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ABSTRACT Personalization approaches seek to estimate user preferences in order to recommend content
or social network connections, or to serve personalized advertisements to users. Such approaches are being
increasingly adopted by organizations to build customized personalization applications. Leveraging the
growing popularity of Web videos for such approaches necessitates the ability to classify Web videos into
application-specific categories, since different applications are interested in different aspects of the user
preferences. A key requirement of supervised classification models to address this is the availability of
training videos labeled to the arbitrary application-specific categories. In order to address this requirement,
we propose a completely automated framework to obtain trainingWeb videos for arbitrary categories, which
does not rely on any manual labeling of videos. This is achieved utilizing keywords to retrieve training
videos, thereby simplifying the problem of obtaining training videos to the problem of selecting keywords
to retrieve them. We show that there are two opposing objectives (proximity and diversity) that need to
be considered while developing such keyword selection techniques. We propose two efficient approaches
(linear combination of proximity and diversity and annealing-based alternating optimization) and study the
tradeoffs between them, with respect to performance and the human input required to tune parameters of
the approach. Through experiments over several sets of categories, we demonstrate the feasibility of the
automated framework to select training videos for application-specific categorization. We also show that
the proposed approaches lead to a substantial improvement in the performance of classification models, as
compared with other automated methods.

INDEX TERMS Obtain training data, metadata based video classification.

I. INTRODUCTION
Over the past few years, there has been a steady rise in
the number and popularity of personalization applications
available on the Internet. These include applications based
on personalized advertisements, content recommendation
systems, social network connection suggestions, and several
others, that attempt to understand the preferences of users.
Personalization applications have been traditionally based
on learning user preferences through queried keywords and
viewed articles [1]. The last few years have also witnessed
a tremendous increase in viewing and sharing of web videos
(such as on YouTube [2]), with significant increases in unique
viewers, total streams viewed, number of streams per viewer,
and the time per viewer [3]. Given their unique characteris-
tics, web videos offer a tremendous potential for understand-
ing user preferences.

User preferences can be inferred based on the types/
categories of web videos seen. Such videos are gener-
ally organized at video sharing websites on the basis of

labels that the video uploaders choose from among a set of
common categories that are used by such websites. Examples
of such common categories include Comedy, Music, People,
Entertainment, Pets, Science, etc. On the other hand, the cate-
gories of interest to personalization applications may be arbi-
trary, and quite different from the above common categories.
Consider a department store (such as Sears or Walmart) that
might want to offer promotional coupons to buyers. Knowing
whether a person (a buyer) has interest in product specific
categories like fitness equipment, clothing items, or baby
products would be of high interest to the department store, as
compared to knowingwhether he/she is interested in the com-
mon categories mentioned above. A movie recommendation
system would like to learn if a viewer prefers action, horror,
or comedy movies. Categorizing viewed videos and under-
standing user preferences in terms of the common categories
used by video sharing websites might not be useful for dif-
ferent personalization applications. In addition to the above
observation, it should be noted that different personalization
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applications are interested in understanding user preferences
with respect to very different sets of categories, as shown
by the above examples. It is clearly not sufficient to use
a common set of categories for every personalization
application, as the categories of interest for one application
might be irrelevant and useless for another.

This calls for techniques to classify viewed web videos,
and hence estimate user preferences, in terms of any arbitrary
set of categories appropriate for a given personalization
application. Various modes of information (such as audio,
visual, textual and social network) can be employed to assist
in the classification of web videos. Classifiers employed for
this task have the inherent requirement of training videos
labeled to the set of categories as desired by the personal-
ization application. Since the set of categories suitable for a
personalization application might be very different from the
common categories used by video sharing websites, training
videos labeled according to the required set of categories are
often unavailable. Our work addresses this requirement of
obtaining training videos labeled as per the required set of
categories, which are not necessarily the categories
commonly associated with web videos. We propose a fully
automated framework to obtain training videos with proper-
ties that can lead to high performance of trained classifica-
tion models. To achieve the above, the proposed framework
neither relies on labels associated with online videos, nor
requires any manual labeling of videos. Instead, we develop
approaches to select keywords based on their suitability to
retrieve high quality training videos for a specified set of
categories. Such a methodology requires the consideration
of two opposing objective, namely proximity and diversity.
In order to select the keywords, we first present a tun-
able approach (LCPD) based on the Linear Combination of
Proximity and Diversity. While such an approach can give
good classification performance, it requires the tuning of
a parameter in order to obtain optimal performance, which
may require manual effort. We thus also propose an approach
using Annealing based Alternating Optimization (AAO)
where we balance between the two objectives such that the
final solution is a trade-off between the two. Complexity,
convergence and correctness of the proposed algorithms
are presented, along with experiments over several sets of
categories.

A. RELATED WORK
We discuss below the related work on video classifica-
tion. Since the keyword selection based approach requires
optimizing for two objective functions, we also provide
a discussion on the related work on multi-objective
optimization.

1) VIDEO CLASSIFICATION
A significant amount of work has been done to address
the problem of video classification. Such work can be
looked at on the basis of two dimensions - modalities used
for classification, and approaches to obtain labeled

training videos. While the focus of our work is on obtaining
training videos, we first briefly describe video classifica-
tion approaches in terms of modalities used, including our
approach, and then discuss approaches to obtain training data,
contrasting our approach from others.

A characteristic property of web videos is that they have
rich information in several modes – audio, visual, textual,
and social network being the most common ones. Methods
such as [4]–[8] present multi-modal techniques for classifi-
cation of web videos. Others such as [9] and [10] classify
videos using only the audio-visual information in the videos,
while [11], [12] approach classification of web videos by
treating them as text documents. A detailed survey on video
classification is provided in [13]. In our work, we classify
web videos on the basis of the contextual information sur-
rounding them, such as the title, keywords, and description.
This is because text-based classification approaches are com-
putationally much less expensive than multimedia features-
based classification approaches, and as shown in existing
literature as well as in Section V, offer good classification
performance.

With respect to the approaches to obtain labeled training
videos, [7], [11], [12] obtain training videos that are labeled
according to categories used by YouTube [2]. Hence, such
approaches cannot be used for classification of web videos
to arbitrary set of categories, which is the focus of this paper.
Approaches such as [4], [8], and [9] utilize training videos
that are labeled manually. Recently, techniques have been
developed [5], [6] which expand the set of training videos
starting from a set of manually labeled videos. With the help
of social network structure of the video sharing website,
co-watched videos, or text-based classifiers, [5], [6] increase
the number of training videos in a semi-supervised
fashion. However, manual labeling requires human experts
to go through at least a part of the video, and come up with
a label. The labeling process is prone to human errors and
inconsistencies, and more critically, is not scalable to large
sizes of training data, especially given the enormous scale of
web videos [3]. Contrary to these approaches, we propose
a framework that does not require any manual effort to
obtain training videos, even for any arbitrary set of categories
desired by a personalization application.

2) MULTI-OBJECTIVE OPTIMIZATION
In general, for multi-objective optimization problems, there
does not exist a single solution that optimizes all objectives.
[14] surveys the different approaches that are adopted to solve
multi-objective optimization problems. Certain approaches
require apriori knowledge of the preferences for the different
objective functions. In order to utilize these preferences, a
global objective function can be defined based on the indi-
vidual objective functions and by using the preferences as
numerical weights, as is shown in [15]–[17]. For example, a
common approach to multi-objective optimization is to com-
bine the individual objective functions through a weighted
sum method as shown in [18].
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Other works embed the notion of preferences into their
methodology, for example by ranking the objective functions
in the order of their relative importance [19], [20] or by
modifying the bounds of the individual optimization
problems [21], [22]. Such works however require the apriori
knowledge of the preferences of the multiple objectives, as
obtained by a human decision maker. In the context of our
problem of selecting keywords to obtain training videos,
such relative preferences of different objective functions is
unavailable and hence these approaches cannot be applied.

A different line of works approach multi-objective
optimization problems by first obtaining a set or a rep-
resentation of pareto optimal solutions for the problem,
and then employing human judgment to decide the best
solution. Pareto optimal solutions are alternative solutions
for the multi-objective optimization problem that are optimal
in the wider sense that no other solutions in the search
space are superior to them when all the objectives are
considered [23]. Refer to [14] for the mathematical defi-
nition of pareto optimality. Thus, works such as [24]–[26]
focus on finding the set of pareto optimal solutions or their
representation to serve as a palette of solutions for the
human decision-maker. Varying the weights given to different
objective functions is a common approach to determine the
pareto optimal solutions or their subset [14]. Such approaches
however can be extremely inefficient as they require solving
the weighted formulations several times [14]. [27] works with
a set of solutions searching for Pareto optimal solutions in
parallel. In order to find the best candidate in the neighbor-
hood of each current solution, the goodness is taken as the
weighted average of the objective functions. The weights are
dynamically updated so that unexplored regions of solution
space get more preference. Certain works such as [28]–[30]
approach the search for pareto solutions using simulated
annealing framework based on an energy function for states.
These energy functions are defined based on the number
of solutions that dominate or are dominated by a particu-
lar solution. See [30] for a definition of domination. Such
approaches require the computation of the objective functions
for all or a subset of the possible solutions. While these
approaches may work for certain domains [28]–[30], they
would be infeasible to apply to domains when the discrete
solutions are subsets of a larger set and thus the number
of solutions is extremely large. As shown in Section IV-B,
for our problem of selecting keywords, the total number of
subsets can easily be of the order of 1030 and hence such
approaches would be infeasible. In addition, in order to use
the solution in a practical setting, such approaches would
still require a decision maker to choose the best solution
based on his/her human judgment. Compared to these, we
propose two approaches LCPD and AAO to select keywords
to obtain training videos. In the former, we heuristically
combine two objectives linearly and select keywords one by
one without computing the objective function for all subsets.
In the latter, we balance the two objective functions in our for-
mulation (Section IV-B) by alternating between algorithms

that optimize for each objective individually, in a simulated
annealing framework. As a result of this, for AAO it is not
required to provide preferences for the individual objective
functions and the approach yields a solution that is convenient
trade-off between the two objective functions.We empirically
demonstrate the effectiveness of the two proposed approaches
for selecting keywords to obtain the training videos for a
category. Furthermore for AAO, in order to reduce the time
taken for the annealing based approach to converge, we pro-
pose an adaptive technique to update the annealing constraint
parameter, leading to substantial reduction in the convergence
time.

