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Several expert systems have been proposed to address the sparsity of tags associated with online content

such as images and videos. However most of such systems either necessitate extracting domain-specific fea-

tures, or are solely based on tag semantics, or have significant space requirements to store corpus based

tag statistics. To address these shortcomings, in this work we show how ontological tag trees can be used

to encode information present in a given corpus pertaining to interaction between the tags, in a space ef-

ficient manner. An ontological tag tree is defined as an undirected, weighted tree on the set of tags where

each possible tag is treated as a node in the tree. We formulate the tag tree construction as an optimization

problem over the space of trees on the set of tags and propose a novel local search based approach utilizing

the co-occurrence statistics of the tags in the corpus. To make the proposed optimization more efficient, we

initialize using the semantic relationships between the tags. The proposed approach is used to construct tag

trees over tags for two large corpora of images, one from Flickr and one from a set of stock images. Extensive

data-driven evaluations demonstrate that the constructed tag trees can outperform previous approaches in

terms of accuracy in predicting unseen tags using a partially observed set of tags, as well as in efficiency of

predicting all applicable tags for a resource.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

The consumer electronic revolution and the Internet have led to

he availability of vast amounts of data including multimedia data

uch as images and videos. A significant fraction of such data is

ser generated content, in the form of pictures and videos uploaded

nto sites such as Facebook (2015), Flickr (2015) and YouTube (2015).

wing to the fact that there are minimal requirements when upload-

ng the content and that mobile uploads are on the rise, users rarely

dd any extra information such as a textual description to the content.

t best, most images and videos are tagged with certain keywords. As

hese keywords or tags are sometimes applied to entire albums of im-

ges or videos at once, or applied in error, the information provided

y such tags is quite noisy.

Some examples of images having incorrect tags (as per human ex-

erts) are shown in Fig. 1. The massive scale of data and the lack of
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seful metadata makes it difficult for users to access data that may be

f interest to them (Anand & Mampilli, 2014; Jiang, Qian, Shen, Fu &

ei, 2015; Zheng & Li, 2011).

The social tagging at the above mentioned data sharing websites

reates a Folksonomy (Hsieh, Stu, Chen, & Chou, 2009; Kim & Kim,

014; Sun, Wang, Sun, & Lin, 2011) which mitigates the information

verload to some extent by creating non-hierarchical categories or

ndexes for the retrieval of data. Folksonomies make it scalable to as-

ign labels to large volumes of data in a collaborative manner and are

ence more appropriate for such data than traditional taxonomies

stablished by expert cataloguers (Kim & Kim, 2014). At the same

ime, collaboratively produced folksonomies have several issues, par-

icularly related to incorrect tags and their sparsity (Sun et al., 2011;

ddin, Duong, Nguyen, Qi, & Jo, 2013). While incorrect tags have been

iscussed earlier, the sparsity in folksonomy arises as a result of lack

f incentive for the users to tag the resources comprehensively and

ompletely. As a result, the online resources are typically associated

ith low number of tags, preventing effective searching and brows-

ng through the available data (Uddin et al., 2013).

In order to address the sparsity in folksonomies, several expert

ystems have been proposed that recommend or suggest additional

ags for a resource based on the tags already associated with the re-

ource (Chen, Liu, & Sun, 2015; Hsieh et al., 2009; Sigurbjörnsson &

an Zwol, 2008; Sun et al., 2011). Most of such works depend on the

vailability of content-based features such as textual features from
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(a) ‘animal’,

‘car’

(b)‘wedding’,

‘mushroom’

(c) ‘farms’, ‘snow’

Fig. 1. Some examples of incorrect tags given by users on www.flickr.com. (a) An im-

age of a ‘cat’ tagged as ‘car’, which most likely is a spelling mistake, (b) an image of a

‘mushroom’ also tagged as ‘wedding’ and (c) an image of a ‘goat’ tagged with ‘snow’.

The Flickr owner and photo ids of these images are (8656572@N04,4670326818),

(35468147887@N01,252474171), and (39405339@N00,5835556089), respectively.
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documents or blogs (Chen et al., 2015; Hsieh et al., 2009; Sun et al.,

2011), or visual features from images or videos (Xia, Feng, Peng, Wu,

& Fan, 2015), and thus cannot be applied to other domains. In ad-

dition, extracting and utilizing content based features is known to

be computationally expensive and for certain domains, even infea-

sible (Huang, Fu, & Chen, 2010; Song et al., 2010; Yin, Li, Mei, & Han,

2009; Zanetti, Zelnik-Manor, & Perona, 2008), and so the above works

may not be applicable to such domains. Furthermore, expert systems

such as Uddin et al. (2013) utilize purely semantic relationships be-

tween tags. While semantic relations as obtained from ontologies

such as WordNet (Miller, 1995) or Open Directory Project (2015) are

an important resource for linguistic and machine learning related

problems, such relationships fail to capture the information that is

characteristic of an available corpus. Consider for instance a corpus

of annotated images from Flickr. The co-occurrence of tags in a given

corpus provides interesting insights into the nature of the data. For

example, the 2008 Olympics were held in Beijing and as a result, there

exist a large number of images in Flickr having ‘2008’ and ‘Beijing’ as

their tags. Such a relation between ‘2008’ and ‘Beijing’ cannot be ob-

tained from WordNet or similarly formed hierarchies (such as Open

Directory Project (2015)) because the semantic relations in the above

hierarchies are pre-defined, and do not account for a connection be-

tween the two tags. In addition to the above expert systems, works

such as Sigurbjörnsson and Van Zwol (2008) capture tag similari-

ties from a given dataset using tag graphs. Tag graphs usually refer

to complete graphs representing pair-wise distances or similarities

between tags, which are calculated from a given corpus. For certain

applications, a threshold is applied and only the most important pair-

wise connections are retained. However, storing similarities using tag

graphs has several issues. Firstly, the pre-defined threshold value that

is chosen to construct them can be arbitrary and there is no clear

understanding to what its value should be. The pair-wise edges that

have their similarity above the defined threshold are the only ones

that are retained in the graph and this leads to completely losing of

information of those pairs of concepts or tags that have their similar-

ity below the threshold. Depending on the threshold value, the space

requirement of tag graphs can vary as O(N2) where N is the num-

ber of concepts or tags in the tag graph, which can be significantly

high for large number of tags. In order to keep a handle on the space

requirement, a strict threshold value can be chosen which would re-

sult in losing pair-wise similarity information for several pairs of con-

cepts or tags. Lastly, depending on the threshold, it is possible that

some concepts or tags are disconnected from the rest. This again im-

plies losing relationship information of the concept or tag with oth-

ers. Sigurbjörnsson and Van Zwol (2008) estimate the number of tags

in Flickr in 2008 to be 3.7 million. Storing each similarity value as

a floating point occupying 4 bytes would require more than 27 ter-

abytes just to store the pair-wise relationships.

We attempt to address the above shortcomings in this paper.

