
996 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 2, APRIL 2016

Enhancing Mobile Video Capacity and Quality Using
Rate Adaptation, RAN Caching and Processing

Hasti A. Pedersen and Sujit Dey, Fellow, IEEE

Abstract—Adaptive Bit Rate (ABR) streaming has become a
popular video delivery technique, credited with improving Quality
of Experience (QoE) of videos delivered on wireless networks.
Recent independent research reveals video caching in the Radio
Access Network (RAN) holds promise for increasing the network
capacity and improving video QoE. In this paper, we investigate
opportunities and challenges of combining the advantages of
ABR and RAN caching to increase the video capacity and QoE
of the wireless networks. While each ABR video is divided into
multiple chunks that can be requested at different bit rates, a
cache hit requires the presence of a specific chunk at a desired bit
rate, making ABR-aware RAN caching challenging. To address
this without having to cache all bit rate versions of a video, we
propose adding limited processing capacity to each RAN cache.
This enables transrating a higher rate version that may be avail-
able in the cache, to satisfy a request for a lower rate version,
and joint caching and processing policies that leverage the back-
haul, caching, and processing resources most effectively, thereby
maximizing video capacity of the network. We also propose a
novel rate adaptation algorithm that uses video characteristics to
simultaneously change the video encoding and transmission rate.
The results of extensive statistical simulations demonstrate the
effectiveness of our approaches in achieving significant capacity
gain over ABR or RAN caching alone, as well as other ways of
enabling ABR-aware RAN caching, while improving video QoE.
Index Terms—Adaptive bit rate (ABR) algorithm, video pro-

cessing and caching, video quality of experience, wireless network
capacity.

I. INTRODUCTION

A DAPTIVE Bit Rate (ABR)1 streaming has become a
popular video delivery technique, improving the quality

of delivered video on the Internet as well as wireless networks.
Several ABR streaming techniques have been developed and
deployed, among them are Apple HTTP Live Streaming (HLS),
Microsoft Smooth Streaming, and Adobe Systems HTTP Dy-
namic Streaming [1], [2]. More recently, Dynamic Adaptive
Streaming over HTTP (DASH) has been developed as a new
standard for ABR with the aim to improve video Quality of
Experience (QoE). In [3], we showed that video caching at the
(e)NodeBs of the Radio Access Network (RAN) can increase

Manuscript received November 28, 2013; revised November 01, 2014;
accepted January 21, 2015; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor Y. Liu. Date of publication May 21, 2015; date of current
version April 14, 2016. This work was supported in part by the Intel-Cisco
Video Aware Wireless Networks (VAWN) program and by the UC Discovery
Grant Program.
The authors are with the Department of Electrical and Computer Engi-

neering, University of California at San Diego, La Jolla, CA 92092 USA
(e-mail: hasti@ucsd.edu; dey@ucsd.edu).
This work has supplementary downloadable material available online at http:/

/ieeexplore.ieee.org.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2015.2410298

1[Online]. Available: en.wikipedia.org/wiki/adaptive_bitrate_streaming/

capacity of the wireless network while improving video QoE;
however, the proposed technique is not ABR-aware, and it
cannot work effectively with ABR streams. In this paper, we
propose techniques to effectively use both ABR and RAN
caching to improve the end-to-end video capacity of cellular
networks beyond what can be achieved by either ABR or RAN
caching individually, while preserving the advantages in terms
of QoE obtained by each of them.
Since, with ABR, each video is divided into multiple chunks,

and each chunk can be requested at different bit rates, the
caching problem becomes more challenging: a cache hit will
require not only the presence of a specific video chunk, but
also the availability of the desired video bit rate version of the
chunk. Handling video chunks for caching is especially chal-
lenging for multiple reasons: Cache hit or miss can no longer be
determined at video level, but must be evaluated at chunk/rate
level. With ABR, having a video in the cache does not translate
to having all the chunks of that video with the same rate in the
cache. In addition, the decision to cache or evict a video from
the cache is more complex and requires dealing with the video
at chunk and rate version level. One way to solve this problem
is to cache all rate variants of the video, but this approach may
significantly increase backhaul bandwidth and cache storage
requirements, or reduce the number of unique videos that can
be cached leading to poor cache hit ratio. Alternatively, one
can cache only the highest bit rate videos and use a processing
resource to do rate down-conversion (transrating) for each
request requiring a lower rate version, but this approach may
require excessive processing or overutilize existing processing
resource leading again to poor cache hit ratio.
In this paper, we propose a novel approach to support ABR

while efficiently utilizing RAN caching, avoiding the problems
described above. The objective of this research is to improve
the video capacity (number of concurrent video requests served)
of the cellular networks, while improving or maintaining video
QoE. As shown in Fig. 1, instead of fetching the requested video
version from the Internet CDN, we enhance the RAN caches
with limited video processing capability. This will allow the
possibility of transrating to a requested lower rate if a higher
bit rate version is available in the cache, thus avoiding the need
to cache all video bit rate versions. However, our approach does
not cache only the highest bit rate versions which, as mentioned
before, may exhaust the available processing resource quickly.
Instead, our approach aims to cache rate versions that allow ef-
ficient utilization of both the given cache and transrating re-
sources. For any video request, Fig. 1 illustrates the possible
options with the new architecture: the exact bit rate version
is available in the cache, or it can be obtained either by tran-
srating from a higher bit rate version available in the cache, or
by fetching from the Internet CDN using the backhaul. For the

1063-6692 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



PEDERSEN AND DEY: ENHANCING MOBILE VIDEO CAPACITY AND QUALITY USING RATE ADAPTATION, RAN CACHING AND PROCESSING 997

Fig. 1. Joint video caching and processing. (a) Fetch video with exact rate ver-
sion from the cache. (b) Transrate from a higher rate version. (c) Fetch video
from Internet CDN.

last option, either an exact bit rate version can be fetched, or a
higher bit rate version can be fetched and cached which will pos-
sibly allow future requests of lower bit rate versions to be also
satisfied using transrating. We develop a joint caching and pro-
cessing framework which, given the available cache size, pro-
cessing capability and backhaul bandwidth, enables selecting
between the available options. This has two effects: it increases
the number of ABR video requests that can be satisfied concur-
rently and improves video QoE. Based on the above framework
and the popularly used Least Recently Used (LRU) caching
policy [3], we develop a new ABR-aware LRU joint Caching
and Processing policy (ABR-LRU-P), which we later demon-
strate to be highly effective in utilizing RAN caches for ABR
streaming.
In [4], we proposed a Proactive User Preference Profile

based (P-UPP) caching policy, one that pre-fetches videos for
caching based on the video preferences of active users in the
cell, and had demonstrated its effectiveness in producing a high
cache-hit ratio. To achieve high hit ratios with ABR streaming,
it no longer suffices to know which videos users in a cell may
like to watch. It is necessary to also have an estimate of the
video bit rate that the users may request, the latter depending
on the channel condition of the requesting users and the overall
utilization of the network. Using rate prediction, our proposed
ABR-aware P-UPP based joint caching and processing policy
(ABR-P-UPP-P) aims to fetch not only the most likely re-
quested videos by the users of a cell, but also at the most likely
requested rates.
Finally, we develop a novel rate adaptation algorithm that

enables the mobile devices to change the video bit rate and the
required transmission rate to respond to the varying wireless
channel conditions and utilization. In [3], we had used Leaky
Bucket Parameters (LBPs) associated with a video to select a
transmission rate that can be met by the RAN scheduler such
that the video playback can start within a desired initial delay
and proceed without stalling. In this paper, we extend the LBPs
with the additional flexibility of multiple encoding bit rates
available for the video, thus allowing the new rate adaptation
algorithm to use two degrees of freedom, video transmission
rate and video bit rate, to adapt to changing channel conditions.
We incorporate this new ABR algorithm as part of the Video
Aware Wireless Channel Scheduler (VAWS) that we proposed
in [4] to improve capacity and QoE. By incorporating ABR,
VAWS can now not only use different transmission rates, but
also different video bit rates, providing flexibility to serve more
concurrent video requests and improve users' QoE, by trading
off video frame quality with risk of stalling.

We have developed a simulation framework to demonstrate
the effectiveness of the proposed rate adaptation and joint
caching and processing policies under different wireless chan-
nels and user distributions, as well as different cache sizes
and processing capacities. The simulation results demonstrate
significant increase in video capacity is possible using our
approach, as opposed to using ABR or RAN caching alone, as
well as compared to caching all rate versions or only highest
rate version of requested video. The results also demonstrate
the ability of our approaches to achieve significant capacity
gain while mostly retaining the QoE advantage of ABR.
In summary, the novelty of this paper and the importance

of its contributions are that it is the first to: 1) propose a rate
adaptation algorithm that runs on the mobile client and uses
LBP of the requested videos—thus, indirectly considering video
frame structure of each video—to improve capacity and QoE;
2) address the caching challenges imposed by ABR streaming
by proposing proactive and reactive ABR-capable joint caching
and processing policies that leverage both transrating and cache
resources available; and 3) study the impact of transrating re-
sources at the RAN on increasing end-to-end video capacity of
the cellular networks.