This work is based on [31] which provides an approach
to automatically obtain training videos. We refer to the tech-
niques proposed in [31] as LCPD, and in addition we propose
an annealing based alternating optimization approach (AAO)
that does not depend on parameters that may require tuning
based on human input as in [31]. Further, we propose adaptive
variation of AAO to make it more efficient, and provide
performance comparisons with [31].

For multi-class, single-label classification of web videos,
we first discuss the desired properties of training videos that
can lead to high performance of trained classification models.
This is done in Section II. Section III provides an overview
of our framework of identifying keywords to retrieve training
videos with the desired properties. It also provides a dis-
cussion on the two objective functions to select keywords.
Section IV discusses the two approaches - LCPD and AAO.
Section V details the experimental set-up and presents
performance results. Section VI concludes.

II. DESIRED PROPERTIES OF TRAINING DATA
For a given classification model, a good training data would
be one that has no mislabeled instances, and has high
Intra-Category Diversity for each category. We discuss both
factors in this section. The goodness of training data is
reflected in terms of its performance on a large test set.

In the domain of video classification, a mislabeled instance
refers to a video that has the label of category i as per the
training data, but in actual, belong to a different category
j(6= i) as per an oracle. For instance, consider the set of
categories {Baby, Clothing, Fitness, Food} that a retailer
may be interested in, to enable personalized promotions of
the above product categories. If certain approach for obtain-
ing training videos includes a video on Shawls (as shown
in Fig. 1(a)) to the set of training videos for Baby, the video
would be a mislabeled video since its true label should be
Clothing, but it has the label of Baby in training data. A true
label of a video is defined as the label that an oracle would
assign to the video. [32], [33] discuss techniques to identify
(and eliminate) mislabeled instances from training data, for
classification tasks. The performance of classificationmodels
is shown to have increased considerably after identifying
(or eliminating) mislabeled videos, thus supporting that less
mislabeled instances is desired in training data. Note that
the above works address the cleaning of an existing dataset
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FIGURE 1. (a) Sample training videos for categories: {Baby, Clothing}. Circled video is wrongly placed in category Baby , and is
hence a mislabeled video. (b) Variety of video topics belonging to category Baby .

whereas the problem addressed in our paper is that of forming
a dataset by obtaining training videos with desired proper-
ties for certain given categories. In addition, in works such
as [32] and [33], the mislabeled instances are identified as
outliers in the given data, when the data itself is represen-
tative of the class in concern and captures its constituent
topics. While forming a training data from real world videos
retrieved using keywords, this condition is not guaranteed to
be satisfied and the above techniques may not be applied.
These techniques can be considered orthogonal to our work,
and may further improve the training data after it is formed
using the proposed framework.

By Intra-Category Diversity of training videos T (i) of
category i, we refer to the extent to which T (i) encom-
passes the essence of category i. Let us denote Intra-Category
Diversity of T (i) as div(T (i)). In order to first intuitively
motivate why high div(T (i)) is desired, consider the same
set of categories {Baby, Clothing, Fitness, Food}. Fig. 1(b)
shows some of the various topics of videos that one would
associate with the category Baby. A set of training videos T1,
having videos on Funny kids only has less Intra-Category
Diversity than a set T2 of same cardinality as T1 but
having videos on Funny kids, Newborn care, Babysitting, and
Stroller reviews. A classifier trained over T2 is expected to
have higher likelihood of categorizing correctly a test video v
belonging to category Baby as compared to a classifier trained
over T1. For instance, if a user watches a video related to
review of popular strollers for infants, the model trained on
T2 will find it more similar to the training videos on Baby
than the model trained on T1 will, and hence will have higher
likelihood of categorizing it correctly.

As discussed later in Section III, one of the shortcomings
of approaches that obtain training videos without manual
labeling is low Intra-Category Diversity. In such scenario,
the training data of a category is skewed towards certain
dominant themes within the category, and encompasses
only limited topics of videos within the category.

Improved techniques are hence required to obtain
training videos with high Intra-Category Diversity. While it is
understandable what div(T (i)) means, calculation of div(T (i))
requires knowledge of a) different topics within category i,
and b) the extent to which these topics are covered by the
training videos of category i. For an arbitrary set of categories,
it is extremely difficult to obtain (a) and (b) above without the
help of an oracle. Thus in our research, we propose the use
of different techniques to obtain the degree of variation in
T (i) to measure div(T (i)). These techniques are discussed in
Section III, and their details are provided with the respective
approaches (Sections IV-A and IV-B).

The notion of diversity has been used for a variety of
problems in related domains. Diversity between classification
models has been discussed in works on classification model
ensembles [34]. Works on summarization have used the
notion of diversity between documents [35], [36], images [37]
and videos [38]. In the context of active learning [39] and
semi-supervised learning [40], diversity has been used to
efficiently determine training instances to label manually.
To the best of our knowledge, the use of diversity metrics
in the formulation to automatically obtain training videos for
classification is completely novel.

III. OVERVIEW OF THE PROPOSED FRAMEWORK
TO OBTAIN TRAINING VIDEOS
In this section, we provide an overview of our proposed
framework and approaches for identifying and selecting
keywords to obtain training videos with the two desired
properties described in Section II.

As discussed in Section I, obtaining training videos for
arbitrary set of categories through manual effort is not scal-
able to large sizes of training data. Training videos could
alternatively be obtained in an automated manner using a
video search engine. This approach has also been briefly
mentioned in [5], to obtain weakly labeled videos. Let RV (K )
represent the set of retrieved videos obtained by querying
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keyword K in a video search engine, such as YouTube [2]
or Vimeo [41]. The training videos of category i, i.e., T (i)
can then be obtained simply as RV (Ci), where Ci is the
name of category i. Though simple, this technique has few
shortcomings. It focuses only on occurrence of the name
of category and not on its semantic meaning. For example
RV (‘Baby’ mainly retrieves videos on funny kids, and music
videos or other popular videos containing the word ‘Baby’
in their title or tags. As a result, there are several mislabeled
videos among training videos obtained by this approach.
In Section V, we show how this leads to poor performance
as more videos are retrieved just by the category name.
At the same time, this approach does not cover the many
of the semantic topics that we associate with the category of
concern. For the category Baby, these include topics such as
(in addition to funny kids,) Strollers and Bassinets reviews,
Babysitting tutorials, Newborn care, Pregnancy, and several
others (Fig. 1(b)). The Intra-Category Diversity by such an
approach is hence quite low, leading to poor classifier per-
formance. Through the proposed framework, we attempt to
address the above shortcomings. We use the training videos
obtained by querying name of category, i.e., T (i) = RV (Ci),
to train baseline classifiers to compare with our proposed
approach.

A. OVERVIEW OF PROPOSED FRAMEWORK
In the proposed framework, we first collect several keywords
that are related to the name of category (Ci). These com-
prise the Candidate Keywords. The Candidate Keywords
(called candidates for brevity) can be obtained on the basis
of correlation or co-occurrence with the name of the category
from publicly available text documents (such as Wikipedia).
Thesauri [42] also provide a good source for semantically
(i.e., in terms of meaning) similar keywords, and can be used
to obtain candidates. In addition, candidates can be obtained
as related concepts or keywords from sources such as [43].
The candidates can be queried in a video search engine, and
their retrieved videos can be collected to obtain T(i). However
some candidates would be more useful than others, and some
might be outright harmful, if used to retrieve training videos
for category i. We discuss this in the next section. On the
basis of a proposed keyword selection algorithm, we select
a subset of keywords from a set of candidates for category i.
The Selected Retriever Keywords (or SRKs) thus selected are
used to retrieve training videos. If {Ki,1,Ki,2, ...,Ki,L} are
the SRKs for category i, then the training data for category i,
i.e., T (i), can be obtained as:

T (i) =

 L⋃
j=1

RV (Ki,j)

 ∪ RV (Ci). (1)

If T (i) were obtained as per (1) by selecting any arbi-
trary candidate keywords of category i as SRKs, then T (i)
may not necessarily have the desired properties discussed
in Section II, namely low mislabeled videos, and high
Intra-Category Diversity. In the next section, we discuss

how we can determine the suitability of candidates to
retrieve training videos with the desired properties discussed
in Section II.