We use the term ontological tag tree or simply tag tree to denote
ndirected weighted tree of concepts (or tags) where the relation-

hips between the concept nodes in the tree are defined only in terms

f a scalar weight. As compared to tag graphs (Liu, Hua, Yang, Wang, &

hang, 2009; Sigurbjörnsson & Van Zwol, 2008), ontological tag trees

re necessarily trees on the set of tags, i.e., are connected and have no

imple cycles. We have chosen a spanning tree to represent the rela-

ionships between tags because a spanning tree over the set of tags is

ecessarily connected and does not lead to losing of information due

o possibly disconnected components as in tag graphs. Also, the space

equirement of a spanning tree is only O(N) for N tags. For 3.7 million

ags (Sigurbjörnsson & Van Zwol, 2008), this implies a significant re-

uction in the space requirement from 27 terabytes (O(N2)) to less

han 50 megabytes (O(N)). As a result, expert systems can be imple-

ented even on computing devices that do not have a gigantic mem-

ry. Ontological tag trees are constructed using the semantic and the

ata-driven relations between the tags and hence lead to significantly

etter performance on data-driven tasks than using solely semantic

elationships between tags (Miller, 1995; Uddin et al., 2013). For the

onstructions of tag trees, we do not utilize content based features,

ather we utilize data-driven similarities from tag co-occurrences in

he given annotated corpus. As a result, compared to previous expert

ystems that require extracting and processing content-based (such

s visual or textual) features (Chen et al., 2015; Hsieh et al., 2009; Sun

t al., 2011; Xia et al., 2015), tag trees can be used to alleviate spar-

ity in online folksonomies even in domains where extracting domain

pecific features may be infeasible or inefficient. This also makes the

onstruction approach not married to a single domain such as anno-

ated text documents/blogs or videos or images.

We illustrate the proposed tag tree construction approach using

wo large image corpora – one obtained from Flickr, and the other ob-

ained from a set of stock images, with the goal of obtaining a tag tree

ver the set of tags present in these corpora. For these corpora, the co-

ccurrence count for a pair of tags is defined as the number of images

ith which both tags are associated. The normalized co-occurrence

ounts are a measure of how related two tags are. We assume that

he concepts or nodes of the tag tree are the tags, and that the tree

onstruction task is to infer the relations between the tags. The task

hus becomes a graph learning problem where the nodes of the graph

re the tags, and the relations between tags are represented by undi-

ected edges and their weights in the graph. Unlike the relationships

iven in ontologies, we do not attempt to give semantic interpreta-

ions to the relations between tags. To solve the graph learning prob-

em, we formulate an optimization problem on the space of spanning

rees of a suitably constructed Similarity Graph that is based on se-

antic relations between tags, as obtained from WordNet, and on the

ormalized co-occurrence counts of the corpus. We solve the opti-

ization problem using the ‘local search’ paradigm by constructing a

imple edge exchange based neighborhood on the space of candidate

rees. To make the optimization efficient, we initialize our approach

sing a preliminary tag tree built purely based on semantics from the

ordNet hierarchy. The proposed local search based approach is then

sed to refine the preliminary tag tree based on the corpus statistics.

The evaluation of structures capturing the relationships between

ifferent tags or concepts is a difficult task. In the domain of ontolo-

ies, there are often no clear quantitative metrics to compare differ-

nt ontologies that can be built for the same corpus of data. Certain

orks compare constructed ontologies to a predefined gold standard

ntology (Porzel & Malaka, 2004) which is constructed manually. Tag

raphs are usually not evaluated explicitly, rather are used in vari-

us applications such as tag ranking (Liu et al., 2009). Since man-

al evaluations are subjective and are not scalable, in this work, we

lso propose a novel fully automatic framework to evaluate ontolog-

cal tag trees over tags using the Tag Prediction Accuracy, given an

ncomplete set of tags for a resource. Furthermore, we also demon-

trate that the constructed tag trees can be used to efficiently assign

ags to resources in domains where content-based features can be

http://www.flickr.com
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Fig. 2. Two examples of subgraphs built using (left) the proposed data-driven approach and (right) corresponding sub-graphs obtained using WordNet. In example (a), ‘holiday’

and ‘travel’ are directly connected using our approach but are separated by multiple hops in the WordNet hierarchy. In example (b), the proposed approach is able to identify ‘party’

as the central node that connects several other party-related tags. For the proposed approach, objective WAH (3) is utilized as described in Section 3.
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erived. Thus as a second evaluation paradigm, we utilize efficiency:

or a given resource with no tags, efficiently predict all the applicable

ags.

To summarize, the key contributions of this paper are as follows:

(1) We propose a framework to construct an ontological tag tree

over tags in a given corpus. The proposed approach requires

constructing a preliminary tag tree using semantics obtained

from the WordNet hierarchy. This preliminary tree is then re-

fined to incorporate data specific relations by performing a

novel local search operating on local neighborhoods in the

space of spanning trees of a defined Similarity Graph over the

tags.

(2) We propose a completely automated framework for evaluat-

ing ontological tag trees over tags by posing two data-driven

tasks. The first task is defined such that it is does not require

content based features to be extracted from resources, in order

to assign tags to them. It can thus be applied even to corpora

where deriving features from resources is either infeasible or

ineffective. The second task is applicable to corpora where do-

main specific features can be extracted from the resources and

classifiers or concept detectors can be trained that can map the

content based features of the resource to concepts or tags.

(3) We evaluate the constructed tag trees for two large image cor-

pora using the above evaluation framework and show that it

outperforms tag trees built using manually created semantic

hierarchies such as WordNet, and commonly used approaches

using tag graphs of comparable space requirements, in both

prediction accuracy and efficiency. We also demonstrate that

by using the constructed tag trees, we can achieve a perfor-

mance that is very close to or better than that of other tech-

niques, while also achieving several orders reduction in the

space requirement.

Fig. 2 illustrates a couple of examples for which the proposed ap-

roach captures the inter-dependencies between tags in a qualita-

ively better form than the tree obtained using WordNet alone. De-

ails on how these trees are obtained are provided in Section 3. We

rst start with a brief discussion on the related literature.
.1. Related work

In order to discuss the related literature, we study the prior works

n terms of works on ontology building, deriving tag relationships,

ag recommendation and efficient resource classification, and works

n local search paradigm. While we have focused on providing a brief

ummary of works in these areas that are relevant to our paper, some

orks may belong to multiple areas.

.1.1. Ontology building

A commonly used strategy to organize a collection of data is

o group it into categories and specify the relationships among the

arious categories. Ontologies (Fensel, 2001) are often employed to

pecify predefined relations between categories. Conventionally, con-

tructing an ontology (Gruber, 1995) requires significant manual ef-

ort. The concepts or categories of the ontology have to be specified,

nd the relations between the categories defined, all manually. Fur-

hermore, the ontology has to be updated when data belonging to

itherto unseen categories becomes available. Once the ontology has

een specified, data samples must be annotated, again manually, to

ssign them to one or more categories in the ontology so that rules or

lassifiers can be learned for that category. Therefore, manual tech-

iques for ontological or taxonomic organization of data become es-

ecially challenging and cumbersome when there are large amounts

f data. Also, ontologies built for one setting are rarely reusable even

n other closely related domains. This necessitates the building of an

ntology afresh for each new setting. As data could be from one of an

ver increasing pool of knowledge domains, manually constructing

ntologies for data in each domain is infeasible. Furthermore, when

he data obtained is noisy, as is the case for user generated content on

he Internet, the problem is accentuated as more manual effort might

e needed to clean up the data followed by ontological organization.