A. Problem Formulation
As explained earlier, the goal of this paper is to utilize RAN

caching and processing to overcome the challenges imposed
by ABR streaming, and to maximize the end-to-end video ca-
pacity of the cellular networks while improving QoE of the
video requests under the existing video QoE and resource con-
straints. We formulate this objective as a variant of the knap-
sack problem: the dynamic and stochastic multiple, multidimen-
sional, multichoice knapsack problem with probabilistic con-
straints (DSMMKP) [5], [6].
The video requests arrive one-by-one stochastically over time

and can be either accepted or rejected. An accepted video re-
quest is assigned to two or more available resources in real-
time—namely, wireless channel and backhaul, cache, or pro-
cessing—and should satisfy certain QoE requirements. Each
video has multiple bit rate versions, each satisfying the VQM
requirements. An accepted video request can be assigned any of
the available video bit rate versions. If a resource goes under-uti-
lized, potential reward is lost (e.g., a cache that is not fully
populated with relevant videos, or backhaul bandwidth that is
not fully utilized due to lack of user arrivals). The total reward
(number of concurrently accepted video requests) is a function
of video request arrival rate and acceptance rate. Underutilized
resources can be used for caching purposes to serve potential fu-
ture video requests (e.g., by proactively preloading caches with
videos that are expected to be requested in the future).
A cellular network can be thought of as a multidimensional

knapsack; more specifically, a two-dimensional knapsack. Each
accepted video request should satisfy both the backhaul band-
width constraint expressed in terms of total bits-per-second, and
the wireless channel power constraint expressed in terms of
total Watts. The wireless channel is stochastic, and therefore the
power required to serve a video request varies over time due
to fading and changes in path loss due to user mobility. The
backhaul is supplemented with cache and processing resources.
Any video request can be fetched from the CDN through the
backhaul as long as it satisfies the backhaul size constraint.



998 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 2, APRIL 2016

On the contrary, only videos that result in a cache hit with the
exact rate version or higher rate version can be assigned to
cache or processing (transrating from cache). Thus, caching the
videos that result in higher future cache hits is an important
decision criteria.
The rewards are equal across the videos, meaning there is no

difference between accepted videos as long as the QoE con-
straints are satisfied. However, different rewards are assigned
to each bit rate version of a video. Note that a video of longer
duration and higher resolution requires more resources than a
shorter and a lower resolution video, but here there is no differ-
entiation in terms of the rewards.
The goal here is to maximize the number and quality of

concurrent video requests in each time period and adapt to
any change in the system in real time. Thus, one can view the
cellular network as a series of multi-period, multidimensional
knapsacks. Here, we present the formulation only for one
of these knapsacks (only considering one time period). An
accepted video request remains in the system until it finishes
(across multiple time periods) unless the user aborts the video or
the video request’s QoE is violated. However, the optimization
has the flexibility of changing the video bit rate of an accepted
video request across multiple periods. The lack of complete
information about future video request arrival times, size and
bit rate of the requested videos, and the required resources, as
well as the stochastic nature of the wireless channel, are critical
factors in decision making.
Given the available resources and QoE constraints, the ob-

jective is to determine an allocation (for caching the videos)
and scheduling (assigning videos to processing, RAN or CN
backhaul, and wireless resources). The problem formulation is
as follows:

(1)

In this formulation, the solution comprises the binary decision
variable , which is “1” if video request with bit rate version
, is accepted and assigned to the th resource and “0” if the
video request is blocked (fourth resource constraint).
An accepted video request can be assigned only one of the

available video bit-rate versions and resource types (third re-
source constraint). is the reward associated with selecting
each bit rate version of the requested video. can be defined to
satisfy different system requirements. For instance, to improve

capacity, one must assign higher rewards to multiple video re-
quests at lower bit rates sharing the available resources than to
fewer video requests at higher bit rates. The objective function
maximizes the total reward, which for the special case (all
the video bit rates are treated equally) maximizes the number of
concurrent video requests served. Selecting can lead
to undesired behaviors; e.g., (a) video bit rates of all the video
requests may drop to the lowest bit rate version just to admit a
video request with a very poor channel condition, (b) there is no
guarantee once enough resources are available, the higher video
bit rate version is preferred to the lower version. Alternatively,
one can use an objective function based on Mean Opinion Score
(MOS), which will strike a good balance between capacity and
user experience. Typically MOS is sublinear in the bit rate due
to diminishing returns of higher bit rates, and will therefore re-
sult in the desired improvement of capacity. Thus, one can select

; where reflects MOS associated with video bit
rate version .

is the number of concurrent video requests including the
latest arriving requests. Given that requests arrive stochastically
over time, can be thought of as the expected number of video
requests in a time period. is the multiple knapsacks available
for the backhaul dimension (backhaul, cache, and processing).
Each accepted video request should satisfy backhaul, cache, or
processing resource constraints (second resource constraint), as
well as the power constraint of the wireless channel (first re-
source constraint). is the required bandwidth of the th
video request with rate version for resource . is infi-
nite if (cache) and the video is not cached, or if
(transrating) and there are no available transrating opportunities
(higher rate version is not in the cache). is the total transmit
power available at the (e)NodeB. Total bandwidth of the videos
that are assigned to backhaul, cache, or processing should be
less than or equal to the backhaul capacity , transrating ca-
pacity , and cache capacity respectively (second re-
source constraint). Here, we define in terms of the number
of encoded bits that can be processed per second. For instance,
a RAN processing capacity of 20 Mbps allows transrating of ten
concurrent video requests with video bit rates of 2 Mbps each.

and are the initial buffering delay,
video quality, and stalling probability respectively experienced
by the th video request for video . should be smaller
than seconds, the maximum tolerable initial delay before
start of playback; should be greater than , defined in
terms of complement of VQM (VQM spans from “1” (best) to
“0” (worst) quality), and should be smaller than ac-
ceptable threshold of .
Since solving the above capacity maximization problem is

NP-hard in the strong sense (refer to Appendix C in the sup-
plementary material available online for proof), we propose an
approach that consists of solving two subproblems as described
before: 1) client-side adaptive video rate selection in coordi-
nation with VAWS [4] to maximize the number of concurrent
video requests that can be served by a RAN scheduler through
the wireless channel, in addition to meeting/improving video
QoE, which is the target of conventional ABR techniques and 2)
ABR-aware reactive and proactive joint caching and processing
policies to maximum the video capacity given the available re-
sources and their constraints. Next, we describe the related work
on each of the two subproblems that we explain above.



PEDERSEN AND DEY: ENHANCING MOBILE VIDEO CAPACITY AND QUALITY USING RATE ADAPTATION, RAN CACHING AND PROCESSING 999

B. Related Work and Paper Outline

There has been much research, development, and commer-
cialization of ABR streaming. Some of the adopted standards
include Apple HTTP Live Streaming, Microsoft Smooth
Streaming, Adobe OSMF, and DASH. The rate adaptation
algorithm—where the desired video rate is selected depending
on the available bandwidth—is a critical part of any ABR
streaming implementation including the ones listed above. Al-
though ABR rate selection algorithm is not being standardized,
there has been much research done on this topic. [7] proposed
a machine learning technique for predicting TCP throughput
for video rate adaptation in addition to using feedback from
the client video playback buffer. [8] presented a rate adapta-
tion algorithm based on their proposed smoothed HTTP/TCP
throughput, instead of using instantaneous TCP throughput.
[9] studied the bandwidth consumption of the Netflix video
service as an example implementation of DASH protocol, and
discussed the impact of TCP rate control algorithm and its
interaction with application layer rate adaptation and control.
The above rate selection techniques, however, focus on min-

imizing video stalls, and do not consider maximizing video ca-
pacity which, in addition tominimizing stall, is our target.More-
over, none of the current techniques consider video character-
istic like LBPs in making rate change decisions, while our pro-
posed rate adaptation algorithm uses individual video character-
istics by using extended E-LBP tables to make the rate change
decisions. Finally, the current policies only change the video bit
rate; however, using E-LBP table that we explain later in this
paper, we not only change the video bit rate, but also the re-
quired transmission rate. Therefore, our ABR algorithm enables
RAN schedulers like VAWS [4] to satisfy more requests, hence
increasing capacity, and improving video QoE by eliminating
or decreasing the probability of stalling. Next, we explain the
limited research currently done on ABR-aware caching.
The authors of [10] proposed a cloud-assisted ABR, and a

technique that prefetches videos based on social associations
of the users, caching those videos at the mobile device to pro-
vide a better video QoE for the video users. However, their pro-
posed framework was mostly focused around Scalable Video
Coded (SVC) contents and does not address the challenge of
caching multiple rate versions of the same video. Furthermore,
they consider caching at the mobile device that proclaims dif-
ferent requirements than the shared caches at the (e)NodeBs that
we target in this paper. The work in [11] and [12] studied the
problems associated with ABR caching, but for CDNs which
have very large caches, as opposed to the relatively small RAN
caches that we target. We had earlier demonstrated the CDN
caching policies are not effective for RAN caching [3]. More-
over, they did not propose any algorithms to address the chal-
lenges of ABR capable caching.
The work in [13] addresses the problem of deciding which

bit rate versions to cache, assuming the probability of rates re-
quested by mobile users (user request model) is known. How-
ever, in mobile networks it is impossible to know ABR rate
probabilities a priori as they vary dynamically depending on
many channel and usage factors as shown in Section IV. Video
selection is a key determinant for performance of small sized

RAN caches; however, [13] does not propose a solution for se-
lecting which videos to cache, but focuses on choosing the rate
versions to be cached. Furthermore, [13] only considers con-
strained storage, while we consider constraints of all the re-
sources involved in end-to-end mobile video delivery, namely
backhaul network, cache, processing and wireless channel.
We believe none of the previous publications address the im-

plications of ABR caching for the relatively small caches at the
RAN (e)NodeBs. In addition, we are not aware of any previous
publication that considers limited video processing resources to
aid caching in the (e)NodeBs, and joint caching and processing
techniques to maximize capacity given the backhaul, cache, and
processing capacity constraints.
The remainder of the paper is organized as follows: In

Section II, we describe our LBP-based video rate adapta-
tion algorithm that increases wireless channel capacity while
resulting in no or limited stalling during video playback. Sub-
sequently, in Section III, we propose ABR-aware reactive and
proactive joint video caching and processing policies that aim
to increase video capacity. Finally, in Section IV, we outline
our simulation framework, and demonstrate the effectiveness
of our approaches in achieving significant capacity gain over
alternative methods discussed earlier. We conclude the paper
in Section V. In Appendix A,2 we study the time complexity
of the proposed joint caching and processing algorithms. The
probabilistic constraint of the ABR-P-UPP-P caching policy
is detailed in Appendix B. Finally, we present the proof of
NP-hardness of the problem formulation in Appendix C.