B. SELECTION PROCEDURE FOR SELECTED
RETRIEVER KEYWORDS (SRKs)
Before we discuss suitability of candidates, and the selection
procedure for SRKs, we provide the following result to help in
our discussions. Consider the set of categories {i}NCati=1 , where
each category i is a multivariate normal distribution with
mean µi. Assume that the set of videos across all categories
(referred to as data) is whitened, i.e., has uncorrelated dimen-
sions of variance unity. Then 6i = I , i.e., the covariance
matrices for all categories reduce to an identity matrix. Under
assumptions of equiprobable categories, we derive that a
video (represented as v) belongs to category î iff

î = argmax
i

e−
(v−µi)

T6i(v−µi)
2 , i.e., iff

î = argmin
i

e|v−µi|
2
, i.e., iff

î = argmin
i
| v− µi |. (2)

Here µi is the mean of category i, as determined by an
oracle. | v− µi | is the Euclidean distance between v and µi.
Note that for this paper, v is represented as a bag of words [45]
vector based on the contextual information surrounding v.
On the basis of the above assumptions, and using (2),
a keyword K retrieves more videos having true label as
category i than videos having true label as category j( 6= i) if∑
v:v∈RV (K )

I(argmin
l
| v− µl | = i)

>
∑

v:v∈RV (K )

I(argmin
l
| v− µl | = j) ∀j 6= i. (3)

Here, I(.) is an indicator function that is 1 if its argu-
ment is true, and 0 if its argument is false. µl is the true
mean of category l. In (3), the closest category for each
video in RV (K ) is obtained, in terms of Euclidean distance.
Checking (3) for a keyword K thus has complexity
O(| RV (K ) | .NCat ), where NCat is the number of categories,
and | RV (K ) | is the cardinality of the set RV (K ). In order to
reduce the above high complexity, (3) can be approximated by
obtaining the closest category of centroid of the set RV (K ).
This reduces the complexity to O(NCat ). For category i, we
define Valid Candidate Keywords (called valid keywords
for brevity) as those Candidate Keywords that retrieve more
videos having true label of category i than of any other
category. Then for a candidate K of category i, K is a valid
keyword if

| µK − µi |<| µK − µj | ∀j 6= i. (4)

Here µK =
∑
v:v∈RV (K )
|RV (K )| . The true mean µi for category i

can be approximated as centroid of RV (Ci), i.e., of the set
of videos retrieved by name of category i. Equation (4) is
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called the Validity Filter. Only valid keywords should be
considered for being selected as SRK to ensure more number
of training videos are added in T (i) that have true label of
category i than videos that are mislabeled as category i.

Note that we have assumed that the data generating the
above distributions is whitened. If the given data is not
whitened, its dimensions can be rotated into space of prin-
cipal components, and each dimension divided by square
root of variance in that dimension, in order to whiten the
data. Also, if the assumption that categories are equiprobable
multivariate normal distributions does not hold, then the exact
distributions could be used to derive the Validity Filter as
shown in (4). As a result, the complexity of checking the
validity of a keywordmay bemore thanO(NCat ), however our
approach of using aValidity Filter, and the following keyword
selection procedure would still be valid. We continue our
discussion with the above assumption.

FIGURE 2. Selection criteria for Selected Retriever Keywords.

Let us consider the scenario shown in Fig. 2. Keywords
K1, K2, K3 are candidates for category 1 (C1). K3, as can
be seen, is closer in terms of Euclidean distance, to cate-
gory 2 (C2) than to C1, and hence fails the Validity Filter (4).
For C1 and C2 as Baby and Clothing respectively, example
keywords (from actual data) for K1, K2, K3 are ‘newborn’,
‘bathing’, ‘shawl’ respectively. Note that a candidate may
have a weak semantic relationship with its corresponding
category name. For example, the candidates’ source [43]
recommends ‘shawl’ as a candidate keyword for Baby cate-
gory since they are related perhaps owing to the use of shawls
to cover or carry babies with. However querying ‘shawl’ (K3)
in a video search engine is much less likely to retrieve Baby
related videos than it is to retrieve Clothing related videos.
Thus including RV (‘shawl’) in training data of category Baby
would add more mislabeled videos in T (Baby) than videos
having true label of category Baby. Validity Filter (4) ensures
that candidates such as ‘shawl’ are not valid keywords for
category Baby.
Let NValid,i be the number of valid keywords for category i.

In order to select keywords form the valid keywords, we
determine the suitability of keywords to retrieve training
videos for category i based on two components: 1) High
Proximity, 2) High Diversity. We discuss below how the

above components lead to training videos having the desired
properties, less mislabeled videos and high Intra-Category
Diversity respectively.

1) HIGH PROXIMITY
Under assumptions of whitened data and multivariate
normal distributions as the categories, the likelihood of
a video v belonging to a category i is proportional
to e(−

1
2 |v−µi|

2). Assuming equal prior probabilities for all
categories, the probability that v has its true label as category i
is higher when | v−µi | is lower, whereµi is the true mean of
category i. Thus, if v is a video in training data of category i,
then P(v is a mislabeled video) is lower when | v − µi | is
lower. Consider a valid keyword K for category i. Satisfying
(4) merely implies that RV (K ) contains more videos of true
label category i than videos that are mislabeled as category i.
Preference should be given to valid keywords that lead to
lesser mislabeled videos in the resulting set of training videos
of category i. In order to do so, a valid keyword K should be
preferred if the videos in RV (K ) are closer to µi. We thus
calculate Proximity score for each valid keyword K as

Proximity score for K = {1/ | µK − µi |}, (5)

where µK is the centroid of RV (K ). A keyword K
should be preferred to be selected as a Selected Retriever
Keyword (SRK) if the Proximity Score of K is high.

In Fig. 2, ‘newborn’ (K1) and ‘bathing’ (K2) are both
Valid Candidate Keywords for category Baby (C1). Since the
centroid ofRV (‘newborn’) is closer to themean ofC1 than the
centroid of RV (‘bathing’), the proximity score of ‘newborn’
is more than that of ‘bathing’. Thus as per the proximity
score, the valid keyword ‘newborn’ should be preferred over
‘bathing’. Since P(true label of v = C1 |v ∈ RV (‘newborn’))
is more than P(true label of v = C1 | v ∈ RV (‘bathing’)),
preferring ‘newborn’ over ‘bathing’ as SRK reduces misla-
beled videos in resulting set of training videos.

Note that the measurement of Proximity score of a valid
keyword is the same for both approaches proposed in
Section III-B.

2) HIGH DIVERSITY
Intuitively, the diversity of a set of keywords reflects the
Intra-Category Diversity of the set of videos that are retrieved
using the keywords. For the LCPD approach discussed next
in Section IV-A, the Intra-Category Diversity of the training
videos of category i, i.e., div(T (i)) is measured based on
variance of the set of videos T (i). Based on such ameasure for
div(T (i)), a diversity score can be defined for each keywordK
given a subset of the training data of category i, denoted
by T ′(i). Details of such a per-keyword measurement of
Intra-Category Diversity are provided in Section IV-A.
As an alternative way, since training videos are retrieved
using SRKs, the degree of variation in T (i) could also be
estimated based on the degree of variation in the set of
keywords that are used to obtain them. Based on this insight,
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FIGURE 3. For a set of 20 valid keywords for the category ‘Baby ’, (a) shows the 5 most proximate keywords and (b) shows the 5 most diverse
keywords. Diversity is measured as outlined in Section IV-B. As can be seen, the set of keywords optimizing either objective function are very
different from each other. Note that in order to plot the keywords on a graph, the first two dimensions obtained from principal component
analysis (PCA) [44] are used.

the second keyword selection approach (AAO approach
in Section IV-B) uses a diversity measure for a set of
keywords, instead of a diversity measure per keyword as
used in Section IV-A. In order to obtain a diversity mea-
sure for a set of keywords, distance or linear independence
based measures can be used. Section IV-B discusses the effi-
ciency implications of different diversity measures for set of
keywords. For the AAO approach, we utilize linear indepen-
dence based diversity measures for set of keywords.

Based on the above discussion, SRKs need to be selected
such that they have high proximity score, and high diversity.
Selecting keywords based on high proximity tends to pre-
fer keywords that retrieve videos similar or close to those
retrieved by the name of the category. On the other hand,
selecting keywords based on high diversity tends to prefer
keywords that are more different or far from each other.
Thus the two objectives tend to be opposing in nature.
Figures 3(a) and 3(b) provide an example of a set of
5 keywords selected based on either objective for a set
of 20 valid keywords of the category ‘Baby’. As can be seen,
the sets of keywords optimizing either objective are very dif-
ferent from each other and optimizing for one tends to lead to
keywords having poor objective score for the other. In the next
section, we propose approaches to address keyword selection
problem based on such conflicting objectives.