The challenges associated with the manual construction of ontolo-

ies has led to efforts that use semi-automatic (Jaimes & Smith, 2003)

nd fully automatic techniques (Buitelaar, Cimiano, & Magnini, 2005)

n domains such as multimedia and text based ontologies respec-

ively. Most existing automatic approaches to ontology construction

se text mining techniques to identify the concepts and then define

elations between the concepts based on their semantic similarity as

btained from lexical databases such as WordNet (Miller, 1995).
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Aside of these, other works on ontology building use some form

of clustering to combine similar terms or keywords together to form

concepts. First, a similarity metric is defined between tags, words or

concepts, and then a hierarchical clustering algorithm is utilized to

form a dendrogram with the concepts as the leaves of the formed

tree. The hierarchical clustering algorithm can be either bottom-

up (agglomerative) or top-down (divisive). Such a procedure creates

auxiliary concepts in the tree representing combinations of multi-

ple concepts of interest. For example Neshati, Alijamaat, Abolhassani,

Rahimi, and Hoseini (2007) use hierarchical clustering based on a

compound similarity measure between words. The similarity score

is obtained by using a neural network model on syntactical informa-

tion and corpus based similarities. However such techniques can only

group related concepts together at different hierarchical levels, in-

stead of modeling the inter-dependencies in the form of a graph on

the concepts. In Dietz, Vandic, and Frasincar (2012), given a corpus

corresponding to a domain, the relations between important con-

cepts are learned with the help of WordNet or by using search en-

gine. Hierarchical clustering is employed to construct a domain spe-

cific dendrogram as mentioned above.

Works such as Hearst (1992) and Cimiano, Hotho, and Staab

(2005) utilize natural language based grammar rules to learn hier-

archies between text entities. Semi-automatic techniques for ontol-

ogy construction such as Text2Onto (Cimiano & Völker, 2005) assist

the user in constructing ontologies from a given set of text based

data. Similar techniques have been attempted in the domain of an-

notated multimedia content, such as images and videos (Jaimes &

Smith, 2003). Fully automatic techniques such as OntoLearn, etc.

Mani, Samuel, Concepcion, and Vogel (2004), Navigli, Velardi, and

Gangemi (2003) and Velardi, Navigli, Cuchiarelli, and Neri (2005) use

natural language processing and machine learning to extract con-

cepts and relations from data. For a good review of ontology learning

from text see Buitelaar et al. (2005). These works cannot be applied

outside of the domain of natural language, since they depend at least

in part upon grammatical speech.

1.1.2. Deriving tag relationships

The organization of tags or concepts obtained from different do-

mains has also been explored. Tag clustering has been employed in

systems such as Flickr Clusters (2015) and studies (Begelman, 2006)

show that it is helpful as a means to allow users to explore the in-

formation space of tags. For annotated images, Schmitz (2006) pro-

posed the application of a co-occurrence based subsumption model

from Sanderson and Croft (1999), to learn whether a tag subsumes

another. Griffin and Perona (2008) use the category confusion ma-

trix to cluster similar categories together in a hierarchical manner.

To construct an ontology for a set of tags, Djuana, Xu, and Li (2011)

map the tags to WordNet and leverages WordNet’s hierarchy. Tag

graphs have been utilized for various applications such as tag rank-

ing (Liu et al., 2009) to represent the pair-wise similarities or dis-

tances between tags. While several works use tag graphs as com-

plete graphs on the set of tags, others choose set of edges that have

their distance lower than a heuristically chosen threshold (Heymann

& Garcia-Molina, 2006). In general, tag graphs have O(N2) edges with

correspondingly large storage requirement for large values of N. For

example, Sigurbjörnsson and Van Zwol (2008) estimate the number

of tags in Flickr in 2008 to be 3.7 million. Storing each similarity value

as a floating point occupying 4 bytes would require more than 27 ter-

abytes to store the pair-wise relationships, as compared to under 50

megabytes as required by the proposed tag tree. This eliminates the

need to have computing devices with gigantic memory in order to

operate on a large number of tags or concepts for tasks such as tag

prediction, resource annotation, etc.

In the domain of annotated images, there exist works that de-

termine semantic relationships between concepts using visual fea-

tures (Wu, Hua, Yu, Ma, & Li, 2008) and using visual features and tags
Katsurai, Ogawa, & Haseyama, 2014). The approaches proposed in

hese works are specific to the domain of images and require visual-

eature based representation of images. As mentioned in Huang et al.

2010), Song et al. (2010), Zanetti et al. (2008) and Yin et al. (2009),

xtracting and utilizing content based features can be computation-

lly expensive and even infeasible in certain domains. In addition to

bove, the space requirement of these works varies as O(N2) where

is the number of tags or concepts. Our work is different from

he above works since we propose a tag tree construction approach

hich is not dependent on the availability of content-based features

rom the resources and has a space requirement of only O(N).

.1.3. Tag recommendation and efficient resource classification

While several expert systems such as Anand and Mampilli (2014),

iang et al. (2015), Kim and Kim (2014), Uddin et al. (2013) and

heng and Li (2011) address the broader problem of information over-

oad, others focus on addressing the sparsity of online folksonomies

hrough approaches such as tag recommendation and efficient re-

ource classification. In this section we provide a brief summary of

he existing literature in the latter category, since such expert sys-

ems are closer to our evaluation tasks.

In our first evaluation task, we attempt to predict certain tags as-

ociated with a resource while having visibility to other tags asso-

iated with the same resource. There exist works in literature that

tilize domain-specific features to associate tags to a resource or to

etermine the relevance of tags to a given resource. For instance, Li,

noek, and Worring (2009) use visual similarity to determine neigh-

ors of a test images and then aggregates their tags by voting. Wu,

oi, Jin, Zhu, and Yu (2009) learn a distance metric to determine im-

ges that are close to a given image based on the visual content, and

hen determine tag relevance for the image. Hsieh et al. (2009) build

desktop collaborative tagging system to enable collaborative work-

rs to tag their offline documents. Chen et al. (2015) approach tag

ecommendation as a translation problem to translate the textual de-

cription to tags, while Sun et al. (2011) use language modeling to

ecommend tags for blogs and documents. These works require ex-

raction of domain-specific, in this case visual and textual features

rom the resource (images or blogs/documents) and cannot be ap-

lied to other domains or corpora where deriving features from re-

ources is either infeasible or ineffective (Huang et al., 2010; Song

t al., 2010; Yin et al., 2009; Zanetti et al. (2008). Aside of these works,

orks such as Uddin et al. (2013) use semantic similarity between

ags as obtained from WordNet, to address information overload. As

iscussed in Section 1, purely semantics based systems fail to cap-

ure data-specific characteristics, thus leading to poor performance

n data-driven tasks. The tag prediction task as proposed in our pa-

er is defined such that it can even be applied to corpora where de-

iving content based features from resources is either ineffective or

nfeasible. The proposed task is somewhat similar to the tag recom-

endation application in Katsurai et al. (2014) and in Sigurbjörnsson

nd Van Zwol (2008). However, the procedure for tag recommenda-

ion in Katsurai et al. (2014) and Sigurbjörnsson and Van Zwol (2008)

equires manual labeling of tags to measure the performance. Since

anual labeling is subjective, irregular and not scalable to large num-

ers of testing resources, we define a tag prediction task where given

n incomplete set of tags associated with a resource, we attempt to

redict the rest of the tags. Using such an approach, our evaluation is

ompletely automated and does not require any human assistance or

abeling. As mentioned above, Katsurai et al. (2014) require visual fea-

ures to obtain the concept similarities. We compare the performance

f the constructed tag trees with the symmetric sum based tag rec-

mmendation approach as outlined in Sigurbjörnsson and Van Zwol

2008) and show that we achieve almost similar performance with

everal orders reduction in the space requirement.