II. ABR RATE SELECTION ALGORITHM

Conventional ABR algorithms enable mobile devices to re-
quest an appropriate bit rate version of the video to avoid buffer
underflow, thus avoiding stalling in varying wireless network
conditions. In this subsection, we introduce a new client-centric
ABR algorithm, which uses video frame characteristic through
E-LBP table for rate selection. Using this ABR algorithm, the
mobile device is able to change the video bit rate and the re-
quired transmission rate not only to avoid stalls, but also to in-
crease video capacity of the network. We call our joint adaptive
bit rate and transmission algorithm Bit Rate and Transmission
Rate Selection algorithm (BiTRaS).
In [3], we had introduced the use of video LBPs [14] for

the UE to request a transmission rate that results in an initial
buffering delay just below a desired threshold, , set according
to the QoE requirements of the user or video service. LBPs con-
sist of 3-tuples (R, B, F) corresponding to sets of transmis-
sion rates and buffer size parameters for a given bit stream [14].
An LBP tuple guarantees that as long as the minimum transmis-
sion rate is maintained at bps, the client has a buffer
size of B bits, and the buffer is initially filled with F bits before
video playback starts, the video session will proceed without
any stalling. Since it may not always be possible to sustain a re-
quired minimum transmission rate in the wireless channel, the
video session may still end up experiencing stalling, as reported
in [4]. We had proposed a backhaul scheduler and Video Aware
Wireless Channel Scheduler (VAWS) [4] that allocate backhaul

2The appendices of this paper are available as supplementary downloadable
material (online appendix) at http://ieeexplore.ieee.org, provided by the authors.
Any reference to appendices in this paper refers to the online appendix.



1000 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 2, APRIL 2016

Fig. 2. (a) E-LBP table: transmission rate, video rate, and delay. (b) Example
illustrating usage of E-LBP segments by BiTRaS.

bandwidth and wireless channel resources (e.g., power and sub-
carriers in LTE) to video requests to satisfy their minimum re-
quired transmission rate (selected from video LBP table). In this
paper, we leverage the additional flexibility of adapting video bit
rates, besides adapting transmission rates done in [3] and [4], to
further enhance video capacity while satisfying initial delay and
further reducing stalling. We do so by: 1) enhancing the LBP
table to an Extended LBP (E-LBP) table, with an added dimen-
sion of video bit rates besides transmission rates and 2) devel-
oping a new adaptive rate algorithm (BiTRaS) which utilizes
the E-LBP table to select the optimal video bit rate and required
transmission rate. Note that since BiTRaS runs on the mobile
device and integrated with the video client, we use the terms
BiTRaS and video client interchangeably. In this paper, we use
backhaul and VAWS schedulers that we proposed in [4] to allo-
cate the transmission rate requested by the video client.
Fig. 2(a) shows an example E-LBP table where columns

represent different transmission rates, rows represent the avail-
able video bit rates, and the values in the cells represent the
initial buffering period, F/R, to guarantee playback without
stalling, provided the transmission rate is delivered consistently
for the corresponding video bit rate. As BiTRaS can initiate
a rate change anytime during the video playback, we divide
each video into several segments (each segment consisting of
multiple chunks) and generate E-LBP tables; each covering
the -to- th segment, where . Fig. 2(b) shows an
example, where each segment is 120 s. If a video client requests
a rate change [marked by (1)] during segment 1 (anytime
from beginning to 120 s into the video), BiTRaS will use the
E-LBP table for the entire video. On the other hand, if video
rate change occurs [marked by (2)] during segment 2 (from
120 s to 240 s), the video client will use the E-LBP table that is
generated from 120 s to the end of the video or from the second
segment to the th segment.
From the example E-LBP table shown in Fig. 2(a), we can see

how BiTRaS will be able to leverage the flexibility of adapting
video bit rates and transmission rates simultaneously
either to improve QoE or assist VAWS to improve capacity.
BiTRaS uses the E-LBP table to identify whether the video
buffer is in danger of under-flowing and hence stalling. If the
achieved rate to a mobile device falls below the requested
rate selected by BiTRaS earlier, BiTRaS may switch to
a lower video bit rate to avoid stalling. As frequent video bit
rate changes degrade video QoE (according to subjective study
performed by [15]), BiTRaS uses different thresholds to avoid
constant rate changes, while still having enough time to play
back the new video bit rate without stalling. We explain these
thresholds next and present the algorithm.
Fig. 3 shows an example timeline and thresholds we use to

change the video bit rate to a lower value during initial buffering

Fig. 3. Video bit-rate timelines.

and playback phase. In the initial buffering phase [Fig. 3(a)],
the UE monitors its buffer every seconds, starting at time

; if actual number of bits received by time is
below the expected number of bits , the UE switches to a
lower video bit rate. Selecting an appropriate value for is
important because if is selected too early in the se-
quence, it may lead to aggressive and unnecessary rate changes
due to fluctuating channel conditions. However, selecting
too close to , may leave BiTRaS with too little time to
switch to a new video bit rate; possibly resulting in multilevel
video bit rate changes which is not desirable or/and unnecessary
stalling. Thus, the video client monitors the buffer status starting
from , where is a design parameter above 1 that
determines the aggressiveness of the algorithm. For instance,
for and s, is equal to 1.5 s. From
the E-LBP in Fig. 2(a), assuming that the video client has se-
lected Mbps and 3 Mbps [marked by (1)],
the client expects receiving Mbit of
video bits at . If the video client has received more than
4.5 Mbit, it continues to monitor the buffer at 1.5-s intervals.
If 4.5 Mbit, the client buffer may not reach the desired
level for starting the playback on time. The client uses to
estimate the actual achieved transmission rate and subse-
quently divides the next 1.5-s interval into subintervals of
at which the buffer level is monitored. If the buffer level re-
mains below , BiTRaS triggers a rate change. It uses the
E-LBP table to select a new transmission rate equal to or
lower than , and a new video bit rate that can satisfy the new
initial delay, which is the time left until playing back the new
rate ), where is the current
buffer fullness.
During the playback phase [Fig. 3(b)], if the UE buffer falls

below a certain playback time, , BiTRaS switches to a
lower video rate (we explain later in this section). The
UE uses the remaining playback buffer duration, , for the old
video bit rate as the target initial delay when looking up the re-
quired transmission rate for the new video bit rate in the E-LBP
table. Following the same approach, if the UE buffer exceeds

(maximum buffer size from LBP table), the UE switches
to a higher video bit rate. To come up with , we make a
slight modification to our LBP generation process explained in
[4]. In generating LBP, here the goal is to find the initial fullness
level F for a D/G/1 queue, with input rate and output rate ,
so that the playback buffer level never falls below a minimum
level, corresponding to having seconds play time left in
the buffer.
When selecting the new video bit rate from the E-LBP table,

either switching to a higher or lower rate, if possible BiTRaS
selects the next video bit rate that is one step above or below
the current video bit rate which agrees with the subjective QoE



PEDERSEN AND DEY: ENHANCING MOBILE VIDEO CAPACITY AND QUALITY USING RATE ADAPTATION, RAN CACHING AND PROCESSING 1001

results [15] that states that gradual changes are preferred by
users over more abrupt changes. From our earlier example, if

drops to 2 Mbps from 3 Mbps and the remaining time for
the rate change is 4.5 s, BiTRaS selects 1 Mbps, which
is one rate below of 2 Mbps [marked by (2) in Fig. 2(a)].
However, if would drop to 1 Mbps or less, one step transi-
tion is no longer possible, as bit rate of 500 kbps will have to be
selected to satisfy the new initial delay of 4.5 s.
Fig. 4 details the BiTRaS algorithm. For each video request,

BiTRaS starts by selecting the default video bit rate (here,
highest video bit rate available) and requests the lowest trans-
mission rate which results in an initial delay that
satisfies the user's maximum acceptable initial delay require-
ment, , from the E-LBP table (line 2). Next, BiTRaS resets
the timers and (time of last rate adaptation) (line
3). If the video client is in initial buffering phase, BiTRaS mon-
itors the buffer levels at (lines 5–7). If the buffer is not in
danger of underflow, it continues to monitor the buffer level at
regular intervals as explained earlier (line 8). If the UE's buffer
is in danger of underflow, BiTRaS shortens the monitoring
interval to (line 19), and if for another interval, the UE
buffer is still in danger of underflow, BiTRaS calculates
and . From the E-LBP table, BiTRaS selects the highest
video bit rate, , for which and . The
goal is to achieve a one-step video bit rate transition if possible
(line 13). If no video bit rate is found that satisfies and

, BiTRaS cancels the download (line 17). If the video
client is in playback phase, BiTRaS monitors the buffer level
(line 23) and if the buffer is in danger of underflow or overflow,
and sufficient time has passed since the last rate change to
allow the buffer to return to its desired level, BiTRaS selects
the video bit rate from the E-LBP table with initial delay and
new transmission rate of at most and respectively (lines
22–24). If there exists such a video bit rate, it effectuates the
rate change and calculates (line 26). Otherwise, if the
UE buffer is stalling more than seconds and no video
bit rate is available from E-LBP table to allow seamless rate
change, BiTRaS cancels the video (line 28). This is in line with
subjective testing results reported in [16] which suggest that
users terminate the videos due to many or long stalls.