IV. APPROACHES TO SELECT SRKs
In order to obtain SRKs from a set of valid keywords, we pro-
pose two efficient approaches. The first approach (LCPD) is
based on defining a diversity score per keyword. By defining
a linear combination of the proximity and diversity scores
of keywords, we propose an iterative algorithm to select
SRKs one by one. Such an approach leads to high accuracy
in video classification based on varying a parameter that
controls the relative importance given to the two objective
functions, namely proximity score and diversity score of a
selected keyword. However, since the best parameter value
cannot be known beforehand, and is different for different sets
of categories, we also propose an annealing based alternating

optimization (AAO) approach. In the AAO approach, we
utilize two iterative algorithms that optimize for either objec-
tive function and we combine them in a simulated annealing
framework. In order to facilitate the second approach, we
define diversity for a set of keywords. Such an approach
doesn’t need preferences to be embedded in form of parame-
ters, however as compared to the first approach, it may suffer
some performance loss.

A. LINEAR COMBINATION OF PROXIMITY
AND DIVERSITY (LCPD)
In this approach, we define Suitability for Retrieving Training
video (SRT ) score for a valid keyword K as a score that
indicates how suitable the valid keyword is to retrieve videos
for category i such that the resulting training data has the
desired properties discussed in Section II. SRT score of a
valid keyword is defined based on the Proximity score of the
keyword as defined and measured in Section III-B, and the
Diversity score as defined below.

For the training data T (i) of category i, the Intra Category
Diversity div(T (i)) can be measured as the average pair-wise
distance between the videos in T (i), assuming a distance
measure between the videos. The time-complexity of such
a measure, however, is O(N 2) where N denotes the cardi-
nality of T (i). For the approach proposed in this section, we
choose to estimate div(T (i)) by the variance of T (i), primarily
because of its low time-complexity O(N ).

div(T (i)) =

√√√√√ N∑
j=1
| vj − µi |2

N
, (6)

where µi =

N∑
j=1

vj

N ; vj is a training video for category i, and
N is the cardinality of the set T(i), i.e.,

{
vj ∈ T (i)

}N
j=1.

Assume that T ′(i) is the current training data of category i,
then the set of training videos of category i when RV (K ) are
added to T ′(i) would be {T ′(i) ∪ RV (K )}. We hence define
Diversity score of a valid keyword K for category i, given
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existing training data T ′(i), as

Diversity score for K given T ′(i) = div(T ′(i) ∪ RV (K )),

(7)

where div() can be calculated using (6).

TABLE 1. Proximity and diversity scores for a few valid keywords of
category Baby , calculated as detailed in Section IV-A.

For the set of categories Baby, Clothing, Fitness, Food ,
Table 1 shows the Proximity and Diversity scores for certain
valid keywords of category Baby. For the purpose of cal-
culation of these scores, the existing training data T ′(i) for
category i is taken to be RV (Ci). The valid keyword ‘baby
carriage’ has a high Proximity score, indicating it retrieves
videos that are very close (in terms of Euclidean distance)
to RV (‘Baby′), but has a low Diversity score, indicating
low Intra-Category Diversity of the resulting training data
{RV (‘Baby’) ∪ RV (‘Baby Carriage’)}. Compared to this,
‘alert’ is a Valid Candidate Keyword for Baby which has a
high Diversity score, but has a very low Proximity score and
hence very unlikely to retrieve Baby-related training videos.
Note that Table 1 only shows valid keywords so candidate
keywords such as ‘shawl’ that fail the Validity Filter are not
provided.

In order to combine the Proximity and Diversity scores to
obtain SRT score of a valid keyword K , we assume SRT
to be a simplistic linear combination of the two scores.
SRT (K ,T ′(i)) denotes the Suitability for Retrieving Training
video score of a valid keyword K for category i, given that
existing training data for category i is T ′(i).

SRT (K ,T ′(i)) = α ∗
{

N1

| µK − µi |

}
+ (1− α)

∗

{
N2.div(T (i)

⋃
RV (K ))

}
. (8)

Here, N1 and N2 are normalization factors used to ensure
that Proximity and Diversity scores have the same order of
magnitude in (8). α ∈ [0, 1] is themoderation factor, which
decides the weight given to the Proximity score relative to
the Diversity score. We next discuss an iterative algorithm
to obtain (a maximum of) L keywords as SRK from a given
set of candidates for each category, using SRT as calculated
in (8).

1) SRK SELECTION ALGORITHM FOR LCPD
The category names Ci, and number of SRKs to be
selected (L) are inputs to the proposed SRK Selection

Algorithm 1 SRK Selection Algorithm for LCPD Approach
Inputs:
Names of categories: Ci
Number of SRKs: L
Candidate keywords per category: KCandidates,i
(Note that the algorithm is run for each category)

Initialization:
KSRK ,i← [ ] (empty set)
T ′(i)← RV (Ci)

Applying Validity Filter:
KValid,i← {K ∈ KCandidates,i} : K satisfies (4)

Iterative Algorithm:
For n=1 to L (each iteration)

If | KValid,i |= 0: STOP
Calculate SRT (K ,T ′(i))∀K ∈ KValid,i as per (8)
Ktop← argmaxK SRT (K ,T

′(i))
KSRK ,i← KSRK ,i ∪ Ktop
T ′(i)← T ′(i) ∪ RV (Ktop)
KValid,i← KValid,i \ Ktop

EndFor
Output: KSRK ,i

Algorithm (Algorithm 1) shown below. Assume that
M Candidate Keywords are available for each category. Let
the set of Candidate Keywords for category i be KCandidates,i.
For each category, a set of valid keywords KValid,i is selected
as a subset of KCandidates,i that satisfy (4). Starting with
T ′(i) = RV (Ci), SRT (K ,T ′(i)) is calculated for each valid
keyword using (8), and the top keyword Ktop is selected
as an SRK. T ′(i) is then updated to T ′(i) ∪ RV (Ktop), and
the process is repeated until L SRKs are selected or there
are no valid keywords left. The proposed algorithm selects
SRKs in an iterative manner, as compared to ranking valid
keywords by their SRT score calculated once and selecting
the top L keywords. While the latter calculates SRT scores
independent of other SRKs selected, the proposed algorithm
attempts to increase Intra-Category Diversity of the resulting
training data, leading to better performance of trained classi-
fication model.

For each category, number of valid keywordsmay be differ-
ent and hence, the number of selected SRKs by the proposed
algorithm need not be similar across different categories.
In order to avoid any class imbalance, we select the first L ′

SRKs for each category to obtain training videos, where
L ′ is the minimum number of SRKs selected by the proposed
algorithm across all categories. L ′ ≤ L since a category may
have less than L valid keywords. The training videos retrieved
by SRKs as per (1) can be utilized to train a classification
model by giving equal weight or unequal weights to training
videos, as discussed below.
• Non-Weighted Instances: Classification model is
trained by giving equal weight to all training instances
(videos).

• Weighted Instances: Classification model is trained
by giving a weight to a training video v depending on
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the order in which the proposed algorithm selected the
SRK corresponding to v. Consider a SRK K that is
selected for category i by the proposed algorithm in the
nth iteration. Each video v in RV (K ) gets weight equal
to (1− 1/n).

a: ANALYSIS OF ALGORITHM 1 AND PROPOSED METHODS
For the two methods described above, if the candidates
are distinct, selecting more SRKs is in general expected to
increase the Intra-Category Diversity, thus leading to better
performance. However, after certain number of SRKs are
selected, it is expected that the additional information of
the new topics coming into the training data will reduce,
and performance might saturate. Also, the SRKs selected
in earlier iterations were determined to be more suitable
for retrieving training videos than ones selected later by
Algorithm 1. The SRKs selected in last few iterations might
not be very suitable to retrieve training videos of the respec-
tive category although they cleared the Validity Filter. Such
SRKs might add videos of topics beyond the realm of cate-
gories of interest, and make the training data too general and
less discriminative. Hence, the performance ofNon-Weighted
Instances method might peak at a certain L, and then degrade
since it gives equal weight to training videos retrieved by
all SRKs. In the Weighted Instances method however, the
weight given to videos retrieved by SRKs accepted later
is lesser. This makes the trained classifier less influenced
by videos retrieved by SRKs that are selected in the last
few iterations by the Algorithm 1. Thus, unlike in the case
of the Non-Weighted Instances method, the performance of
Weighted Instances method may saturate with increasing L.
The number of SRKs that lead to best classification perfor-
mance for Non-Weighted Instances method may vary with
the set of categories, the number and source of candidate
keywords, among other factors. It is hence a better approach
to choose as large L as permitted by computational resources,
and utilize the training videos for training of classification
model, using the Weighted Instances method.

b: COMPLEXITY ANALYSIS FOR ALGORITHM 1
The time-complexity of Algorithm 1 is O(M .NCat .L), where
M is the number of candidates for each category, NCat is
number of categories, and L is the number of SRKs selected.
This is because in every iteration, the valid keywords for
each category are given an SRT score, and the maximum
number of iterations that the proposed algorithm can run
for is L. For fixed M and NCat , the time-complexity of
proposed algorithm varies as O(L). The space-complexity of
the proposed algorithm is O(L) when the number of videos
retrieved per SRK is kept constant. For learning tasks, when a
very large sized training data is available, the size of training
data used for training a model is generally constrained based
on space and time-complexity of the employed learning
algorithms, and available resources. Such constraints
can dictate the total number of SRKs, i.e., L, utilized
to retrieve training videos. In the following section,

we provide observed space requirement, and time taken by
the proposed algorithm based on our implementation, as well
as its performance.