In the second data-driven evaluation task, we utilize tag trees to

ssociate tags to resources based on their content. Specifically, for
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omains where content-based features can be extracted, we show

hat using the constructed tag trees, it is possible to determine which

oncept detectors should be tested for the test resource, thereby mak-

ng the resource classification more efficient. Compared to Li and

noek (2013), our approach does not require training of faster and ef-

cient classifiers for this task and can utilize pre-trained binary clas-

ifiers as concept detectors for different tags. The image annotation

pplication in Wu et al. (2008) associates a test image with tags based

n applying all concept detectors on the test image and using the

redicted image likelihood under the Dual Cross-Media Relevance

odel (Liu et al., 2007). Compared to Wu et al. (2008), our approach

oes not require applying all concept detectors corresponding to the

ags, rather our objective is to determine the concept detectors to ap-

ly on a given test image. In order to demonstrate that the proposed

pproach for the second data-driven task is not applicable to only a

ingle domain, we provide evaluation results based on two types of

odalities – visual, and textual. We have used two large sized im-

ge corpora to demonstrate the above evaluation tasks. The tasks in

ection 4 are defined such that they can be used to evaluate the con-

tructed tag trees. Most of the works as discussed above do not offer

way to do so.

.1.4. Local search paradigm

The use of local search methods in combinatorial optimization

as a long history (Aarts & Lenstra, 1997). The paradigm has been

xtensively studied (Aarts & Korst, 1988; Johnson, Papadimitriou, &

annakakis, 1988) due to its practical success on many NP hard prob-

ems and also for the insights it provides on the structure of discrete

ptimization problems. The use of exchange neighborhoods was in-

roduced by Croes (1958) and Lin (1965) for solving the Traveling

alesman Problem and has since been successfully applied to a wide

ariety of problems. See Aarts and Lenstra (1997) for a comprehensive

urvey.

We formulate an automated approach for building an ontologi-

al tag tree with (N − 1) edges for N tags using WordNet followed

y a data-driven refinement. To our knowledge, the formulation of

he ontological tag tree construction as an optimization problem on

he space of spanning trees and its solution using the ‘local search’

aradigm is completely novel. We use a variant of the edge-exchange

ethod to construct the neighborhood on the solution space.

Verma et al. (2014) present the preliminary results using the pro-

osed approach. We next discuss the problem statement addressed

n this paper, followed by the proposed tree construction approach.

. Problem statement

We assume that we are given a corpus C of annotated resources,

here each resource is associated with a variable number of tags. The

orpus contains:

• Set of resources: R = {rl} where l = 1 to |C |.
• Set of tags in the corpus: T = {tj} where j = 1 – N.
• A binary tag association matrix B: B(r,j) = 1 if tag tj is associated

with resources r, and 0 otherwise.

e define an ontological tag tree as an undirected weighted tree on

he set of tags T . This implies that the tag tree is connected and has no

imple cycles. The task is to arrange the set of tags T in an ontological

ag tree.

. Construction of ontological tag tree

In order to construct the tag tree, we propose an approach that

tarts with a preliminary tag tree obtained using the semantics en-

oded in WordNet hierarchy. We follow this by a corpus statistics

ased tag tree refinement.

Construction of the WordNet based preliminary tree is described

elow.
.1. Constructing WordNet-based preliminary tag tree

We follow the approach outlined in Djuana et al. (2011) to derive

he semantic relations between the set of tags T . This is done in two

tages. In the first stage, disambiguation for the meaning of the tags is

one by selecting the most popular concept (synonym set, or synset)

or every tag. For example a tag ‘turkey’ can be mapped to the bird,

r the country. In WordNet, since the synset corresponding to Turkey,

he bird, has a higher frequency count than the synset correspond-

ng to the Republic of Turkey, the former synset would be selected to

ap to the tag ‘turkey’. Then in the second stage, in order to find the

elationships between different tags, all links between the mapped

oncepts are found through the WordNet hierarchy for semantic re-

ationships ‘is-a’ or ‘part-of’. Since we are only interested in a tag tree

hich has undirected edges between the tags, we ignore the direc-

ions of the edges in the obtained hierarchy, which could otherwise

elp distinguish more generic concepts or tags from more specific

nes.

The resulting undirected graph in general has cycles and is usually

isconnected, forming disjoint clusters of tags. In order to construct

tree from the above undirected graph, we first break the cycles and

hen connect disjoint segments in a greedy manner using inter-tag

emantic distances as obtained from WordNet Library (Rita WordNet

ibrary, 2015). The semantic distance between two synsets in Word-

et is defined as:

MHP

HPR + MHP
(1)

here MHP = minimum hops to common parent, and HPR = hops

rom common parent to Root of hierarchy. We define the semantic

istance between tags i and j as the semantic distance between the

espective WordNet synsets. The steps of the procedure for obtaining

preliminary ontological tag tree starting from WordNet hierarchy

re summarized in Algorithm 1, which returns a tree over the set of

ags T .

Algorithm 1

Constructing preliminary tag tree using WordNet hierarchy.

Input:
• WordNet based hierarchy HT for given set of tags T representing

semantic relationships such as ‘is-a’ or ‘part-of’. HT is directed graph and

can be disconnected.
• Pair-wise semantic distances for tags in T from (1)

Breaking cycles:

Obtain Hundirected as the undirected version of HT
Loop While cycles exist in Hundirected

• Find one cycle in Hundirected. Ecycle = edges in the obtained cycle
• Remove the edge e ∈ Ecycle with largest distance (1) from Hundirected

EndWhile

Connecting disjoint components in Hundirected:

Loop While Hundirected is disconnected
• Obtain pair-wise distances between tags from (1)
• Set distances between tags in same component, to ∞
• Connect tags with least distance. These will form edges between the

disjoint components.

EndWhile. Output: tree TW

Once the preliminary tag tree based on WordNet, TW, is con-

tructed as described, we refine it using a data driven approach based

n the co-occurrence statistics of the tags. We describe this below.

.2. Co-occurrence based tag tree refinement

The preliminary tag tree is refined by accounting for those tags

hat strongly co-occur in the corpus but are not linked in the WordNet

ased tag tree. To achieve this, we first define the similarity score of

wo tags using Jaccard similarity:
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Fig. 3. Building the Similarity Graph for threshold τ = 0.25.

T

Definition 1. [Jaccard similarity]. The Jaccard similarity J(s1,s2) be-

tween two sets s1,s2 is defined to be equal to

|s1 ∩ s2|
|s1 ∪ s2| . (2)

Let T = {t j}N
j=1

be the set of tags and R = {rl}|C |
l=1

be the set of

resources. For each tag tj we construct the set sj = {r: r ∈ R and

B(r,j) = 1}. Let JT be an N × N matrix such that JT (i, j) = J(si,sj). We

will call JT the Jaccard Matrix of T .

We augment the preliminary tag tree based on WordNet, TW, to

construct a Similarity Graph as follows. We construct the graph with

vertex set V = {v1,…,vN} where the vj corresponds to the tag tj. We

start with TW, which is a tree on V constructed using WordNet as de-

scribed in Algorithm 1. Additionally, given a threshold τ , 0 ≤ τ ≤ 1,

we join vi,vj with an edge if JT (i, j) ≥ τ , and the edge weight of edge

(vi,vj) is set to be JT (i, j). We call the resulting graph GT , the Similar-

ity Graph of T since it captures the tree based on semantic similarity,

and additional edges based on corpus based Jaccard similarity. Fig. 3

shows an illustrative example for obtaining Similarity Graph based

on a threshold τ .

Given the Similarity Graph GT , the objective of the refinement

stage is to find a tree in the space of spanning trees of the Similar-

ity Graph GT which minimizes a defined objective function. Below

we define and motivate two different objective functions based on

corpus statistics, for tag tree construction.