III. JOINT VIDEO CACHING AND PROCESSING

Here, we outline our reactive and proactive joint caching and
video processing framework.
ABR streaming imposes an extra challenge on caching as it

no longer suffices for a video to be in the cache but the video
should be in cache at the requested bit rate. This is further com-
plicated by the fact that each video is divided into multiple
chunks, each of which can be requested at different bit rates.
Even if the entire video is cached at the rate originally requested,
the desired bit rate may change over time so that after a rate
change, the desired rate is no longer available in the cache. To
help alleviate these challenges, we propose adding processing/
transrating resources to each RAN cache which can be used
to transrate a higher bit rate version of the chunk that maybe
available in the cache to a required lower rate version, thereby
relieving the need to fetch and possibly cache the lower rate
version. Like the backhaul resource, transrating is quantified in
terms of transmission rate, and needs to be or higher in

Fig. 4. E-LBP-based adaptive rate algorithm.

order to meet the requirements determined by the LBP param-
eters. Furthermore, when making caching decisions, we cache
the videos so that not only the cache hit ratio is increased (
in Section I-A), but also the number of video rate versions that
can be served by transrating from the cached rate versions is
increased. However, it may not always be optimal to use tran-
srating when a higher bit rate version of a video is in the cache.
Additionally, it might be better to use the backhaul to fetch
the video with the exact rate version from the CDN. As an ex-
ample, consider a scenario with available transrating capacity of
2 Mbps, backhaul bandwidth of 2.3 Mbps and sequential video
request arrivals, that can be served either using transrating or
through the backhaul with required rate of 800 kbps, 2 Mbps,
and 1.5 Mbps. If we greedily assign the first request (800 kbps)
to transrating, then we need to fetch the second video (2 Mbps)
using the backhaul. In this case, the third video request (1.5
Mbps) cannot be served, due to lack of backhaul and transrating
resources. However, by assigning 800 kbps request to the back-
haul, and 2 Mbps to transrating, we can admit the 1.5 Mbps by
assigning it to the backhaul.
The above example illustrates the need for a resource allo-

cation scheme for incoming video requests whose exact rate
versions cannot be found in the cache but a higher rate version
can. Next, we formulate the above problem as an optimization
that aims to maximize the number of requests that can be served
concurrently. Later, we explain our proposed ABR-LRU-P and
ABR-P-UPP-P joint caching and processing policies.

A. Resource Allocation for Joint Caching and Video
Processing Policies
As shown in Fig. 1, with the proposed joint caching and pro-

cessing architecture, when BiTRaS or any other ABR algorithm
changes video bit rate, either of the following scenarios may



1002 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 2, APRIL 2016

apply: 1) the video chunks are available in the cache with the
exact requested rate; 2) the video chunks are in the cache but
with a higher rate version; or 3) there are video chunks with
higher rate version in the UE's (e)NodeB buffer pending trans-
mission to the UE. If the video is not available at the desired or
higher bit rates (none of the above), it has to be fetched from
CDN using the backhaul. For scenarios 2) or 3), the video re-
quest can be satisfied either by transrating it to the desired video
bitrate using processing resource, or fetching it at the desired
video bitrate using the backhaul.
For this subset of requests that we call “T”, we propose a

multiple knapsack formulation that allocates resources (back-
haul and processing) to increase the number of videos served by
maximizing objective function . is maximized under
the constraint that or (problem formulation) is set to

(the minimum required transmission rate from E-LBP),
and the sum of the assigned transrating or backhaul bandwidth
of all scheduled video requests assigned to each resource is less
than or equal to the capacity of resource (back-
haul), or 2 (transrating):

(2)

s are the decision variables of the maximization problem.
By definition, and are mutually exclusive - i.e., if
then and vice versa. indicates video re-

quest is assigned to backhaul resource; indicates
is assigned to transrating resource. If neither backhaul nor tran-
srating is chosen, both and are zero.
In the above formulation, and are set to a weight

factor multiplied by the complement of the backhaul utiliza-
tion, , and transrating utilization,
respectively. and are weights used to bias towards
using transrating resource if utilization of the backhaul and
transrating is the same. The goal is to assign more requests to
the transrating resource, as only a portion of the video requests
can be served by transrating (videos with higher rate version in
the cache). Meanwhile, backhaul can be used by any request
and hence should be preserved for future requests that are
not candidates for transrating. Furthermore, the formulation
ensures that the less utilized a resource is, the more likely it is
assigned to serve a new video request.
Given the selected objective function and the constraints, we

can see that our formulation has the canonical form of a bi-
nary integer program, for which the solution has been shown
to be NP-complete [17]. Hence, we solve the linear relaxation
of this binary integer program, relaxing the constraints to

. Later, we round the linear solutions to integer values,
following a rounding method similar to the one described in
Section III-C2.
Fig. 5 shows the resource allocation for videos in . First, we

calculate the backhaul and transrating utilization given of
all the ongoing video requests allocated to each resource (line 1).

Fig. 5. Resource allocation algorithm.

Utilization of a resource is simply the ratio of the capacity of re-
source currently allocated divided by the total available capacity
of the resource. Subsequently, we calculate for
and introduce two multiplicative factors and , where

, to allocate more resources to transrating than to
backhaul given the same utilization level (line 2). For all of the
new video requests, we maximize the total number of videos
going through the backhaul or being transrated using the for-
mulation in (2) (line 4). As changing the allocation of the ad-
mitted requests is not desirable unless a better allocation can
be achieved, we solve (2) only for the newly arrived video re-
quests. If there is a video request that cannot be admitted (line
5), we solve the optimization problem (2) across all video re-
quests (currently served and new) that can be either scheduled
through the backhaul or using transrating. If more requests can
be served (more instances where or ) by re-
distributing video requests across different resources, the new
resource allocation is used (lines 5–9).

B. ABR-LRU-P Joint Caching and Video Processing Policy
In this section, we enhance the Least Recently Used (LRU)

[3] caching policy to efficiently serve ABR video requests from
(e)NodeB caches, utilizing the available (e)NodeB processing
and backhaul resources optimally to increase video capacity of
the wireless networks.
LRU [3] is a reactive caching policy that fetches the video

from the Internet CDN upon user request if it is not already
found in the cache. It then subsequently caches the content while
simultaneously evicting entries in the cache that have been least
recently used to free up space for the requested content. Our
proposed ABR-LRU-P is a variant of the LRU that allows a
video with different bit rate representations to be cached. Ad-
ditionally, it allows for different chunk sizes (e.g., dividing the
video into chunks of 1 s, 10 s, or multiples of the GoP size),
to be cached at the currently requested bitrate. On eviction of
a video from the cache, ABR-LRU-P removes the video that
has been least recently used. If multiple rates of the same video
exist, it selects the rate that has been least recently used for evic-
tion. ABR-LRU-P starts from the last chunk of the video and
evicts until there is enough cache space available for the chunk
or chunks of the video that is to be cached.
One of the challenges for ABR-LRU-P is that a cache hit does

not necessarily translate to finding all the chunks of a video with
the desired bit rate in the cache. In other words, a cache hit for a
chunk of a video may not necessarily translate to a cache hit for



PEDERSEN AND DEY: ENHANCING MOBILE VIDEO CAPACITY AND QUALITY USING RATE ADAPTATION, RAN CACHING AND PROCESSING 1003

Fig. 6. Example scenario showing how video requests are satisfied in the pro-
posed ABR capable RAN caching and processing approach.

the next chunk, as different chunks of a video can be cached at
different bit rates. For instance, as shown in Fig. 6, a UE requests
video 1 with the 2nd highest bit rate, ; there is an instance
of the video in the cache with the desired bit rate for the first
second; however, video chunks that correspond to 1–4 s of video
playback are not in the cache and chunks corresponding to 4–5s
of playback are cached in 3rd available rate of the video (lower
bit rate than ). Therefore, the video chunks from 1 to 5 s need
to be brought in from the backhaul. The remainder of the video
chunks exist in the cache with the 1st (highest) available bit
rate (5–8 s of ), so using the resource allocation algorithm
discussed in Section III-A, we can either transrate the video bit
rate to the desired rate or bring the video using backhaul. If
the video cannot be admitted, we use the video available in the
cache and serve the mobile device with a higher bit rate than it
can support, risking stalling during playback.
Fig. 7 shows the ABR-LRU-P policy. In the event of a new

video request for (line 1), we start from the first chunk that
is to be transferred to the UE (lines 2–3); if the chunk with the
requested rate is in the cache, we bring the chunk from the cache
and update the access time of the chunk (lines 5–7). If the chunk
is cached at a higher rate version than the one requested, use
resource allocation algorithm (Fig. 5) to optimally allocate the
video to either transrating or backhaul. If we bring the chunk
through the backhaul, we cache the chunk. Otherwise, if we use
transrating resource, we update the original chunk access time
(lines 8–14). If the video is not a cache hit with a higher rate ver-
sion, fetch the chunk through the backhaul and cache the chunk
according to the LRU caching policy (15–18). If neither back-
haul bandwidth nor a higher rate chunk is available in the cache
or (e)NodeB buffer, UE buffer may be in danger of underflow
and BiTRaS as we explained in Section II, may trigger a rate
change.