The moderation factor α controls the relative importance
given to proximity and diversity scores of valid keywords,
and thus controls the set of SRKs that are finally selected.
The value of α that leads to best performance of the video
classification model depends on the category in concern,
and on its set of candidate keywords and is thus hard to
estimate beforehand. As will be shown in Section V, the
video classification accuracy varies substantially with the
moderation factor α. Thus, as is also discussed in Section I,
a shortcoming of the LCPD approach is that it requires a pre-
determined value for the moderation factor α, which may
not be always available. So we next propose an approach
that balances the objective functions of proximity and diver-
sity of a set of keywords in a simulated annealing frame-
work, thus converging to a unique solution, without the
need to articulate preferences or bias towards either objective
apriori.

B. ANNEALING BASED ALTERNATING
OPTIMIZATION (AAO) FOR PROXIMITY
AND DIVERSITY MAXIMIZATION
In this section, we describe an approach where two iterative
algorithms, each optimizing for a certain objective function,
are run alternately in order to obtain a solution that is a mutual
trade-off between the two objectives. The two algorithms
have the task of selecting a set of L keywords amongst the
valid keywords, such that the selected set maximizes aver-
age proximity and diversity respectively. The algorithms are
discussed in detail in Sections IV-B3 and IV-B4 respectively.
The methodology adopted for measuring average proximity
and diversity of the set of selected keywords for the purpose
of this approach is described next.

1) MEASUREMENT OF PROXIMITY AND DIVERSITY SCORES
For the AAO approach, proximity of a keyword K is mea-
sured as detailed in Section III-B. For the LCPD approach,
diversity was measured as the variance of the set of videos
retrieved. Based on this, a diversity score per keyword given
a training data was defined (7). Such a measurement was
feasible for LCPD as it does not need to employ an algorithm
to maximize the diversity of a set of keywords. In contrast
to LCPD, the AAO approach measures diversity for a set of
keywords, and not per keyword given certain training data.
Using such a diversity measure, AAO employs an efficient
algorithm capable of selecting the set of L keywords that
has the maximum diversity. In order to define diversity for
a set of keywords, we first represent each keyword K by
the centroid of its retrieved videos RV (K ). The diversity of
a set of keywords could be defined based on certain pair-
wise distances measures between the keywords, however
an optimization technique based on such a measure would
essentially boil down to performing a combinatorial search
over all L-sized subsets of the set of valid keywords, making
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it highly inefficient if not infeasible. As an example, for
selecting 25 keywords from 200 valid keywords, this means
going through

(200
25

)
i.e., around 4 ∗ 1031 subsets. Hence, for

AAO we develop a different way of measuring diversity: the
diversity of a set of keywords is defined based on the degree
of linear independence between the keywords. Doing so leads
to highly efficient optimization through Rank-Revealing QR
(RR-QR) factorizations, to obtain which efficient algorithms
have been proposed in literature [46]–[49].

Assume that the set of L keywords for which we would
like to calculate the diversity is xL = {Kj} where j = 1 to L.
The matrix representation of xL is XL ∈ Rm×L where m is
the dimensionality of the representation of each video
i.e., the size of the bag of words representation of each video,
andm ≥ L. The jth column of XL is represented as µKj i.e., as
the centroid of the set of videos RV(Kj). The diversity score
of the set of keywords xL is then defined as

Diversity score for xL =
∏
b

σb(XL), (9)

where σb(XL) is the bth singular value of the matrix XL .

2) OVERALL APPROACH FOR AAO
The AAO approach optimizes for two objectives (average
proximity score, and diversity score of a set of keywords)
alternately, under a simulated annealing framework. Average
proximity score of a set of keywords, as the name implies,
is the average of the proximity scores of the keywords in
the set. This is represented as OProximity. Diversity score of
a set of keywords is represented asODiversity and is calculated
using (9). The two iterative algorithms that optimize for these
objective functions individually can converge to the most
proximate or the most diverse set of keywords respectively.
However, we add a constraint parameter T where T ∈ [1,∞)
in the framework that controls the extent to which each
algorithm is permitted to run. The individual optimization
algorithms are such that T can be provided as an input. They
also take a set of keywords as input for the initial solution and
improve the solution in each iteration. For a lenient (lower)
value of T, either of the algorithms is permitted to run for
more number of iterations and as a result, the solution at the
end of the run is better in terms of the corresponding objective
function. The constraint parameter T is set to 1 to start with,
which allows both algorithms to optimize for their respective
objective functions.

Fig. 4 gives an overview of the AAO approach. The
iterative algorithm to optimize for OProximity (shown as
Max-Proximity in Fig. 4) is initially run based on a random
set of L keywords and T = 1, and selects the set of
L keywords that has the highest average proximity. This set
is provided as input to the iterative algorithm to optimize for
ODiversity (shown as Max-Diversity in Fig. 4), along with the
same value of T. This leads to the selection of a set of L key-
words having the maximum diversity score. This completes
the first iteration of the AAO framework, also referred to
as the first framework iteration. Framework iterations are

FIGURE 4. Overview of the AAO approach for alternately optimizing the
average proximity and diversity of selected keywords.

represented by nfi. For 20 valid candidate keywords of the
category Baby and for T = 1, the sets of 5 keywords
obtained at the end of either algorithm are provided in
Figures 3(a) and 3(b) respectively. The output, i.e., the set of
keywords selected at the end of the first framework iteration
is then routed back to the Max-Proximity algorithm to start
the second framework iteration. At this point, the constraint
parameter T is increased by a constant amount 1 to a higher
and thus a stricter value. As a result of the stricter value
of T , the algorithm Max-Proximity is constrained from run-
ning completely. While it may select a set of keywords with
higher average proximity than the output of first framework
iteration, the set of keywords selected may not maximize
the average proximity as the algorithm was prevented from
running completely. This process continues and the value
of T is increased at the end of each framework iteration,
thus making it harder for the algorithms to select keywords
that maximize their corresponding objective functions. The
framework stops when either of the two algorithms cannot
proceed.

The sets of selected keywords obtained at the end of the
algorithmsMax-Proximity andMax-Diversity vary a lot with
each other in the initial framework iterations. This can be seen
in Fig. 5(b) where a higher intensity of colors (red or blue)
reflects a higher value of the corresponding objective function
(average proximity or diversity respectively). As T increases,
the variation in the outputs at the end of the two algorithms
reduces. The overall annealing based optimization framework
is detailed in Algorithm 2. Note that the overall framework is
iterative and the individual algorithms that maximize average
proximity or diversity are iterative too. In order to avoid
confusion, an iteration of eitherMax-Proximity algorithm, or
of Max-Diversity algorithm is referred to as an algorithm
iteration and is represented by nai. Details on the individ-
ual iterative algorithms that optimize for the two objective
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FIGURE 5. Variation in average proximity (red) and diversity (blue) of
selected keywords for selecting 5 SRKs from 20 valid keywords of
category ‘‘Baby ’’ using (a) AAO with 1 = 0.005, (b) AAO with 1 = 0.05,
and (c) Adapt AAO. Higher color intensity corresponds to a higher value
of the corresponding objective function. T increases along the X axis.
Note that the range of variation in the two colors are different, and for
both colors, white is assigned to the lowest value of the corresponding
objective function value observed during the optimization.

functions are provided in the next section. Note that the proof
of convergence for Algorithm II is given after describing
Max-Proximity andMax-Diversity algorithms since the proof
requires convergence properties of Max-Proximity.

In Section IV-B5 we study the effect of 1 on the conver-
gence of the AAO framework, specifically on the resulting
set of keywords after convergence and on the time taken to
converge. Further, in order to reduce the time taken by the
optimization framework to converge without inducing bias in
the end result, we propose an adaptive technique to update the
constraint parameter T based on the weakest permitted algo-
rithm iteration of the previous framework iteration. Details
and the definition of theweakest permitted algorithm iteration
are provided in Section IV-B5.