(1) Weighted Average Hops (WAH)
∑

i

∑

j, j<i

JT (i, j)di, j, (3)

where di ,j represents the number of hops between tag ti and

tag tj in the tag tree. The motivation for such a score is that it is

lower when tags i and j with high JT (i, j) are separated by fewer

hops as compared to tags with low JT (i, j). The above objective
function is equal to the sum of the pair-wise hops between all

pairs of tags weighted by the corresponding Jaccard similarity

JT (i, j). Dividing the sum by �i ,j<iJT (i, j) would be equal to the

weighted average number of pair-wise hops where the weights

are normalized Jaccard similarities. Since the value �i ,j<iJT (i,

j) is a constant for a given set of tags T , we have removed the

scaling factor from the objective function. For a general graph

GT , the problem of minimizing the weighted average number

of hops has been established to be an NP hard problem (Garey

& Johnson, 1979).

(2) Similarity Approximation (SA)

∑

i

∑

j, j<i

wi, j|JT (i, j) − ST (i, j)|, (4)

where ST(i, j) represents the similarity between tags ti and tj

estimated using tag tree T. A very close problem is that of ap-

proximating a given distance matrix through spanning trees,

which has been established to be NP hard (Eckhardt, Kosub,

Maa, Täubig, & Wernicke, (2005). The objective function in (4)

is the weighted L1 norm of the difference between the Jaccard

Matrix JT and the Estimated Similarity Matrix ST. The weights

wi ,j are taken to be the co-occurrence counts of tags ti and tj

and are useful to establish relative importance between differ-

ent pairs of tags in the objective function. While ST(i, j) can be

calculated in several ways for a given tag tree T, we define ST(i,

j) as

ST (i, j) =
∏

e∈Bi, j

S(e), (5)

where Bi, j is the path in tag tree T connecting tags ti and tj

and S(e) is equal to the Jaccard similarity between the tags that

edge e connects. Such a definition for ST(i, j) ensures that it

lies between 0 and 1 and no rescaling is required in order to

compare S (i, j) values with JT (i, j).
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Note that the trees in (3) and (4) are constrained to be spanning

rees over the Similarity Graph GT . The local search based approach

o minimize either of the above objective functions is described next.

.3. Optimization based on local search

Given the Similarity Graph GT for a set of tags T , our objective is to

onstruct a spanning tree on GT such that the defined objective func-

ion is minimized. Since finding spanning trees of GT that optimally

inimize either (3) or (4) is a hard problem, we propose an approach

o obtain local optimum through the local search paradigm.

Local search: Local search algorithms provide a local optimum to

n optimization problem. This is done by moving from one solution

o another, in the search space of candidate solutions.

For the problem of constructing an ontological tag tree, we define

simple edge-exchange based neighborhood on the space of span-

ing trees of the graph GT as follows. Given two spanning trees T1, T2

e say that T2 is a neighbor of T1 if it can be obtained from T1 by the

ollowing process:

(1) Pick an edge e1 ∈ GT \T1 and add it to T1.

(2) In the (unique) cycle thus formed in T1 containing e1 pick the

edge, say e2 with minimum weight (i.e., Jaccard similarity of

the tags e2 connects). Remove e2 from T1.

Starting from a spanning tree T0 of GT as an initial solution, we ex-

lore all neighbors of T0 to determine which neighbor minimizes the

efined objective function. The winning neighbor is then considered

s the next solution and its neighbors are explored until no further

enefit is seen in the objective function. The steps of the local search

ased ontological tree construction are listed in Algorithm 2. The out-

ut is the locally optimal tag tree Topt. Note that T0 is taken as TW as

btained from Algorithm 1. Fig. 4 shows one iteration of the proposed

ocal search based approach for the objective function in (3).

Algorithm 2

Ontological tree construction algorithm.

Input:
• Similarity Graph GT for a given set of tags T
• Initial Solution: T0.
• Pair-wise Jaccard similarities between tags, i.e., JT (i,j) Initialization:

S = T0

Loop:
• ECandidates: = set of edges present in GT and not in S. For each edge e

in ECandidates

• Add edge e in S to get graph G.
• ECycles: = set of edges in the cycle formed in G.
• Remove edge e′ with lowest weight (i.e., Jaccard

similarity of connecting tags) from ECycles:e′ 
= e
• SNeighbor = spanning tree thus formed
• Calculate objective function at SNeighbor

EndFor
• Select neighbor giving best objective function as SNext

• If SNext improves objective function over S

S = SNext

• Else Stop iterating

End Loop. Output: locally optimal spanning tree Topt = S

.4. Effect of initializing using WordNet

The benefit of using WordNet to initialize the proposed local

earch based approach is that as compared to random initializations,

he former helps achieve a preferred value of the objective function

aster. The typical way to attain a lower value of the objective func-

ion for an optimization problem as defined in Section 3.2 would be

o run the local search using randomly constructed tree on the set

f tags as initialization, and picking the best tree across several such

uns based on the tag tree that has lowest objective function. How-

ver this requires running the local search several times which can be
arge considering that the number of spanning trees on a set of N tags

aries as NN − 2 (Cayley, 1894). The preliminary tree as constructed

sing WordNet offers a more meaningful initialization to the local

earch by capturing certain types of relationships between the tags

hat are dictated by their semantics. Table 1 provides the statistics of

he objective function of tag trees constructed by running the pro-

osed local search based approach 20 times with random initializa-

ions. As can be seen, a single run using WordNet based preliminary

ag tree leads to a much better objective function (4). Also, the result-

ng tag tree using WordNet leads to a better performance than the

est across 20 runs with random initializations. Note that for Table 1,

he performance of tag trees is measured using Average Tag Predic-

ion Accuracy as discussed in Section 4.

. Evaluation

In this section, we describe the experimental setup for the con-

truction and evaluation of ontological tag trees. For the evaluation,

e define tag prediction and efficient classification tasks as discussed

ater in this section. The experiments are conducted on two large cor-

ora of images, the details of which are given below.

.1. Datasets

To test the robustness of our approach to build ontological tag

rees for domains with varying degrees of tag noise, we use two dif-

erent image corpora – one from Flickr, composed primarily of user

enerated content, and one from a professionally curated stock photo

gency.

• Flickr images: Flickr (2015) is a popular image and video hosting

website where users can upload images and associate them with

annotations such as titles, tags and descriptions, among others.

As Flickr primarily contains user generated content, tags are often

noisy, irrelevant to image content or even completely absent. We

utilize 500,000 images for training and 100,000 images for test-

ing. All these images are licensed under Creative Commons copy-

right licenses.
• Stock images corpus: To evaluate the proposed approach on less

noisy data, we take a corpus of stock photos that are professionally

annotated, and hence are accompanied with a variety of accurate

annotations - such as keywords, captions, etc. For this corpus, we

use the set of keywords to build the ontological tag tree, and refer

to them as ‘tags’. We utilize more than 350,000 images for training

and close to 70,000 images for testing. The textual captions are

used in the efficient classification task as shown in Section 4.4.

Training images are used for adapting the WordNet based prelim-

nary tag tree obtained using Algorithm 1 to the given corpus using

he local search based approach described in Algorithm 2. Training

mages are also used for specific required tasks such as training of

lassifiers. Testing images are used to evaluate the constructed tag

rees. There is no overlap between training and test sets.

.2. Effect of local search based optimization

We first demonstrate how the proposed local search based ap-

roach helps in improving the objective function as defined in

ection 3. Fig. 5 shows the variation of the objective function in (3)

ith the number of iterations on Flickr tag corpus. The objective func-

ion value of the WordNet based preliminary tag tree for Flickr corpus

efore the proposed refinement is 357.2 that becomes 167.1 using the

ocal search based refinement in 68 iterations. Median of the Jaccard

imilarity values is taken as the threshold τ for candidate selection in

he proposed refinement algorithm. Similar improvement is observed

or the Stock images corpus, for which the objective function values
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Fig. 4. One iteration of the proposed approach. Eq. (3) is utilized to calculate the objective function for neighbors of a tree T. Ties are broken arbitrarily. Since both T1 and T2 have

an objective function (3) value of 4, we choose T1 and proceed to next iteration.