C. Proactive User Preference Profile Caching Policy

In [3], we proposed a caching policy, termed P-UPP, that
proactively caches videos according to the User Preference Pro-
files (UPP) of active video users in the (e)NodeB, demonstra-
tively increasing the cache hit ratio of the (e)NodeB caches and
the end-to-end video capacity. However, with ABR streaming,
a video request cannot be served from the cache unless the right
bit rate version is available. Hence, to be successful, P-UPP

Fig. 7. ABR-LRU-P caching policy.

has to be able to estimate not only which videos will be re-
quested (which it successfully does using the UPPs of the ac-
tive users), but also what bit rate versions will be requested.
In this section, we first explain our approach to predict what
video bit rates will be requested by the mobile ABR clients.
Next, we propose an ABR-aware P-UPP joint caching and pro-
cessing (ABR-P-UPP-P) policy, which uses the rate prediction
technique and user UPPs to proactively cache videos with the
appropriate rate versions, while also maximally utilizing the
processing resource at the (e)NodeB to transrate as needed to
achieve high cache hit ratio for ABR video requests.
1) Video Bit Rate Prediction Algorithm: In this subsection,

we discuss how to predict what video bit rate may be used by
the BiTRaS clients (mobile devices) for the subsequent requests.
The per-user achieved rate within an (e)NodeB depends on the
utilization of the (e)NodeB and the user channel condition. Note
that user's achieved rate, , is the actual rate given to the user
by the video aware scheduler and it might be different from the
requested rate as in some circumstances network cannot sus-
tain the requested rate. Different techniques can be potentially
used to predict the achieved rate of a user, like SINR measured
by mobile devices and reported back to (e)NodeBs, or by mon-
itoring status of the UE's buffer. However, even if these esti-
mation methods are accurate, the achieved throughput of a user
may include other data traffic, like that from other applications
running in the background, and it may be difficult to predict the
throughput due to the video request itself.
Hence, in this paper we develop a technique to estimate the

request probability of a video bit rate by looking at the weighted
bit rate versions of the ongoing chunk downloads and previous
estimates. To predict the probability that video bit rate is being
requested at time , we use the exponential moving av-
erage (an IIR filter) as follows:

(3)

where is the smoothing factor, is the request proba-
bility of the th video bit rate at time . The smoothed video



1004 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 2, APRIL 2016

rate probability is a simple weighted average of the
current observation and the previous smoothed statistic

. is the distribution of selected video bit rate,
. Larger values of reduces the level of smoothing, and in the
limiting case with the output is the same as the instan-
taneous rate (with lag of one time unit). Note that other sophis-
ticated estimation methods can be used instead of the exponen-
tial moving average method to infer the requested video bit rate
[18].3
The rate prediction is performed along with the caching al-

gorithms; it keeps track of the number of video requests with
a given source video bit rate in each time interval, and using
(3) calculates distribution of the video rates for the next time in-
terval. Later in the simulation result section, we validate our pre-
diction method using null hypothesis testing.4 Next, we explain
our ABR-P-UPP-P joint caching and video processing policy
that utilizes the predicted video bit rate as well as cell site UPP
to make caching decisions.
2) ABR-P-UPP-P Joint Caching and Video Processing

Policy: In this subsection, we explain our ABR-P-UPP-P joint
caching and processing policy that uses UPPs of active users
in the cell, and their video request rate prediction, to cache
videos with the rates that are most likely to be requested at
each (e)NodeB. Like in [3], we assume that we know the UPP
of the users in the cell and we can infer the requested video
bit rate through a set of measured bit rates as explained in
Section III-C1.
In [3], we calculated the probability that a video will be re-

quested by the active user set (AUS) of an (e)NodeB as follows:

(4)

is the probability that video is requested,
is the probability that AUS requests video category
is the total number of video categories and is the request
probability of video with video category . , is the
weighted sum of probabilities that is being selected by each
user in the AUS, and is given by

(5)

In the above equation, is the cardinality of AUS (number
of active users), and is the probability that user, , re-
quests a video. For detailed description of how the above terms
are calculated, please refer to [3]. To calculate the probability

that a specific rate of a video is requested, we use
the following formulation:

(6)

where is the probability that rate is requested and cal-
culated using (3) (time dropped for simplicity of notation). To
maximize the cache hit ratio of future requests (increase
in the problem formulation), our ABR-aware P-UPP policy can
proactively cache videos with highest . However, an-
other objective should be to maximally utilize the transrating

3[Online]. Available: http://en.wikipedia.org/wiki/exponential_smoothing
4[Online]. Available: http://en.wikipedia.org/wiki/chi-squared_distribution

resource available to satisfy future requests for different bit rate
versions than the ones available in the cache. Thus, our pro-
posed ABR-P-UPP-P policy aims to not only identify the set of
videos with rates that result in higher cache hit ratio, but also to
cache videos and rate versions that can be used later by the tran-
srating resource available at the (e)NodeB to satisfy requests of
lower bit rate versions. With the above dual objectives in mind,
we formulate and solve the proactive caching problem as an
Integer Linear Program as follows:

(7)

where and are the solutions to the optimization problem,
having value either 0 or 1. If , the video is
proactively cached. If , then video is not cached
but rather considered candidate for transrating. In this case, we
need to ensure there exists at least one with such that
a higher rate version of video is cached; the above is achieved
by introducing the constraint

. For the same reason, the subscript of the 2nd term
of the maximization starts from 2, to ensure that a higher rate
version is always in the cache for videos that are envisioned for
transrating.
Equation (7) has two size constraints, one is memory, ,

which is deterministic, and the other is processing, ,
which is probabilistic. Unlike cache memory which is a static
resource for which the consumption is known at time of solving
the optimization problem, is a dynamic resource and its
usage is only known after video request arrival. We discuss the
probabilistic constraint in Appendix B.
Since solving binary integer program is NP-complete [19],

we first solve the linear relaxation of the problem, where and
obtain values between 0 and 1, and subsequently round them

to either 0 or 1. The rounding of linear values to integer ones
can be done using a technique known as randomized rounding
[20]. Randomized rounding will round and to 1 with
probability of and ; this may result in both and
being rounded to 1, which is not desirable as we do not want to
cache a video that is selected for transrating. Hence, we propose
a heuristic approach described below.
Fig. 8 explains the algorithm for rounding and to in-

teger values. First, we sort and in descending order and
create sorted lists and (line 1). If we simply round to
1 in the sorted order, we may miss rounding a lower valued
to 1 that may result in a higher cache hit ratio due to its tran-
srating potential for other videos. Thus, we consider both
and when making rounding decisions as follows. For each

in list in descending order and as long as it is not the
end of the list or until the cache is full (lines 2 and 3), we sum



PEDERSEN AND DEY: ENHANCING MOBILE VIDEO CAPACITY AND QUALITY USING RATE ADAPTATION, RAN CACHING AND PROCESSING 1005

Fig. 8. Rounding ILP solutions to Integer Values.

up all the with in list and assign the sum to
(lines 4 and 5). If , meaning there exist videos with
transrating potential from , round to 1 (lines 7 to 9); oth-
erwise, add to the candidate list and identify potential in
the candidate list that can be rounded to 1 if the difference be-
tween any in the list and the newly added is greater than
a threshold . The use of a candidate list is to avoid ignoring
the videos that can result in high requests but are not candidate
for transrating. Further, as we round s to one, we add them to
anMLR (Most Likely Requested) set; such that the first element
is most likely to be requested. Following the same argument,
LLR (Least Likely Requested) set is MLR set but sorted in as-
cending order for cached videos.
Fig. 9 details the ABR-P-UPP-P caching policy. At each

time interval , or when a new video request arrives, whichever
is earlier, ABR-P-UPP-P calculates the distribution of video
rates currently served and estimates as explained in
Section III-C1 (line 1). If either AUS or the video bit rate
distribution changes more than a threshold, ABR-P-UPP-P
calculates the request probability of each video based on
the cell site UPP (lines 2–6). Regardless of a change in AUS,
ABR-P-UPP-P updates the request probability of each video
given the bit rate (line 7). Next, the ILP formulation (7) is
solved, and the MLR and LLR sets are constructed as explained
in our rounding algorithm (lines 8–9). We update the cache by
the MLR videos that are not in the cache. More specifically, for
each video from the MLR set to be added to the cache, we
calculate the difference between its and of the subset
of LLR videos from the cache with least values that need
to be evicted to free up space for the new video. Only if the
difference is greater than a threshold, , we effectuate the
cache update (lines 9–13). is used to avoid unnecessary
cache updates. Note that the algorithm can either make the
caching decisions in granularity of a video chunk, multiples of
a chunk, or a whole video.
In the event of a video request, if the video is a cache hit, we

download the video from the cache (lines 2–5).While delivering
the video , we lock the current and later chunks of the video
so that they are available in the cache and not evicted by an in-
vocation of the proactive cache policy during the download. If a
higher rate version and transrating resource are both available,
we use the resource allocation algorithm (Section III-A) to de-
cide whether to fetch the video through the backhaul or transrate
the video (line 7). If a higher rate version of the video is not in
the cache, we fetch the video through the backhaul (line 9).