3) AVERAGE PROXIMITY SCORE MAXIMIZATION
The proximity scores of valid keywords for a category are
fixed values defined as per (5). The easiest way to maximize
the average proximity of selected L keywords from the set of
valid keywords for category i, i.e., from KValid,i, is to select
the L keywords from KValid,i having the highest proximity
scores. However such an approach does not permit adding
a constraint parameter (T ) to control the extent to which
the proximity maximization algorithm is run. In order to do
that, we propose an iterative algorithm Max-Proximity that
maximizes the average proximity of selected L keywords by
performing exchanges or swaps between the selected key-
words and the non-selected valid keywords. Max-Proximity
is presented in Algorithm 3. Each iteration of the algorithm
checks if replacing the selected keyword having the least

Algorithm 2 Annealing Based Alternating Optimization
(AAO) Framework for Maximizing Average Proximity and
Diversity of Selected Keywords
Inputs:
Number of keywords: L
Set of valid keywords: KValid
Representation of valid keywords in matrix form: X
Proximity score ∀K ∈ KValid
Increment for constraint parameter (T ): 1
(Note that the subscript i is dropped since the algorithm is
run for each category separately)

Initialization:
KSRK ← set of random L keywords from KValid
T ← 1
nfi← 0

Begin framework iterations:
While (1)

Maximize proximity:
(KSRK , nai)← Max-Proximity(KSRK , T ,

Proximity scores)
If (nai = 0): STOP
Maximize diversity:
(KSRK , nai)← Max-Diversity(KSRK , T , X )
If (nai = 0): STOP
T ← T +1 (increment constraint parameter)
nfi← nfi + 1

End While
Output: Selected set of retriever keywords: KSRK

proximity score (i.e., the least proximate selected keyword)
with the most proximate non-selected valid keyword leads to
a relative benefit in average proximity above the constraint
parameter T. The relative benefit is defined as a ratio of
the average proximity of the selected keywords after the
swap, with the average proximity before the swap. If that is
the case, the above mentioned two keywords are swapped
and the set of selected keywords KSRK ,i is updated. If not,
the algorithm terminates since this means no other swap
between the keywords would lead to a relative benefit in
average proximity above T . The algorithm takes as input
and starts from a set of L keywords as KSRK ,i, referred to in
Algorithm 3 as I . When T is equal to 1, any improvement in
the average proximity score is acceptable andMax-Proximity
converges to the set of L keywords having highest proximity
scores.

a: PROOF OF CORRECTNESS FOR ALGORITHM 3
We prove that Max-Proximity (Algorithm 3) leads to maxi-
mization of the average proximity score when permitted to
run completely, i.e., when T = 1. Assume that SOptProx
is the optimal set of keywords that maximizes the average
proximity score amongst a set of valid keywords KValid .
SOptProx then comprises of the L keywords in KValid which
have the highest proximity score. Also assume that Sinit is
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Algorithm 3 Max-Proximity Algorithm
Inputs:
Initial set of selected keywords: ISRK
Constraint parameter: T
Valid keywords KValid and Proximity score ∀K ∈ KValid
(Note that the subscript i is dropped since the algorithm is
run for each category separately)

Initialization:
L ←| ISRK |
KSRK ← ISRK
WIProximity← an arbitrarily large value
(WIProximity: Weakest permitted algorithm iteration)
nai← 0

Begin framework iterations:
While (1)
OProximity← Average proximity score of KSRK
Replace least proximate keyword in KSRK with most

proximate keyword in {KValid \ KSRK} to get K ′SRK
O′Proximity← Average proximity score of K ′SRK

If
O′Proximity
OProximity

> T :
KSRK ← K ′SRK
If

O′Proximity
OProximity

< WIProximity:

WIProximity←
O′Proximity
OProximity

Else: STOP
nai← nai + 1

End While
Outputs:
Selected set of retriever keywords: KSRK
WIProximity (useful for Algorithm 5)
Number of algorithm iterations: nai

the set of valid keywords that are given as initialization to
Algorithm 3. The cardinality of Sinit is L, the number of
keywords that are to be selected by Max-Proximity. Then,
there are (| SOptProx ∩ Sinit |) keywords in Sinit that are
also in SOptProx , and are also the (| SOptProx ∩ Sinit |) most
proximate keywords in Sinit . In | SOptProx \Sinit | iterations of
Algorithm 3, the | SOptProx \ Sinit | least proximate keywords
from Sinit will be exchanged (swapped) with the keywords in
the set SOptProx \ Sinit in the order of decreasing proximity
score of the latter. All such exchanges replace a keyword
having a lower proximity score with another having a higher
proximity score. Thus, the average proximity score of the
selected keywords goes up by some amount in each iteration
and since T = 1, any improvement would be acceptable.
Thus, at the end of | SOptProx \ Sinit | iterations, the set of
keywords that will be selected will be SOptProx . �
As a corollary, sinceMax-Proximity takes | SOptProx \Sinit |

iterations to select the set of most proximate keywords, and
since | SOptProx \ Sinit | can take a maximum value of L, the
maximum number of iterations that Max-Proximity can run
for is L.

Algorithm 4 Max-Diversity Algorithm
Inputs:
Initial set of selected keywords: ISRK
Constraint parameter: T
Valid keywords KValid and their matrix form: X
(Note that the subscript i is dropped since the algorithm is
run for each category separately)

Initialization:
L ←| ISRK |
KSRK ← ISRK
Obtain 5init such that keywords in KSRK are the
first L columns of X
X ← X5init (rearrange columns of X )
WIDiversity← an arbitrarily large value
(WIDiversity: Weakest permitted algorithm iteration)
nai← 0

Begin framework iterations:
While (1)

Compute QR factorization of X to get AL , BL , CL
as per (11)
Calculate Gi,j as:

Gi,j =

√
(A−1L BL)2i,j + (

γj(CL)
wi(AL)

)2 (10)

Obtain the best swap as: (î, ĵ)← argmaxi,j Gi,j
If Gî,ĵ > T :

Update KSRK : Replace îth keyword of KSRK
with ĵth keyword of KValid \ KSRK
X ← X5î↔(ĵ+L)
If Gî,ĵ < WIDiversity: WIDiversity = Gî,ĵ

Else: STOP
nai← nai + 1

End While
Outputs:
Selected set of retriever keywords: KSRK
WIDiversity (useful for Algorithm 5)
Number of algorithm iterations: nai

b: COMPLEXITY ANALYSIS FOR ALGORITHM 3
The complexity of Algorithm 3 per keyword exchange is
O(L(NValid − L)) where L is the number of SRKs. Since
NValid ≥ L, and the maximum number of algorithm iter-
ations is L, the worst case complexity of Algorithm 3
is O(L2NValid ).

4) DIVERSITY SCORE MAXIMIZATION
We propose to use Rank Revealing QR factoriza-
tion (RRQR) [49] to select keywords having the
highest diversity, where diversity of a set of keywords is
measured using (9), since there exist efficient algorithms to
provide RRQR factorization [47], [49]. RRQR factorization
has also been used in [50] to obtain diverse video frames
for the application of video summarization. Let xi be the set
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of valid candidate keywords for category i. The discussion
in this section is for a fixed category (category i) and so
the subscript i is dropped for convenience. Thus the set of
valid keywords is represented as X = {Kj} where j = 1
to NValid . As mentioned in Section IV-B1, the matrix rep-
resentation of x is X ∈ Rm×NValid where m is the num-
ber of dimensions used to represent each valid keyword
and m ≥ NValid . In order to describe the algorithm used to
select the L keywords from x that maximize diversity, we first
provide a brief discussion on RRQR factorization [47], [49]
and its objectives.

Given a matrix X ∈ Ra×b where a ≥ b, consider the partial
QR factorization of the form

X5 = QR = Q
( AL BL

CL

)
, (11)

where Q ∈ Ra×a is an orthogonal matrix with nonnegative
diagonal elements, AL ∈ RL×L is an upper triangular matrix,
BL ∈ RL×(b−L) and CL ∈ R(a−L)×(b−L). 5 ∈ Rb×b is
a permutation matrix that is a square binary matrix having
exactly one 1 in each row and each column and 0 everywhere
else. 5 represents a specific permutation of the columns
of the matrix X and the permuted matrix can be obtained
as X5. For a given permutation 5, X5 can be written
as (XL X(b−L)) where XL ∈ Ra×L is the matrix formed
by the first L columns of X , and X(b−L) ∈ Ra×(b−L) is
the matrix formed by the last (b − L) columns of X . The
degree of linear independence of the first L columns of X5
can be obtained as the determinant of the matrix AL , also
equal to the product of the singular values of the matrix XL ,
i.e.,

∏
j σj(XL). RRQR factorization aims to find the permu-

tation 5 such that X5 = (XL X(b−L)) reveals the rank of the
matrixX . This permutation5 providesXL the L most linearly
independent columns of X . RRQR factorization does so by
seeking 5 which maximizes the product of singular values
of XL . Please refer to [46]–[49] for further details and for
proof of correctness of RRQR factorization.