Table 1

Effect of initializing the proposed local search based approach using WordNet. A

total of 30 tags from stock image corpus (described in Section 4) are used.

Random initialization Using WordNet

Min Mean Max

Objective function ((4) × 106) 6.4 13.7 47.7 0.6

Performance (%) 24.2 43.8 49.2 50.9
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Fig. 5. The variation of the objective function (3) with the number of iterations for a

sample run on Flickr tag corpus.
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improves from 224.5 to 99 after 23 iterations. For both corpora, the it-

erations are terminated once no further improvement is observed in

the objective function. We describe below the tasks defined to evalu-

ate the constructed tag trees.

4.3. Tag prediction task

The tag prediction task is similar to the tag recommendation task

in Katsurai et al. (2014) and in Sigurbjörnsson and Van Zwol (2008).

However as outlined in Section 1.1, the proposed task does not re-

quire manual labeling for the resources (images) to evaluate the pro-

posed tag tree construction approach. In order to do so, we divide
he tags associated with a resource into a seen and an unseen set of

ags and use the latter to evaluate the predicted tags. We demonstrate

his approach through experiments conducted on image corpora. Let

n image i in the corpus be tagged with the set of tags T i, such that

Ti |= NTags. Assume that out of these NTags tags, only a subset T i ,Seen

re observed, with | Ti,Seen |= NSeen. The objective of the tag predic-

ion task is to predict the remaining (NTags − NSeen) tags, i.e., T i\T i ,Seen.

et Pi be the set of (NTags − NSeen) tags predicted for image i assum-

ng that T i ,Seen is observed. Note that the prediction assumes the total

umber of tags for the image, NTags, to be known. Performance of tag

rediction can be measured by the Tag Prediction Accuracy, defined as

ollows:

ag Prediction Accuracy = |{Ti\Ti,Seen} ∩ Pi|
|{Ti\Ti,Seen}| (6)

We now discuss the approach we follow to obtain the set of pre-

icted tags Pi when the set of tags T i ,Seen is seen, by utilizing a given

ntological tag tree.

.3.1. Utilizing ontological tag tree for tag prediction

Consider the tag tree T, built over the set of T tags in a corpus.

or image i with NSeen number of seen tags, each tag t ∈ {T \Ti,Seen} is

iven a proximity score st based on its proximity from the seen tags,

s per T. Specifically,

t =
∑

t ′∈Ti,Seen

dist(t, t ′), (7)

here dist(t,t′) is the distance between tags t and t′ in T calculated

s shown in Section 4.3.2. A lower proximity score for a tag t indi-

ates that it is closer in a cumulative sense to the set of observed tags

i ,Seen. The tags are ordered in the increasing order of st, and the first

NTags − NSeen) tags, i.e. those corresponding to the least values of st,

re chosen as the set of predicted tags Pi.

.3.2. Methods compared

We compare the following methods in the tag prediction task:
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Table 2

Overall Tag Prediction Accuracy (%) for various methods for tag prediction

task on Flickr and Stock images corpora.

Tag prediction method Flickr corpus Stock images corpus

Random tag prediction 2.29 13.21

WordNet 7.95 22.67

Google Similarity Distance 34.02 40.05

LS-WAH 31.53 48.06

LS-SA 44.52 50.86

Symmetric sum based 47.13 54.71

Table 3

Average Tag Prediction Accuracies (in %) obtained using Random method

on Flickr corpus.

NSeen → NTags ↓ 1 2 3 4 5

2 1.57 – – – –

3 2.34 1.30 – – –

4 2.67 1.55 0.73 – –

5 2.19 1.68 1.01 0.78 –

6 6.80 5.39 3.36 2.41 0.58

Table 4

Average Tag Prediction Accuracies (in %) obtained using WordNet

method on Flickr corpus.

NSeen → NTags ↓ 1 2 3 4 5

2 7.05 – – – –

3 8.17 2.88 – – –

4 11.16 5.27 5.39 – –

5 16.50 10.05 13.10 0.84 –

6 14.72 10.85 9.46 2.97 0.87

Table 5

Average Tag Prediction Accuracies (in %) obtained using Google Similar-

ity Distance method on Flickr corpus.

NSeen → NTags ↓ 1 2 3 4 5

2 22.07 – – – –

3 17.01 5.50 – – –

4 23.70 16.67 11.66 – –

5 51.51 47.09 45.28 43.15 –

6 54.55 48.28 44.68 41.85 37.30

Table 6

Average Tag Prediction Accuracies (in %) obtained using LS-WAH method

on Flickr corpus.

NSeen → NTags ↓ 1 2 3 4 5

2 16.13 – – – –

3 11.53 5.51 – – –

4 14.91 10.96 7.17 – –

5 42.76 42.94 39.69 36.95 –

6 49.37 51.48 49.00 48.89 45.69
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(1) Random: As the name suggests, this baseline method randomly

picks (NTags − NSeen) tags from the set T \T i,Seen.

(2) WordNet: This baseline approach uses the semantics based on-

tological tag tree constructed from WordNet hierarchy using

the procedure described in Algorithm 1. The edge weights are

assigned to be semantic distances as obtained from Rita Word-

Net Library (2015).

(3) Google Similarity Distance: Google Similarity Distance (Cilibrasi

& Vitanyi, 2007) has been used to construct tag graphs in ap-

plications such as tag ranking (Liu et al., 2009). As mentioned

in Section 1.1, a threshold is used to discard certain edges in tag

graphs. We choose a threshold such that for a tag graph with

N nodes (or tags), there are exactly (N − 1) edges remaining,

so that the tag graph thus formed has same number of edges

and space requirement as the tag tree learnt from proposed

approach. Edge weights for the tag graph are taken to be the

Google Similarity Distance as defined by Cilibrasi and Vitanyi

(2007).

(4) LS Weighted Average Hops (LS-WAH): Here we construct a tag

tree using the proposed local search based approach, to mini-

mize Weighted Average Hops (3) in Section 3.2. If an edge ex-

ists between tags ti and tj then the weight of the edge connect-

ing them is given to be (1 − JT (i, j)).

(5) LS Similarity Approximation (LS-SA): This tag tree is constructed

using the proposed approach with objective corresponding to

Similarity Approximation as outlined in (4) in Section 3.2. The

edge weights are assigned as in method 4 above.

(6) Symmetric sum based: In order to compare the performance

of the proposed tag tree construction approaches with that

of other tag recommendation approaches that do not use

tag trees or tag graphs or any visual features, we also pro-

vide the performance of the symmetric sum based approach

as proposed in Sigurbjörnsson and Van Zwol (2008). Note

that the space required to store the pair-wise similarities in

Sigurbjörnsson and Van Zwol (2008) is O(N2) while the pro-

posed tag tree construction requires O(N) space to store the

tag tree.

he prediction task is performed using the approach described in

ection 4.3.1. For methods numbered 2, 3, and 4 above, dist(ti,tj) as

equired in (7) is calculated by adding distances of edges in path

onnecting tags ti and tj. For LS-SA method, dist(ti,tj) is defined as

1 − ST(i, j)} where ST(i, j) is calculated for an ontological tag tree T as

er ( 5 ). This is because the tag tree construction approach for LS-SA

ethod utilizes product based Similarity Approximation (5) and so it

s appropriate to use same approach to estimate similarities based on

tree, and hence to calculate dist(ti,tj). Similarly, for Symmetric sum

ased method (Sigurbjörnsson & Van Zwol, 2008), dist(ti,tj) is defined

s {1 − JT (i, j)} where JT (i, j) is the Jaccard similarity between tag ti

nd tj as defined in Section 3.2. Note that this makes (7) similar to the

um based scoring approach in Sigurbjörnsson and Van Zwol (2008).

