor
systems,” Ph.D. dissertation, Dept. Comput. Sci Eng., Univ. California,
San Diego, CA, USA, 2009.

[8] V. Srinivasan, J. G. Hermerding, and R. Khanna, “An innovative
approach to dynamic platform and thermal management for mobile plat-
forms,” in Proc. Int. Conf. Energy Aware Comput. (ICEAC), Dec. 2010,
pp. 1–4.

[9] S. Zhang and K. S. Chatha, “Thermal aware task sequencing on
embedded processors,” in Proc. 47th ACM/IEEE Design Autom. Conf.
(DAC), Jun. 2010, pp. 585–590.

[10] K. Skadron, “Hybrid architectural dynamic thermal management,”
in Proc. Design, Autom. Test Eur. Conf. Exhibit., vol. 1. Feb. 2004,
pp. 10–15.

[11] J. J. Chen, S. Wang, and L. Thiele, “Proactive speed scheduling
for real-time tasks under thermal constraints,” in Proc. 15th IEEE
Real-Time Embedded Technol. Appl. Symp. (RTAS), Apr. 2009,
pp. 141–150.

[12] G. Quan, Y. Zhang, W. Wiles, and P. Pei, “Guaranteed scheduling
for repetitive hard real-time tasks under the maximal temperature
constraint,” in Proc. Int. Conf. Hardw./Softw. Codes. Syst. Synth.
(CODES+ISSS), 2008, pp. 267–272.

[13] J. Park, H. M. Ustun, and J. A. Abraham, “Run-time prediction
of the optimal performance point in DVS-based dynamic thermal
management,” in Proc. 25th Int. Conf. VLSI Design (VLSID), Jan. 2012,
pp. 155–160.

[14] X. Zhou, Y. Xu, Y. Du, Y. Zhang, and J. Yang, “Thermal management
for 3D processors via task scheduling,” in Proc. 37th Int. Conf. Parallel
Process. (ICPP), Sep. 2008, pp. 115–122.

[15] A. Kumar, L. Shang, L.-S. Peh, and N. K. Jha, “HybDTM: A
coordinated hardware-software approach for dynamic thermal
management,” in Proc. 43rd ACM/IEEE Design Autom. Conf., Jul. 2006,
pp. 548–553.

[16] I. Yeo and E. J. Kim, “Hybrid dynamic thermal management based
on statistical characteristics of multimedia applications,” in Proc.
ACM/IEEE Int. Symp. Low Power Electron. Design (ISLPED), Aug.
2008, pp. 321–326.

[17] I. Yeo, H. K. Lee, E. J. Kim, and K. H. Yum, “Effective dynamic
thermal management for MPEG-4 decoding,” in Proc. 25th Int. Conf.
Comput. Design (ICCD), Oct. 2007, pp. 623–628.

[18] W. Lee, K. Patel, and M. Pedram, “GOP-level dynamic thermal
management in MPEG-2 decoding,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 16, no. 6, pp. 662–672, Jun. 2008.

[19] V. Hanumaiah and S. Vrudhula, “Temperature-aware DVFS for hard
real-time applications on multi-core processors,” IEEE Trans. Comput.,
vol. 61, no. 10, pp. 1484–1494, Oct. 2012.

[20] D. Forte and A. Srivastava, “Energy and thermal-aware video coding
via encoder/decoder workload balancing,” in Proc. ACM/IEEE
Int. Symp. Low-Power Electron. Design (ISLPED), Aug. 2010,
pp. 207–212.

[21] W. Lee, K. Patel, and M. Pedram, “Dynamic thermal management for
MPEG-2 decoding,” in Proc. Int. Symp. Low Power Electron. Design
(ISLPED), Oct. 2006, pp. 316–321.

[22] A. Pant, P. Gupta, and M. van der Schaar, “AppAdapt: Opportunistic
application adaptation in presence of hardware variation,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 11, pp. 1986–1996,
Nov. 2012.