In order to adopt RRQR for AAO approach, we need
to add a constraint on the RRQR algorithm based on the
parameter T . Hence, in each algorithm iteration of RRQR,
the relative benefit is defined as the ratio of new and previous
objective functions. The relative benefit is compared with
T to determine if the updated set of keywords is accept-
able or not (Algorithm 4). This ratio is represented as Gi,j
in Algorithm 4. Since T ≥ 1, this ensures that within a
framework iteration of AAO, the diversity only increases
with each algorithm iterations of RRQR algorithm. Note
that in Algorithm 4, for a non-singular matrix W ∈ RL×L ,
1/wi(W ) denotes the 2-norm of the ith row ofW−1. Also, for
a matrixW ′ with L columns, γj(W ′) denotes the 2-norm of the
jth column of W ′.

a: COMPLEXITY ANALYSIS FOR ALGORITHM 4
Using results from [49], the worst case time taken by
Algorithm 4 isO(mLNValid ) wherem is the number of dimen-
sions used to represent each valid keyword.

b: PROOF OF CONVERGENCE FOR ALGORITHM 2
Algorithm 2 calls Max-Proximity with an input set of
L keywords. We will first show that if the constraint param-
eter T is increased beyond a value, TMaxGainProx , then no
iteration of Max-Proximity can take place. Let KLowP and
KHighP be distinct valid keywords with lowest and highest
proximity score respectively. Let S ′ represent certain set of
L − 1 distinct valid keywords, and let S represent the set of
selected keywords in an iteration ofMax-Proximity, such that
S = S ′ ∪ KLowP and KHighP 6∈ S. The maximum
relative gain in the average proximity score of selected
keywords by exchanging one keyword would be when KLowP
is replaced with KHighP. Thus, the maximum relative change
in the average proximity score of selected keywords can be
Pr(KHighP)+Pr(S ′)
Pr(KLowP)+Pr(S ′)

, i.e., equal to (1 + KHighP−KLowP
Pr(KLowP)+Pr(S ′)

). Here

Pr(K ) and Pr(S ′) refer to the proximity score of K and the
sum of proximity scores of the keywords in S ′ respectively.
The relative change is maximum when S ′ corresponds to
the L least proximate keywords amongst valid keywords,
except KLowP. Let this value of the maximum relative change
in average proximity be TMaxGainProx . If T > TMaxGainProx ,
then Max-Proximity cannot run for any iteration because the
relative gain in the average proximity score of selected key-
words cannot exceed TMaxGainProx . Thus, as per Algorithm 2
when T > TMaxGainProx , the AAO framework will stop.
If the value of 1 is kept constant, the number of framework
iterations it takes for T to increase from 1 to TMaxGainProx
is
⌈
TMaxGainProx−1

1

⌉
. Thus the alternating optimization frame-

work will converge in a maximum of dTMaxGainProx−1
1

e frame-
work iterations. �
Note that the number of iterations as calculated above is

only an upper limit to the actual number of iterations that the
proposed alternative optimization framework in Algorithm 2
would take.

5) ADAPTIVELY VARYING THE CONSTRAINT PARAMETER T
For the scenario when T = 1 and1 = 0, the AAO framework
would not converge as each of the algorithms maximizing
average proximity and diversity respectively will be per-
mitted to run completely every time, resulting in selecting
its own optimal set of keywords. Figs. 5(a) and 5(b) show
how the alternating approach converges to a set of keywords
that is a trade-off between the two objective functions, for
1 = 0.005 and for 1 = 0.05 respectively. The results
correspond to the set of 20 keywords of the category ‘‘Baby’’
that has been used in Figures 3(a) and 3(b). As discussed
in the previous section, the outputs of the two optimization
algorithms vary a lot for initial iterations. These oscillations
gradually reduce as T increases. Thus it is evident that1 > 0
is necessary to ensure that the alternating optimization frame-
work converges. However, it is not clear what the right value
of 1 should be. Having a large 1 terminates the alternating
optimization framework at a point when the last run algo-
rithm to optimize for the corresponding objective function
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was almost completely run. As a result, the selected set of
keywords are very biased towards that objective function.
As an example, for the same example of ‘‘Baby’’ category
and 20 valid keywords, 1 = 1 leads to selecting keywords
that correspond to the set of keywords that maximize diver-
sity (Fig. 3(b)) and have a poor average proximity score.
As compared to this, having a very small value for1 leads to
a balance between the two objective functions (Fig. 5(a)) but
as can also be seen, the number of iterations taken by theAAO
framework to converge is very high. Even for a small example
of 20 valid keywords and L = 5, the number of iterations that
the AAO framework takes to converge is 94 when1 = 0.005
is used.

Since too large or small values of 1 lead to issues such
as bias between objective functions, and large number of
iterations taken for AAO approach to converge, we propose
an adaptive approach that eliminates the need to have a
fixed 1. Instead, the proposed approach updates T based
on the weakest permitted algorithm iteration in the previous
framework iteration whenever it detects repetitions in the
selected keywords. The weakest permitted algorithm itera-
tion is the algorithm iteration of either Max-Proximity or
Max-Diversity with the least relative benefit that occurred in
the previous framework iteration. Relative benefit has been
defined for Max-Proximity and Max-Diversity algorithms in
Section IV-B3 and Section IV-B4 respectively. The adap-
tive annealing based alternating optimization (Adapt AAO)
framework is presented in Algorithm 5. WIProximity and
WIDiversity represent the strength of the weakest permit-
ted algorithm iteration permitted in the Max-Proximity and
Max-Diversity algorithms respectively. Details on how
WIProximity and WIDiversity are computed in their respective
algorithms are provided in Algorithms 3 and 4 respectively.
Repetitions are detected in Algorithm 5 when a set of
selected keywords had been selected in a previous framework
iteration.

Based on the Adapt AAO approach, Fig. 5(c) shows that
the number of iterations taken to converge is much lower
than in the case of 1 = 0.005 (Fig. 5(a)). The result-
ing set of keywords is the same as in the case of 1 =
0.005, but with substantial reduction in number of itera-
tions taken to converge (94 to 7). Since the Adapt AAO
approach converges in significantly less framework itera-
tions as compared to AAO, and does not result in any
artificial bias towards an objective function, we only pro-
vide performance results based on Adapt AAO approach
in Section V.

a: COMPLEXITY ANALYSIS FOR ALGORITHM 5
The Max-Proximity algorithm (Algorithm 3) and the
Max-Diversity algorithm (Algorithm 4) have worst-case
complexities of O(L2NValid ). and O(mL.NValid ) respectively.
In each framework iteration, the two algorithms are run
in alternation. Since m > NValid > L, the dominating
number of computations is due to the term O(mL.NValid ).
Thus the total worst case time complexity of Algorithm 5

Algorithm 5 Adaptive Annealing Based Alternating Opti-
mization (Adapt AAO) Framework for Maximizing Average
Proximity and Diversity of Selected Keywords
Inputs:
Number of keywords: L
Set of valid keywords: KValid
Representation of valid keywords in matrix form: X
Proximity score ∀K ∈ KValid
(Note that the subscript i is dropped since the algorithm is
run for each category separately)

Initialization:
KSRK ← set of random L keywords from KValid
T ← 1
PreviousSet← empty set (used to track
previously selected sets of keywords)
nfi← 0

Begin framework iterations:
While (1)

Maximize proximity:
(KSRK , WIProximity, nai)← Max-Proximity (KSRK ,

T , Proximity scores)
If (nai = 0) STOP
Maximize diversity:
(KSRK , WIDiversity, nai)← Max-Diversity(KSRK ,

T , X )
If (nai = 0) STOP
If KSRK ∈ PreviousSet:

(Repetitions detected)
T ← T + min(WIProximity,WIDiversity)
PreviousSet← empty set

Else:
PreviousSet← PreviousSet ∪ KSRK

nfi← nfi + 1
End while

Output: Selected set of retriever keywords: KSRK

is O(mL.NValidNFrameworkIter ) where NFrameworkIter is the
number of framework iterations.

V. EXPERIMENTAL RESULTS
This section discusses our experimental setup and pro-
vides performance evaluation of the proposed framework.
We conduct our experiments on YouTube videos using the
YouTube API. We have used Wikipedia Thesaurus API [42]
and Reverse Dictionary [43] as the sources of candidate
keywords given the name of a category. The candidates for a
category are made distinct by removing any repetitions. The
classifier used is a linear Support Vector Machine (SVM).
Performance is compared against baseline classifier, which
is a linear SVM trained over videos retrieved by category
names. Classification accuracy is taken to be the performance
measure. Textual data for a video is obtained from the Title,
Keywords, and Description in the corresponding webpage.
Each video webpage is represented as a bag of word vector of
normalized word counts. Textual vocabulary is created based
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on collecting unigrams that occur in more than 0.5% of total
video webpages in training data, and by removing stop words
(such as it, a, or, was etc).

We conducted a user study to obtain videos viewed by
a set of volunteers. More than 14000 videos viewed by
30 volunteers were collected. The testing videos for our pro-
posed framework are obtained by manually labeling videos
collected by the above user study. Testing videos for a
category are also supplemented by videos from publicly
available lists of popular (or useful or best) videos of the
category.

In the next three sub-sections, we summarize results of
applying our proposed approach on three different sets of
categories.

A. RETAIL PRODUCT CATEGORIES: BABY,
CLOTHING, FITNESS, FOOD
As discussed earlier, for a retail or department store (such as
Walmart or Sears), knowledge of user preferences in product
categories like the above is very useful. We first discuss
results obtained using the baseline classifier followed by
results obtained using the proposed approaches.

FIGURE 6. Classification accuracy and Intra-Category Diversity variation
with number of training videos for baseline classifier.

Fig. 6 shows the performance of the baseline classifier for
classifying 255 test videos. It is seen that the performance of
the baseline classifier improves initially as more videos are
retrieved by category name and used for training. As shown
in Fig. 6, the average (across all categories) Intra-Category
Diversity (6) of the training data thus obtained, increases with
the number of retrieved videos, initially leading to perfor-
mance improvement. However, as more videos are retrieved
using the category name, the quality of retrieved videos by
the video search engine begins degrading, and more training
videos unrelated to the respective categories are retrieved and
selected in their training data. This is reflected in loss in clas-
sification performance (around 700-800 videos per category)
as more videos are retrieved using category name. In our
experiments, 1000 videos are retrieved per SRK. In order to
provide a fair comparison of our approach with the baseline,
the number of training videos in both cases should be equal.
However, from the trend in Fig. 6 it can be seen that the best
baseline performance is around 82.3%. Since the YouTube
API limits number of retrieved videos per keyword to 1000,
we utilize the best classification performance (82.3%) of

baseline to compare with our techniques.