Fig. 9. ABR-PUPP-P caching policy.

Next, we explain our simulation parameters and evaluate the
performance of our ABR and joint caching and processing poli-
cies, in contrast with other alternatives discussed before.

IV. SIMULATION RESULTS
In this section, we evaluate the impact of our proposed tech-

niques on network capacity and user QoE under various cache
size, processing capacity, and wireless channel conditions. We
start by describing our simulation framework and parameters
used. Next, we study the impact of different wireless channel
conditions on requested video bit rate distribution of our ABR
algorithm, BiTRaS, as well as the accuracy of our video bit rate
prediction algorithm (Section III-C1). In Section IV-C, for a
certain cache size, transrating capacity, and wireless channel
condition (baseline case—defined later), we evaluate the im-
pact of BiTRaS and ABR-aware joint caching and processing
policies, ABR-P-UPP-P and ABR-LRU-P, on capacity, proba-
bility of stalling and VQM experienced by users. To show the
effectiveness of our proposed policies, we compare them with
two alternative methods of supporting ABR for caches: 1) cache
only the highest rate version of a video and transrate it to the re-
quested video bit rate, which can be expensive in terms of tran-
srating resources, or 2) static LRU caching policy which brings
all the available rates for a missed video/chunk from the In-
ternet CDN instead of just the requested bit rate of the video,
and hence can be expensive in terms of cache size and required
backhaul bandwidth. In Section IV-D, we study the effect of dif-
ferent cache sizes and transrating capacities on the performance
of our proposed policies. Finally, in Section IV-E, we show the
effectiveness of our proposed techniques under different varia-
tions of baseline case, including how users are distributed in the
cell, and different wireless channel conditions.

A. Simulation Framework and Parameters Used
We extended the MATLAB Monte Carlo simulation frame-

work we had developed earlier [3], [4] to incorporate ABR



1006 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 2, APRIL 2016

TABLE I
WIRELESS CHANNEL SIMULATION PARAMETERS

streaming, including the new ABR rate selection algorithm
and the joint caching and processing algorithms proposed in
this paper. Like in [3], we assume a database of 20 000 videos
following a Zipf popularity distribution with exponent value
of . The video duration is exponentially distributed with
mean of 8 min and truncated to a maximum of 30 min and
a minimum of 2 min. We assume the videos are uniformly
distributed between 200 kbps (QVGA quality) and 2 Mbps
(HD quality), and that each video has four transrated variants
that have relative bit rates of 0.82, 0.67, 0.55, and 0.45 of the
original video bit rate. The simulation assumes a pool of 5000
potential users and uses a Poisson model for arrival to and
departure from a cell, with average user active time of 45 min
and inter-arrival time depending on the specific simulation.
Video requests are generated independently per active user and
follow a Poisson process with mean of 8 min between requests.
In terms of video QoE, we set up a requirement of maximum
acceptable initial delay of 10s for each user and VQM value of
at least 0.65. For the proposed ABR algorithm, we use
10s.
In terms of resources, we use RAN cache size of up to

350 Gbit, and RAN video processing (transrating) capacity
of up to 100 Mbps (e.g., 50 concurrent video requests with
required rate of 2 Mbps). Furthermore, we assume 100 Mbps
for backhaul bandwidth, and the wireless channel is modeled
with parameters listed in Table I and will be explained further
in Section IV-B.

B. Effect of Wireless Channel Variations on Rate Distribution
and Accuracy of Video Bit Rate Prediction
Because variations in channel conditions lead to the need for

ABR, we study their impact on video bit rate distribution pro-
duced by BiTRaS, and the accuracy of our video bit rate predic-
tion method which will be used by ABR-P-UPP-P.
The wireless channel is characterized by variations of the

channel signal strength across time and frequency. These varia-
tions are divided into large-scale and small-scale fading. In this
paper, like in [3], we model small-scale fading using Rayleigh
fading model and large-scale fading according to 3GPP TR
36.814 V0.4.1 [17] Urban Macro (UMa) model. The final
channel model is a superposition of small-scale and large-scale
fading. To model small-scale fading with different temporal
variations in users' wireless channel, we use two Rayleigh
fading channels with Doppler frequencies of 3 and 92 Hz.

Hz models small-scale fading for a pedestrian with
speed of approximately 3 km/h, while 92 Hz corresponds
to a vehicle with speed of approximately 100 km/h assuming
a carrier frequency of 1 GHz. We study the impact of wireless
channel on BiTRaS video bitrate changes in this subsection and
on the joint caching and processing policies performance in
Section IV-E using three different channel profiles: 1) baseline:

3 Hz with users uniformly distributed within a cell;

Fig. 10. (a) Instantaneous channel gain. (b) Average channel gain in scheduling
interval. (c) Video rate distribution in baseline and mixed channel. (d) Video rate
distribution in biased channel.

2) biased: baseline channel with users uniformly distributed
0.7–1.2 km from cell center to achieve different large-scale
fading profiles relative to the baseline channel; and 3) mixed:
baseline channel with a mix of users experiencing Doppler
frequencies of 3 and 92 Hz to achieve different small-scale
profile relative to the baseline configuration.
Fig. 10(a) shows an example of the channel gain experienced

by one user during a period of one second (not including path
loss). We see that the rate at which the channels vary are dif-
ferent, but the magnitude of the variations is comparable. How-
ever, the VAWS that we proposed in [4] or any well designed
scheduler typically operates at a time scale significantly larger
than that of variations shown in Fig. 10(a) and averages the con-
ditions over a scheduling period before making the scheduling
decision. Fig. 10(b) shows the average channel gain in each
scheduling interval of 1 s. As we can see from the figure, the
temporal variations in the magnitude of the channel, when con-
sidering averaging over each scheduling period, are much more
pronounced with the pedestrian channel with 3 Hz than
with the channel with 92 Hz. This is because with a slowly
fading channel, a user may go into a fade and stay there during a
scheduling interval and into another fade in another scheduling
interval while a fast fading channel will go through many cycles
within each scheduling period, so variations tend to average out
more.
Fig. 10(c) and (d) shows the effect of wireless channels,

described above, on the video rates selected by BiTRaS.
Fig. 10(c) shows the distribution of the five different video bit
rates used by BiTRaS for the baseline channel (solid lines) and
for the mixed channel (dashed lines). Similar to Fig. 10(c),
Fig. 10(d) shows video bit-rate distribution for the biased
channel. From Fig. 10(c) and from Q-Q plot5 not presented
here due to space constraints, we observe that rate distribution
is almost the same for the baseline and mixed channel, showing
that BiTRaS along with VAWS does not change video rates due
to short term channel fluctuations. However, from Fig. 10(d),
we infer that BiTRaS resorts to more bit-rate adaptation for the
biased channel to compensate for the path loss observed by the

5[Online]. Available: http://en.wikipedia.org/wiki/qq_plot/



PEDERSEN AND DEY: ENHANCING MOBILE VIDEO CAPACITY AND QUALITY USING RATE ADAPTATION, RAN CACHING AND PROCESSING 1007

TABLE II
CAPACITY, STALL PROBABILITY, AND VQM

users farther away from the cell center—for instance, at about
2000 s into the simulation, the probability that BiTRaS uses
the highest bit rate is 0.46 for the biased channel and 0.8 for
baseline or mixed channel whereas the probability of using the
2nd highest rate is 0.18 for the biased and 0.12 for the baseline
or mixed channel. Overall, for the settings considered in this
section, the aggregate effect of each user's Doppler frequency
on the rate distribution across the cell is minor and the main
contributor to the variations in the rate distribution over time
is the network load as well as significant change in users'
large-scale fading.
To validate how well our video bit rate prediction algorithm

(Section III-C1) predicts the distribution of rates requested by
BiTRaS, we use statistical hypothesis testing specifically using
the chi-square test . Based on chi-square testing, as we have five
different bit rates to predict, the degree of freedom is four and,
to get a 95% confidence interval from the chi distribution , we
get a value of 8.0 for null hypothesis rejection threshold. Thus,
if the difference between observed and estimated rate is below
8.0, then we cannot reject the null hypothesis that the predicted
distribution is identical to the actual distribution of bit rates. We
measure the percentage of occurrences that the chi-squared sta-
tistics is above the null hypothesis rejection threshold. Using
these measurements, we get very low values of 2.8% and 2.6%
for predictions made for the baseline and mixed configurations
respectively, showing that most of the time the predicted rate
distributions are accurate. The use of chi-square test is appro-
priate due to the weakness of dependency [21] of the requested
video rates. We compared throughput of the 25% of users with
highest and lowest achieved throughput for every time tick and
realized a low correlation coefficient for the two time series. The
low correlation coefficient points to the two groups being suffi-
ciently “separated” and therefore weakly dependent.
Next, we study the impact of BiTRaS and the joint caching

and processing policies on the network capacity and video QoE.