[23] S. Wang and S. Dey, “Rendering adaptation to address communication
and computation constraints in cloud mobile gaming,” in Proc. IEEE
Global Telecommun. Conf. (GLOBECOM), Dec. 2010, pp. 1–6.

[24] C. Schlegel and L. Perez, Trellis and Turbo Coding (Digital & Mobile
Communication), J. B. Anderson, Ed. New York, NY, USA: Wiley, 2004.

[25] Y. Lin, S. Mahlke, T. Mudge, C. Chakrabarti, A. Reid, and K. Flautner,
“Design and implementation of turbo decoders for software defined
radio,” in Proc. IEEE Workshop Signal Process. Syst. Design Implement.
(SIPS), Oct. 2006, pp. 22–27.

[26] K. Skadron, T. Abdelzaher, and M. R. Stan, “Control-theoretic
techniques and thermal-RC modeling for accurate and localized
dynamic thermal management,” in Proc. 8th Int. Symp. High-Perform.
Comput. Archit., Feb. 2002, pp. 17–28.

1030 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 6, JUNE 2015

[27] R. Courant, H. Robbins, and I. Stewart, What Is Mathematics? An
Elementary Approach to Ideas and Methods. New York, NY, USA:
Oxford Univ. Press, 1996, p. 344.

[28] J. A. Butts and G. S. Sohi, “A static power model for architects,” in
Proc. 33rd Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO), Dec.
2000, pp. 191–201.

[29] x264. (2014, Jul. 17). VideoLan [Online]. Available:
http://www.videolan.org/developers/x264.html

[30] W. Yafeng, Z. Lei, and Y. Dacheng, “Performance analysis of type III
HARQ with turbo codes,” in Proc. 57th IEEE Semiannu. Veh. Technol.
Conf., vol. 4. Apr. 2003, pp. 2740–2744.

[31] M. Stigge, H. Plötz, W. Müller, and J. P. Redlich, Reversing
CRC—Theory and Practice. Berlin, Germany: Humboldt University
Berlin, 2011, p. 17.

[32] Universal Mobile Telecommunications System (UMTS). Multiplexing
and Channel Coding (FDD) (3G TS 25.212 Version 3.1. 1 Release
1999), document ETSI, TS. 125 212 (V3. 1.1), 2000.

[33] MeWiki. (2014, Jul. 17). X264 Settings [Online]. Available:
http://mewiki.project357.com/wiki/X264_Settings#crf

[34] H. Huang, G. Quan, J. Fan, and M. Qiu, “Throughput maximization for
periodic real-time systems under the maximal temperature constraint,”
in Proc. 48th ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2011,
pp. 363–368.

[35] S. Wang and R. Bettati, “Reactive speed control in temperature-
constrained real-time systems,” in Proc. Euromicro Conf. Real-Time
Syst., 2006.

[36] R. Rao and S. Vrudhula, “Performance optimal processor throttling
under thermal constraints,” in Proc. Int. Conf. Compilers, Archit., Synth.
Embedded Syst. (CASES), 2007, pp. 257–266.

[37] G. Wu and Z. Xu, “Temperature-aware task scheduling algorithm for
soft real-time multi-core systems,” J. Syst. Softw., vol. 83, no. 12,
pp. 2579–2590, Dec. 2010.

[38] H. Yang, I. Bacivarov, D. Rai, J. Chen, and L. Thiele, “Real-time worst-
case temperature analysis with temperature-dependent parameters,”
J. Real-Time Syst., vol. 49, no. 6, pp. 730–762, 2013.

Ali Mirtar received the B.Sc. and M.Sc. degrees in
electrical engineering from the Sharif University of
Technology, Tehran, Iran, in 2006 and 2008, respec-
tively. He is currently pursuing the Ph.D. degree
in computer engineering with the Mobile Systems
Design Laboratory, University of California at San
Diego, La Jolla, CA, USA.