FIGURE 7. Classification accuracy variation for {Baby, Clothing, Fitness,
Food} with respect to α. Dotted line shows baseline accuracy.

In Fig. 7, we present performance variation of the
proposed approaches with the moderation factor α. Key-
words from [42] and top 200 keywords from [43] are
used as candidates, giving a total of 230 candidates per
category. The number of valid keywords found per cate-
gory are Baby: 81, Clothing: 63, Fitness: 78, Food: 52.
The coefficients N1 and N2 in (8) are chosen such that
N1 =

1
N2
= div(RV (Ci)). Fig. 7 shows the performance

when L ′ number of SRKs are selected per category, where
L ′ is the minimum number of valid keywords across all cat-
egories (which is 52 in this case). We show the performance
using both Weighted Instances and Non-weighted Instances
methods for LCPD. Weighted support vector machine [51]
is used to give varying weights to the training videos as per
the Weighted Instances method. Fig. 7 also shows the perfor-
mance obtained by the Adapt AAO approach. As mentioned
earlier, the performance of the Adapt AAO approach is same
as that of the AAO approach with a small 1, and so we have
only provided performance results of the former. For LCPD,
α = 0.6 to 1 performs best for Non-weighted Instances
method, and α = 0.6 to 0.8 performs best for Weighted
Instances method. We observe that the Weighted Instances
method in general performs better than the Non-weighted
Instances method, as discussed in Section IV-A. Moreover,
both the methods have significantly better accuracy than the
baseline classifier accuracy of 82.3% (shown by the dotted
line in Fig. 7). For the baseline case, the Intra-Category
Diversity values (6) of the training data are {0.259, 0.247,
0.244, 0.243} corresponding to {Baby, Clothing, Fitness,
Food}. Compared to this, the Intra-Category Diversity after
all 52 SRKs (for α = 0.6) are used to retrieve training videos
for above categories are {0.439, 0.418, 0.395, 0.359}. The
average (taken across all categories) Intra-Category Diversity
has increased from 0.248 for baseline to 0.403 with LCPD
(for 52 SRKs per category, and α = 0.6). Consequently,
the classifier performance has also increased from 82.3%
(baseline performance) to 91% (Non-Weighted Instances)
and 93.7% (Weighted Instances), thus demonstrating that
higher Intra-Category Diversity in training videos results in
better performance of the trained classification model. The
classification accuracy obtained using Adapt AAO is 92.6%.
Based on Fig. 7 it can also be seen that unlike LCPD, the
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performance of Adapt AAO does not depend on α. While
the performance of Adapt AAO is lower than the best per-
formance of LCPD, the difference is marginal. In addition,
the performance of Adapt AAO is significantly higher than
the baseline performance.

FIGURE 8. Classification accuracy variation for {Baby, Clothing, Fitness,
Food} with respect to L.

Fig. 8 shows how the performance of the proposed
approaches varies with respect to L, i.e., the number of SRKs.
For LCPD, α is kept constant at 0.6 for this experiment.
As can be seen for LCPD approach, while the performance
of the Non-Weighted Instances method starts decreasing after
initially increasing with increasing L, the Weighted Instances
method performs better, and continues its improving per-
formance with increasing L. The Adapt AAO approach is
seen to consistently provide high classification accuracy.
In addition, Adapt AAO offers the advantage of not requir-
ing tuning of the parameter α which may require human
effort or the availability of a labeled validation set. Table 2
shows the accuracy obtained as per the proposed Adapt AAO
approach as well as the accuracy obtained when all SRKs
are selected to maximize only one objective function as
discussed in Section IV-B. It can be seen that the perfor-
mance of our approach outperforms selecting SRKs based on
only one objective function, namely average proximity (5) or
diversity (9).

TABLE 2. Summary of average classification accuracy obtained using
Adapt AAO approach.

Fig. 9 shows the time taken by the LCPD and Adapt AAO
approaches with respect to the number of SRKs selected
(i.e., L). Conforming to the complexity discussion in
Section IV, the time taken to select L SRKs varies as O(L)
when the number of candidates and the categories are fixed.
Fig. 9 also shows the time taken by a linear SVM (LibLinear

FIGURE 9. Variation of time taken to select L SRKs, and time taken to
train linear SVM on obtained training data, with respect to L.

implementation of SVM) to train over the collected set of
training videos. The time-taken to learn the classifier varies
approximately as O(L).
For our MATLAB-based implementation, the system

memory usage for LCPD approach was 4.46 GBs for select-
ing 52 SRKs from 230 candidate keywords for categoryBaby.
Since the Adapt AAO approach does not need to store the
representations of individual retrieved videos retrieved per
keyword, like in LCPD approach, the memory requirement
for Adapt AAO approach is only 411 MBs. Training of SVM
using 1000 videos for each of 52 SRKs required 1.4GBs. The
empirical results presented demonstrate the feasibility of our
proposed approach in terms of space and time complexities.

We next present experimental results for two more sets of
categories and focus on the classifier performance.

FIGURE 10. Classification accuracy variation for {Classical music,
Electronic Music, Jazz music, Rock music} with respect to α.

B. GENRES OF MUSIC: CLASSICAL,
ELECTRONIC, JAZZ, ROCK
We have chosen these categories keeping the requirements
of a music recommendation system in mind. While there are
several, and often subjective, categorizations possible within
Music, we have chosen the above four categories since these
cover most other categories, and are broad in the sense of ease
of labeling by a human expert. Top 100 keywords from [43]
are used to obtain candidates for each category. 26 SRKs
are selected per category. 290 test videos are used to test
the performance of the baseline classifier and the proposed
approaches. In Fig. 10, we present performance of the pro-
posed approaches. While the performance of LCPD varies
with α, it is seen that performance of classifier for α ≥ 0.2
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is almost the same. The Weighted Instances method is again
seen to outperform the Non-Weighted Instances method for
higher α values (α ≥0.2), and both show significantly better
accuracy (92.4% and 91% respectively) than the baseline
classifier (77.9%). For these categories, Adapt AAO provides
as high classification accuracy (92.4%) as LCPD when
26 SRKs are used. This demonstrates the efficacy of the
Adapt AAO approach to achieve high performance without
the requirement of α.

C. GENRES OF MOVIES: ACTION, COMEDY, HORROR,
ROMANTIC
We here provide results for a set of categories that might
be of interest for a movie recommendation system. [43] is
used to obtain Candidate Keyword for each category. A total
of 223 test videos are used to assess performance. 18 SRKs
are selected per category. Fig. 11 supports the observation
made with the previous sets of categories. For LCPD, the
Weighted Instances is seen to be better performing than Non-
Weighted Instances and both methods show significantly
improved performance (62.8% and 59.6% respectively) com-
pared to performance of baseline classifier (41.2%). Adapt
AAO leads to marginally worse performance than LCPD and
achieves 61.4% classification accuracy. Both LCPD andAAO
approaches achieve significant improvements in predictive
correctness as compared to the baseline approach.

FIGURE 11. Classification accuracy for {Action movies, Comedy movies,
Horror movies, Romantic movies} with respect to α.

Based on the above experiments, it can be seen that the pro-
posed approaches LCPD and Adapt AAO, both lead to signif-
icant improvement in classification performance compared
to the baseline classifier. The performance of Adapt AAO
is slightly worse than LCPD, however since the former does
not depend on α, Adapt AAO offers a convenient approach
to obtain high classification accuracy without necessitating
manually provided preferences for objective functions or
requiring manual effort to label validation videos and tune α.

VI. CONCLUSIONS
We have proposed a fully-automated framework to obtain
high quality training videos for any arbitrary set of categories,
without the need for any manual labeling that is needed by
most related approaches. We analyze properties of training
data that lead to high performance of the trained classifier.
Based on the above properties, we propose approaches for

selecting keywords to retrieve training videos, on the basis of
their proximity to the categories of interest, and the resulting
diversity in the training data. The first approach (LCPD) leads
to high classification accuracy, although requires a parame-
ter representing preference for defined objective functions.
The parameter can be obtained through manually provided
preferences for the objective functions, or by using manually
labeled validation videos for tuning. In order to avoid the
manual effort, we also provide an annealing based alternat-
ing optimization framework (AAO) and propose its adaptive
variant (Adapt AAO) to select keywords. Such an approach
does not require the articulation of preferences in parameter-
ized form, with the trade-off of some loss in classification
accuracy as compared to the LCPD approach. Experimental
results on several sets of categories show the effectiveness
of the training videos obtained by the proposed approaches,
hence making classification of videos watched by users to
arbitrary set of categories feasible. Consequently, this work
may enable new personalization applications by enabling
identification of user preferences in a set of categories
relevant to the application.
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