C. Performance of ABR-Aware Joint Caching and Processing
Policies: Baseline Case

Using the simulation framework described in Section IV-A,
we next quantify the advantages of our proposed tech-
niques—ABR streaming and joint caching and processing in
the RAN—in terms of network capacity (number of concurrent
video streams) and QoE (probability of stalling and VQM
score). We use a baseline configuration of parameters (baseline
case) that includes all the parameters described in Section IV-A,
with 250 Gbit cache size, 12Mbps transrating capacity, Doppler
frequency of 3 Hz, and users uniformly distributed across a
cell. Table II shows the capacity (number of concurrent video
streams served), probability of stalling, and VQM, for different

combinations of ABR, RAN cache, and cache policy usage. The
capacity numbers reported are where the blocking probability
is exactly 0.01 [3], which is achieved by changing the user
inter-arrival rate such that the steady state target blocking rate
is achieved and noting the number of concurrent video requests
generated at that specific user inter-arrival rate. Furthermore,
using RAN cache by itself (no ABR) (line 2) or using BiTRaS
by itself (no RAN cache) (line 3) can improve the capacity by
up to 61% and 46% respectively compared to using neither
RAN cache nor ABR (line 1). However, the biggest gains in
capacity arise when using our joint RAN caching and pro-
cessing policies together with BiTRaS (lines 4 and 6). Using
the proposed ABR-LRU-P joint caching and processing policy,
the capacity improves by 54% compared to having ABR but
no cache (comparing lines 3 and 4), by 125% compared with
having no RAN cache and no ABR (comparing lines 1 and
4), and by 121% compared to using ABR with the static LRU
caching policy (comparing lines 4 and 5). Furthermore, using
ABR-P-UPP-P policy can further improve capacity by up to
17% compared with using ABR-LRU-P policy (comparing
lines 4 and 6), and by 40% compared to using ABR with
Highest Rate LRU policy that caches the highest rate and uses
transrating capacity to transrate the videos to the desired video
bit rate (comparing lines 6 and 7).
The Probability of Stalling column in Table II shows the total

number of stalls across all the video requests divided by the total
number of video requests. From the results we can infer that
using ABR without any caching can reduce the stalling prob-
ability significantly (comparing lines 1 and 3). This improve-
ment in terms of capacity and stall probability comes with the
cost of drop in VQM. On the other hand, adding RAN caching
can increase the stalling probability (both lines 2 and 5), due
to increased number of video requests supported. However, the
results show that, when our proposed ABR-aware joint caching
and processing policies are used, the stalling probability can be
reduced significantly (comparing lines 4 or 6 with lines 2 or 5),
though the stalling probability is still higher than using ABR
without caching (line 3), while achieving much higher capacity.
The VQM column in Table II shows the VQM of the served

videos. Here, without presence of ABR we get VQM value of 1
which is the highest possible score, because videos are always
delivered at the highest quality, but the lack of rate adaptation
causes excessive stalling, as can be seen in the Probability of
Stalling column in Table II, which may be more detrimental to
QoE than degraded VQM. When ABR is used without RAN
caching, VQM degrades to 0.78 while stalling is almost elimi-
nated. However, when ABR is used with RAN caching and pro-
cessing with the ABR-LRU-P or ABR-P-UPP-P policies, we
observe very little further degradation in VQM score and sim-
ilar stalling probability, while significant increase in capacity.
Overall, we conclude that: 1) caching and procesisng policy

is the determining factor in the capacity and QoE improve-
ment, given the same amount of investment (cache size and
processing resource); for example, even with the added cache
and processing resource, using “Static LRU” does not improve
the capacity and QoE compared with not having any cache
or processing resource and 2) using “ABR-P-UPP-P” policy
with cache size of 250Gbit and transrating of 12 Mbps results
in 81% improvement in terms of end-to-end video capacity
compared with using ABR alone.



1008 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 2, APRIL 2016

Fig. 11. (a) Capacity versus transrating and cache size. (b) VQM versus transrating and cache size. (c) Stall probability versus transrating and cache size.

D. Impact of Cache Size and Transrating Resources

Here, we study the impact of cache size and transrating ca-
pacity on the performance of our proposed joint caching and
processing policies.
Fig. 11(a) shows the effect on capacity when increasing cache

size from 150 to 350Gbit and increasing the transrating ca-
pacity from 0 to 100Mbps for each cache size, with the other
parameters unchanged from the baseline configuration. From
the figure, we can infer that as the cache size and transrating
resource increase, the capacity achieved by both proposed poli-
cies increase. For the cache sizes that we study in this paper,
increase in cache size always results in increase in capacity. For
instance, from Fig. 11(a), we see that when no transrating re-
source is available, the capacity achieved by ABR-P-UPP-P in-
creases from 237 to 250 to 259 with cache size increasing from
150 Gbit to 250 Gbit to 350 Gbit, respectively, an overall in-
crease of 9% in capacity.
Similarly, increasing transrating capacity also leads to in-

crease in network capacity, although the increase depends on
associated cache size, and may stop after a certain transrating
capacity. For instance, Fig. 11(a) shows that for cache size
of 150 Gbit, increasing transrating capacity from 0 Mbps to
12 Mbps increases the network capacity by 3% and 2% for
ABR-P-UPP-P and ABR-LRU-P, respectively; on the other
hand, while increasing the transrating resource from 20 Mbps
to 100 Mbps increases the network capacity by 6% using
ABR-P-UPP-P, it does not further increase the capacity using
ABR-LRU-P. For higher cache size of 350 Gbit, increasing
transrating resource from 0 to 6 to 12 to 100 Mbps shows
continuous increase in network capacity by ABR-P-UPP-P, for
a total capacity increase of 12%, due to the availability of more
videos with higher bit rate versions in the cache. Furthermore,
ABR-P-UPP-P joint caching and processing policy can im-
prove the capacity by 24% compared with ABR-LRU-P joint
caching and processing policy when the cache size is 350 Gbit
and transrating resource is 100 Mbps.
Next, we study the impact of cache size and transrating ca-

pacity onVQMusingABR-LRU-P andABR-P-UPP-P policies.
From Fig. 11(b), we can infer that overall, regardless of the
available cache size and transrating resource, VQM is greater
than or equal to 0.86 for the ABR-P-UPP-P joint caching and
processing policy. Similar trends holds for ABR-LRU-P with
VQM of equal or above 0.84. Furthermore, increase in cache
size results in slight increase in VQM value. For instance, for

transrating capacity of 6 Mbps, increasing the cache size from
150 to 250 to 350 Gbit shows a slight increase in VQM by
ABR-P-UPP-P and ABR-LRU-P of about 2%.
Next, we study the impact of cache size and transrating

capacity on stalling probability using ABR-LRU-P and
ABR-P-UPP-P policies. From Fig. 11(c), we can see that
increasing cache size itself reduces stalling probability—for
example, for transrating capacity of 12Mbps, increasing cache
size from 150Gbit to 350Gbit, reduces the stalling probability
by 24% and 23% for ABR-P-UPP-P and ABR-LRU-P poli-
cies respectively. Similarly, increasing transrating capacity
itself can reduce stalling probability—for example, for cache
size of 350Gbit, increasing transrating capacity from 0 to
100Mbps reduces stalling probability by 44% and 6% for
ABR-P-UPP-P and ABR-LRU-P, respectively. Finally, we can
infer that increase in both cache size and transrating capacity
can significantly improve the probability of stalling. For in-
stance, increasing the transrating capacity from 0 Mbps to 100
Mbps and cache size from 150 Gbit to 350 Gbit improves the
stalling probability by 59% and 36% for ABR-P-UPP-P and
ABR-LRU-P policies respectively.
Overall, we can infer that capacity and video QoE of the

cellular network is sensitive to cache size and transrating re-
sources and for the settings studied in this paper, increase in
cache size always results in higher capacity and better QoE.
However, while increase in transrating resource also results in
increase in capacity and QoE, its impact highly depends on
the cache size available and it plateaus after reaching a certain
threshold.
Next, we study the impact of wireless channels and user dis-

tributions on the capacity and QoE obtained of the ABR-P-
UPP-P and ABR-LRU-P joint caching and processing policies.