He joined the Mobile and Wireless Group, Broad-
com, Irvine, CA, USA, in 2012, as a Systems
Designer, where he was involved in next-generation
cellphone’s power and thermal optimization. He is

currently with Broadcom. He has published several conference and journal
papers, and holds two U.S. and Iran patents.

Sujit Dey (SM’03–F’13) received the Ph.D. degree
in computer science from Duke University, Durham,
NC, USA, in 1991.

He served as the Chief Scientist, Mobile Networks,
with Allot Communications Ltd., Hod HaSharon,
Israel, from 2012 to 2013. He founded Ortiva Wire-
less Inc., La Jolla, CA, USA, in 2004, where he
served as its founding CEO and later as a CTO till its
acquisition by Allot Communications in 2012. Prior
to Ortiva, he served as the Chair of the Advisory
Board of Zyray Wireless Inc., San Diego, CA, USA,

till its acquisition by Broadcom in 2004. Prior to joining the University of
California at San Diego (UCSD), La Jolla, in 1997, he was a Senior Research
Staff Member with the NEC Research Laboratories, Princeton, NJ, USA. He
is a Professor with the Department of Electrical and Computer Engineering,
UCSD, where he heads the Mobile Systems Design Laboratory, which
is involved in developing innovative mobile cloud computing architectures
and algorithms, adaptive multimedia and networking techniques, low-energy
computing and communication, and reliable system-on-chips, to enable the
next generation of mobile multimedia applications. He is affiliated with
the Qualcomm Institute and the Center for Wireless Communications at
UCSD. He has co-authored more than 200 publications, including journal and
conference papers, and a book on low-power design. He is the co-inventor
of 17 U.S. and two international patents, resulting in multiple technology
licensing and commercialization.

Dr. Dey was a recipient of six IEEE/ACM Best Paper Awards, and has
chaired multiple IEEE conferences and workshops.

Anand Raghunathan received the B.Tech. degree
in electrical and electronics engineering from IIT
Madras, Chennai, India, and the M.A. and Ph.D.
degrees in electrical engineering from Princeton Uni-
versity, Princeton, NJ, USA.

He was a Senior Research Staff Member with NEC
Laboratories America Inc., Princeton, NJ, USA, and
was the Gopalakrishnan Visiting Chair with the
Department of Computer Science and Engineering,
IIT Madras, Chennai, India. He is a Professor with
the School of Electrical and Computer Engineering,

Purdue University, West Lafayette, IN, USA, where he leads the Integrated
Systems Laboratory. He has co-authored a book High-Level Power Analysis
and Optimization, eight book chapters, over 200 refereed journal and confer-
ence papers, and holds 21 U.S. patents. His current research interests include
domain-specific architecture, system-on-chip design, embedded systems, and
heterogeneous parallel computing.

Prof. Raghunathan has served on the technical program and organizing
committees of several leading conferences and workshops. He has chaired the
ACM/IEEE International Symposium on Low Power Electronics and Design,
the ACM/IEEE International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, the IEEE VLSI Test Symposium, and the
IEEE International Conference on VLSI Design. He has served as an Associate
Editor of the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, the
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS,
the ACM Transactions on Design Automation of Electronic Systems, the
IEEE TRANSACTIONS ON MOBILE COMPUTING, the ACM Transactions on
Embedded Computing Systems, the IEEE DESIGN & TEST OF COMPUTERS,
and the Journal of Low Power Electronics. He was a recipient of the IEEE
Meritorious Service Award in 2001 and the Outstanding Service Award in
2004. He is a Golden Core Member of the IEEE Computer Society. His
publications have been recognized with eight Best Paper Awards and four Best
Paper Nominations. He received the Patent of the Year Award (recognizing the
invention with the highest impact), and two Technology Commercialization
Awards from NEC. He was chosen by MIT’s Technology Review among the
TR35 (top 35 innovators under 35 years, across various disciplines of science
and technology) in 2006, for his work on making mobile secure.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