Flickr corpus: We begin by choosing the top 150 most popular tags

n a sample of Flickr images. After selecting only those tags that also

ccur in the WordNet database, we are left with 117 tags. These com-

rise the set T . The total number of tags in an image, varies from 0

o 6 for most Flickr images. Since we need at least one tag to be seen

nd at least one to be predicted, we vary NTags from 2 to 6. For each

alue of NTags, test images are selected which contain exactly NTags

ags. For each such image i, all combinations of NSeen tags are selected

o comprise the observed tag set T i ,Seen. Predictions are made as dis-

ussed in Section 4.3.1 and performance of tag prediction task is mea-

ured using (6). NSeen is varied from 1 through (NTags − 1). Given val-

es for NTags and NSeen, the Average Tag Prediction Accuracy is the Tag

rediction Accuracy using (6) averaged across test images. We define

verall Tag Prediction Accuracy as the mean of Average Tag Prediction

ccuracy across all combinations of NTags and NSeen.
The Overall Tag Prediction Accuracies for the various methods

ompared are shown in Table 2. Tables 3–8 show the Average Tag

rediction Accuracies for various combinations of NTags and NSeen for

he individual methods discussed in Section 4.3.2 for Flickr corpus.

or comparison, the Average Tag Prediction Accuracies marginalized

ver NTags are shown in Fig. 6. Note that Google Distance refers to

he method corresponding to Google Similarity Distance as outlined

bove. It can be seen that the LS-SA method outperforms all oth-

rs and has its performance very close to that of the Symmetric

um based approach (Sigurbjörnsson & Van Zwol, 2008). It should

e noted that the latter utilizes pair-wise similarities between tags

s derived from the corpus and thus has space requirement of O(N2)

hich as discussed in Section 1.1 is very high for large number of

ags, i.e., for large N. Compared to this, the proposed approach has
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Table 7

Average Tag Prediction Accuracies (in %) obtained using LS-SA

method on Flickr corpus.

NSeen → NTags ↓ 1 2 3 4 5

2 25.87 – – – –

3 20.34 21.65 – – –

4 26.09 28.96 26.43 – –

5 52.33 54.79 54.82 53.16 –

6 59.57 61.78 62.10 60.81 59.07

Table 8

Average Tag Prediction Accuracies (in %) obtained using Symmetric

sum method on Flickr corpus.

NSeen → NTags ↓ 1 2 3 4 5

2 25.62 – – – –

3 21.19 22.17 – – –

4 28.69 30.88 28.12 – –

5 55.6 57.88 57.12 54.27 –

6 62.77 65.48 67.05 66.35 63.75
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Fig. 6. Average Tag Prediction Accuracies marginalized over NTags for various methods

for the tag prediction task on Flickr corpus. Note that Google Distance refers to the

method corresponding to Google Similarity Distance as outlined in Section 4.3.2.

Table 9

Average Tag Prediction Accuracies (in %) obtained using Random method on Stock

images corpus.

NSeen → NTags ↓ 1 2 3 4 5 6 7 8 9

2 1 – – – – – – – –

3 7 5.28 – – – – – – –

4 11.3 5.8 4.9 – – – – – –

5 14.9 10.1 6.8 6.1 – – – – –

6 19.1 12.9 10.1 9.5 3.1 – – – –

7 21.5 16.1 14.6 10.1 13.1 2.5 – – –

8 20.7 17.8 11.8 12.7 6.4 9.6 2.3 – –

9 28.6 25.5 23 19.8 19.4 12.4 7 5.7 –

10 28.3 27.6 23.5 23.5 17.7 13.6 16.7 7.6 7.4

W

Table 10

Average Tag Prediction Accuracies (in %) obtained using WordNet method on Stock

images corpus.

NSeen → NTags ↓ 1 2 3 4 5 6 7 8 9

2 1.9 – – – – – – – –

3 8.9 3.3 – – – – – – –

4 14.2 10.9 3.4 – – – – – –

5 21.3 16.9 14.7 8.5 – – – – –

6 28.4 22.8 22 16.7 9.8 – – – –

7 32.3 28.4 28.4 24.8 22.4 12.6 – – –

8 35.7 33.3 32.7 30.7 27.6 23.8 13 – –

9 36.5 34.5 32.7 31.9 28.7 26.3 23.4 15.5 –

10 37.4 35.2 32.9 30.8 28 26.1 22.3 18.5 9.9

Table 11

Average Tag Prediction Accuracies (in %) obtained using Google Similarity Distance

method on Stock images corpus.

NSeen → NTags ↓ 1 2 3 4 5 6 7 8 9

2 3.5 – – – – – – – –

3 11.2 8.4 – – – – – – –

4 24 26.6 21.9 – – – – – –

5 32.3 39.8 39.7 35.2 – – – – –

6 36.6 43.9 46.5 46.5 44.5 – – – –

7 39.4 44.8 47.8 49.5 49.5 48.5 – – –

8 43.6 45.2 47.3 48.5 49.1 49 48.7 – –

9 41.9 43.5 44.4 45.4 45.9 45.8 45.2 44.9 –

10 41.6 42.7 43.2 42.8 42.6 42 40.7 39.5 38.7

Table 12

Average Tag Prediction Accuracies (in %) obtained using LS-WAH method on Stock

images corpus.

NSeen → NTags ↓ 1 2 3 4 5 6 7 8 9

2 7.8 – – – – – – – –

3 14.6 15.4 – – – – – – –

4 20.5 22.6 22 – – – – – –

5 36.2 33.2 32.8 31.3 – – – – –

6 49 47.6 45.2 43.3 41.5 – – – –

7 59.6 59.4 58.7 57.1 54.4 51.4 – – –

8 62.3 63.5 63.2 62.8 61.4 58.2 54.9 – –

9 56.6 59.7 59.2 58.7 57.9 56.3 52.8 49.5 –

10 53.5 57.6 57.4 56.8 56.1 54.7 52.9 48.5 44.4

Table 13

Average Tag Prediction Accuracies (in %) obtained using LS-SA method on Stock

images corpus.

NSeen → NTags↓ 1 2 3 4 5 6 7 8 9

2 7.2 – – – – – – – –

3 13.38 11.1 – – – – – – –

4 28.4 27 21.1 – – – – – –

5 44.5 41.9 38.5 35 – – – – –

6 53.3 53.3 51.3 49.5 46.9 – – – –

7 61.7 63.2 62.6 60.8 58.3 56 – – –

8 64.3 64.8 65.8 65.3 63.1 60.2 57.4 – –

9 59 60.2 60.8 61.1 60.8 58 55.3 52.3 –

10 55.7 57.7 57.9 57.8 57.6 57 53.7 50.6 47.1

Table 14

Average Tag Prediction Accuracies (in %) obtained using the Symmetric sum

approach on Stock images corpus.