E. Impact of Wireless Channel and User Distribution

As explained in Section IV-A, different types of channels
and their variations impact the frequency of rate changes due to
ABR and as a result impact the performance of our joint caching
and processing policies. In this subsection, we quantify the im-
pact of wireless channel variations on the capacity and QoE of
the wireless network using the three different channel config-
urations detailed in Section IV-B: baseline, biased and mixed
channel. Table III shows video capacity and QoE achieved by
different policies for the three different configurations explained
above. Since Highest Rate LRU policy performs the best for the



PEDERSEN AND DEY: ENHANCING MOBILE VIDEO CAPACITY AND QUALITY USING RATE ADAPTATION, RAN CACHING AND PROCESSING 1009

TABLE III
CAPACITY AND QOE PERFORMANCE OF POLICIES UNDER DIFFERENT

WIRELESS CHANNEL AND USER DISTRIBUTIONS

baseline configuration, we select it to compare the performance
of our proposed policies against.
From the table, we see that biased distribution of users within

the cell site decreases capacity of ABR-P-UPP-P by 15% while
it impacts the capacity of ABR-LRU-P only by 8% compared
with the baseline configuration. This is due to the fact that ABR-
P-UPP-P results in a higher number of concurrent users ad-
mitted than the other policies, and hence having more users at
the cell edge in the biased configuration results in higher re-
quired (e)NodeB power to admit the edge users and thus nega-
tively impacts video capacity more than in the case of the other
policies.
We also observe that mixed configuration results in

very minor capacity improvements of 1.9% and 1.4% for
ABR-P-UPP-P and ABR-LRU-P compared with the modified
baseline configuration respectively. This minimal change in
capacity despite more variations experienced at the scheduling
intervals with baseline channel [Fig. 10(b)], indicates that
BiTRaS and VAWS do not unncessarily change the rate due to
short term channel variations.
Overall, the simulation results show that our proposed poli-

cies perform significantly better than not using ABR and RAN
cache, and also far better than Highest Rate LRU caching policy,
in any of the configurations considered. For instance, with bi-
ased configuration that negatively affects the capacity for all the
caching policies, ABR-P-UPP-P performs better than Highest
Rate LRU by 56%, and better than no ABR and no RAN cache
by 125%.
Table III shows that VQM for our caching policies is the

same or better than the VQM for the Highest Rate LRU across
all the wireless channel configurations. For instance, for the
mixed configuration, VQM is 0.85 for Highest Rate LRU, 0.86
for ABR-LRU-P and 0.92 for ABR-P-UPP-P policy. Further-
more, Table III shows that the probability of stalling is signif-
icantly lower when using our policies for any of the config-
urations considered. For instance, when using mixed configu-
ration, ABR-LRU-P and ABR-P-UPP-P reduce probability of
stalling by 3% and 45% respectively relative to Highest Rate
LRU policy, and by 90% and 94% respectively relative to using
no ABR and no RAN caching. From results not presented in this
paper due to space limitation, we infer that users experience ini-
tial delay of between 5.5 s to 7.5 s across all of the policies com-
pared here.

V. CONCLUSION
We proposed a novel video rate adaptation algorithm that uses

video frame characteristic through E-LBP to change the video

bit rate and transmission rate served in response to the varying
wireless channel conditions and network utilization to improve
the video QoE while also improving the capacity. Furthermore,
we proposed two joint video caching and processing algorithms
that are ABR-aware and aim to improve the capacity and QoE
of the wireless network. Using simulation results, we show our
rate adapation along with our joint caching and processing poli-
cies produce superior results compared with using commonly
deployed caching algorithms.

ACKNOWLEDGMENT

The authors would like to thank Prof. R. Impagliazzo and
Prof. D. Politis for discussions of complexity analysis and hy-
pothesis testing, respectively.

REFERENCES
[1] Microsoft Download Center, “Smooth streaming technical overview,”

Mar. 2009.
[2] S. Akhshabi et al., “An experimental evaluation of rate-adaptation al-

gorithms in adaptive streaming over http,” ACM Multimedia Syst., pp.
157–168, 2011.

[3] H. Ahlehagh and S. Dey, “Video caching in radio access network: Im-
pact on delay and capacity,” in Proc. IEEE Wireless Commun. Net-
working Conf., 2012, pp. 2276–2281.

[4] H. Ahlehagh and S. Dey, “Video aware scheduling and caching in
the radio access network,” IEEE Trans. Netw., vol. 22, no. 5, pp.
1444–1462, Aug. 2014.

[5] D. Pisinger, “Algorithms for knapsack problems,” Ph.D. dissertation,
DIKU, Univ. Copenhagen, Copenhagen, Denmark, 1995.

[6] H. Kellerer et al., “Knapsack problems,” 2004.
[7] G. Tian and Y. Liu, “Towards agile and smooth video adaptation in

dynamic HTTP streaming,” in Proc. ACM Int. Conf. Emerging Net-
working EXperiments Technol., Dec. 2012, pp. 109–120.

[8] C. Liu et al., “Rate adaptation for adaptive HTTP streaming,” in Proc.
2nd Annu. ACM Conf. Multimedia Syst., New York, NY, USA, 2011,
pp. 169–174.

[9] J. Martin et al., “Characterizing Netflix bandwidth consumption,” in
Proc. IEEEConsumer Commun. Networking Conf., 2013, pp. 230–235.

[10] X. Wang et al., “Cloud-assisted adaptive video streaming and social-
aware video prefetching for mobile users,” IEEEWireless Commun. J.,
vol. 20, no. 3, pp. 72–79, Jun. 2013.

[11] B. Tarbox, “Complexity considerations for centralized packaging vs.
remote packaging,” Technical Forum Proc., Spring 2012.

[12] B. Tarbox, “Intelligent caching in an ABR multi-format CDN world,”
Technical Forum Proc., Spring 2012.

[13] W. Zhang et al., “QoE-driven cache management for HTTP adaptive
bit rate streaming over wireless networks,” IEEE. Trans. Multimedia,
vol. 15, no. 6, pp. 1431–1445, Aug. 2013.

[14] J. Ribas-Corbera et al., “A generalized hypothetical reference decoder
for H.264/AVC,” IEEE Trans. Circuits Syst., vol. 13, no. 7, pp.
674–687, Jul. 2003.

[15] A. K. Moorthy et al., “Video quality assessment on mobile devices:
Subjective, behavioral and objective studies,” IEEE J. Sel. Topics
Signal Process., vol. 6, no. 6, pp. 652–671, Oct. 2012.

[16] A. Balachandran et al., “Developing a predictive model of quality of
experience for internet video,” in Proc. ACM SIGCOMM, Hong Kong,
Aug. 2013, pp. 339–350.

[17] 3GPP, “TR36.814 v1.0.0: Evolved universal terrestrial radio access
(E-UTRA); further advancements for E-UTRA physical layer aspects,”
2009 [Online]. Available: www.3gpp.org

[18] B. L. Bowerman et al., Forecasting, Time Series, and Regression, 4th
ed. Boston, MA, USA: Cengage Learning, 2007.

[19] R. M. Karp, “Reducibility among combinatorial problems,” in Com-
plexity of Computer Computations, R. E. Miller and J. W. Thatcher,
Eds. New York, NY, USA: Plenum, 1972, pp. 85–103.

[20] R. Motwani and P. Raghavan, Randomized Algorithms, 1st ed. Cam-
bridge, U.K.: Cambridge Univ., 1997.

[21] D. N. Politis, “Computer-intensive methods in statistical analysis,”
IEEE Signal Process. Mag., vol. 15, no. 1, pp. 39–55, Jan. 1998.

[22] R. Neapolitan, Foundations of Algorithms, 3rd ed. Sudbury, MA,
USA: Jones and Bartlett, 2003.



1010 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 2, APRIL 2016

[23] D. A. Spielman and S.-H. Teng, “Smoothed analysis of algorithms:
Why the simplex algorithm usually takes polynomial time,” J. ACM,
vol. 51, no. 3, pp. 385–463, May 2004.

[24] C. Koufogiannakis and N. E. Young, “A nearly linear-time PTAS for
explicit fractional packing and covering linear programs,” Algorith-
mica, vol. 70, pp. 648–674, Dec. 2014.

[25] [Online]. Available: http://en.wikipedia.org/wiki/normal_distribution
[26] P. Toth, Knapsack Problems: Algorithms and Computer Implementa-

tions. New York, NY, USA: Wiley, 1990.
[27] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness, 1st ed. San Francisco, CA, USA:
Freeman, 1979.

Hasti A. Pedersen received the M.S. degree in elec-
trical engineering from Worcester Polytechnic Insti-
tute, Worcester, MA, USA, in 2004. She is currently
working toward the Ph.D. degree at the University of
California at San Diego, La Jolla, CA, USA.
Prior to her doctoral work, she was a Senior Staff

Software Engineer with Motorola Mobility Inc.,
where she worked on cable networks, and before that
she was a Firmware Software Engineer developing
software for 3G wireless networks.

Sujit Dey (SM’03–F’14) received the Ph.D. degree
in computer science from Duke University, Durham,
NC, USA, in 1991.
He is a Professor with the Department of Electrical

and Computer Engineering, University of California
at San Diego (UCSD), La Jolla, CA, USA, where he
heads the Mobile Systems Design Laboratory, which
is engaged in developing innovative mobile cloud
computing architectures and algorithms, adaptive
multimedia and networking techniques, low-en-
ergy computing and communication, and reliable

system-on-chips, to enable the next-generation of mobile multimedia applica-
tions. He is the Director of the UCSD Center for Wireless Communications. He
also serves as the Faculty Director of the von Liebig Entrepreneurism Center
and is affiliated with the Qualcomm Institute. He served as the Chief Scientist,
Mobile Networks, at Allot Communications from 2012 to 2013. He founded
Ortiva Wireless in 2004, where he served as its founding CEO and later as CTO
till its acquisition by Allot Communications in 2012. Prior to Ortiva, he served
as the Chair of the Advisory Board of Zyray Wireless till its acquisition by
Broadcom in 2004. Prior to joining UCSD in 1997, he was a Senior Research
Staff Member with the NEC C&C Research Laboratories, Princeton, NJ, USA.
He has coauthored over 200 publications, including journal and conference
papers, and a book on low-power design. He is the co-inventor of 18 U.S.
patents, resulting in multiple technology licensing and commercialization.
Dr. Dey was the recipient of six IEEE/ACM Best Paper Awards and has

chaired multiple IEEE conferences and workshops.