NSeen → NTags ↓ 1 2 3 4 5 6 7 8 9

2 11.1 – – – – – – – –

3 16.9 17.7 – – – – – – –

4 32.1 32.5 29.7 – – – – – –

5 45.1 47.8 46.4 43.1 – – – – –

6 52.7 56 56.3 55.5 53.2 – – – –

7 62.1 64.6 64.9 63.9 62 59.9 – – –

8 64.5 68 68.1 67.8 65.8 63.1 60.5 – –

9 60.6 63.9 64.9 64.9 64 61.5 58.5 55.9 –

10 58 61.5 62.9 63.2 63.1 61.6 58.9 55 52.3
only O(N) space requirement. We will discuss in Section 6 the reason

why LS-SA leads to construction of a tree that outperforms the LS-

AH method. Google distance based method has performance close

to that of LS-WAH while the tag tree based on WordNet hierarchy

does not work very well for tag prediction task. As expected, random

tag prediction performs the worst.

Stock images corpus: As in the Flickr corpus, we first select the set

of most popular tags from the corpus of stock images that are also

in WordNet. This produces a set T , of 30 tags. Tables 9–14 show the

Average Tag Prediction Accuracies for various combinations of NTags

and NSeen for the tag prediction methods discussed in Section 4.3.2.

The Average Tag Prediction Accuracies marginalized over NTags are

shown in Fig. 7, plotted as a function of NSeen. Note that if NTags is

kept constant, increasing NSeen reduces the number of unseen tags

(i.e., T i\T i ,Seen), thus reducing the random chance of predicting a cor-

rect unseen tag from T \T i ,Seen. As a result of this phenomenon, a drop
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Fig. 7. Average Tag Prediction Accuracies marginalized over NTags for various methods

for the tag prediction task on Stock images corpus.
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n performance for random prediction and other methods can be seen

ith increasing NSeen.

We provide examples of some test images from the Flickr corpus

hat had NTags = 5 and NSeen = 2. Fig. 8 shows a few test images for

hich LS-SA method made 100% correct predictions. Fig. 9 shows

est images that gave 0% Tag Prediction Accuracies. The correspond-

ng sets of see (T i ,Seen), unseen (T i\T i ,Seen), and the predicted tags (Pi)

re also provided.

The results indicate that the proposed local search paradigm

ased approach has successfully adapted the ontological tag tree ob-

ained from WordNet to the Flickr or stock images corpus. We can
(a) Seen:

highway,

road

Unseen:

route, shield,

sign

(b) Seen:

austin,

band

Unseen:

music, texas,

tx

(c) Seen:

england,

europe

Unseen:

london, tr

uk

ig. 8. Example images where LS-SA method gave 100% Tag Prediction Accuracy when the fir

nd photo ids of these images are (dougtone@7975042008), (elchupacabra@7023118527), (je

espectively.

(a) Seen:

film, france

Unseen:

holiday,

sky, snow

Predicted:

paris, europe,

bw

(b) Seen:

china, family

Unseen: live,

summer,

usa

Predicted:

photography,

christmas,

photo

(c) Seen:

canada,

ocean

Unseen:

red, sky,

sunset

Predicte

sea, beach

water

ig. 9. Example images where LS-SA method gave 0% Tag Prediction Accuracy when the first

he tags that were predicted by the LS-SA method. The Flickr owner and photo ids of these

on@7730525250), (wwarby@5145467790), and (1968-dodge-charger@5507716438), respec
btain performance better than or close to that of other tag predic-

ion approaches, while having several orders of savings in the space

equirement. We next describe the second data-driven task used for

valuation of tag trees.

.4. Efficient classification task

We consider the problem of efficiently associating tags with re-

ources based on the resource content. For domains where it is feasi-

le to extract features from the resource and to train concept detec-

ors, we show how tag trees can be utilized to determine which con-

ept detectors should be applied on a given test resource. We demon-

trate this using annotated image corpora and utilize different modal-

ties to represent the content of a given resource. Given a test image

from the corpus without any associated tags or keywords, we pre-

ict which of the N tags are applicable to the image. By letting each

f the N tags correspond to a category or class, this is equivalent to

multi-class, multi-label classification task. Let us assume that one-

s-all binary classifiers are available for each tag class – these take

he image instance i as input and can predict P(j|i) where class j cor-

esponds to tag tj. We can use this to predict whether or not a tag tj

hould be associated with image i based on whether P(j|i) is greater

han an appropriate threshold θ or not.

The naive approach to predict all tags applicable to i would be

o test each of the N classifiers on i and accumulate those tags for
avel,

(d) Seen:

art, dc

Unseen:

graffiti,

street,

washington

(e) Seen:

concert,

england

Unseen:

london, music,

uk

st two tags were seen and the next three were unseen and predicted. The Flickr owner

ffwilcox@159730021), (daquellamanera@4678084101), and (martinrp@3832812191),

d:

,

(d) Seen:

autumn,

black

Unseen:

light, macro,

night

Predicted:

white, nature,

bw

(e) Seen: car,

green

Unseen:

photo,

washington,

white

Predicted:

red, spring,

nature

two tags were seen and the next three were unseen and predicted. Also provided are

images are (king-edward@4061393892), (familymwr@4928996212), (alejandroerick-

tively. Seen: (T i ,Seen); unseen: (T i\T i ,Seen); and predicted: (Pi) as per Section 4.3.
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Fig. 10. Tag Recall obtained with respect to number of classifications performed for

Flickr corpus. θ is chosen to be 0.5.
which the predictions by the corresponding classifiers exceed θ .

Some works such as Li and Snoek (2013) propose techniques to make

classification of images faster. However in order to do this, these

works require re-training of classifiers and cannot utilize existing

classifiers for each tag. Contrary to these, in the proposed approach,

we can utilize pre-trained classifiers corresponding to different tags.

Other works such as the image annotation application in Wu et al.

(2008) associate a test image with tags based on applying all con-

cept detectors on the test image and then combining the predictions.

However such approaches require applying all N classifiers to a given

test image and are hence inefficient for a large number of tags. This

process can be made more efficient by using the ontological tag tree

on the set of tags. Once certain labels have been predicted for an

image i, one can utilize the tree structure to decide which tags are

more or less likely to be associated with the image. Thus the choice

of the classifiers to test next on the image i, can be made in a more

efficient manner. Therefore, a tag tree that captures the relations be-

tween the tags more effectively is expected to lead to more efficient

performance by reaching the correct number of predicted tags with

fewer number of binary classifications performed. The efficient clas-

sification task is formulated to measure the classification efficiency

in such a setting.

This evaluation task is formulated as follows. Given N binary clas-

sifiers, the jth classifier predicts probability P(j|i) of tag tj being asso-

ciated with a test image i. K binary classifications are performed for

image i and the set of tags that are predicted positive among those

K classifications, comprise the set of predicted tags Pi,K for image i

for given K. The ground truth set of tags that are associated with im-

age i as per the corpus, is denoted T i. We define performance of the

classification task based on the Tag Recall as defined below.

Tag Recall = |Ti ∩ Pi,K |
|Ti| (8)

Based on the above definition, the Tag Recall is monotonically in-

creasing with K: as more than K classifications are performed, the car-

dinality of the set of predicted labels can remain constant or increase,

leading to a non-decreasing value for the Tag Recall.

The most naive way of choosing the order in which the

N classifications are performed, would be to choose each bi-

nary classifier randomly. A more sophisticated approach can be

adopted by choosing the classifiers based on the decreasing or-

der of their class priors in the training corpus, i.e., choosing

the classifier corresponding to the most frequently occurring tag

first, followed by the next popular tag, and so on. We re-

fer to these methods as Random and Prior-based, respectively.

Below we discuss how the classifiers can be chosen based on their

priors and a given ontological tag tree.

4.4.1. Utilizing ontological tag tree for classification

Intuitively, the procedure for using an ontological tag tree to de-

cide how to choose the classifiers is similar to the approach for the

tag prediction task. For image i, once certain tags are predicted as

present, the tags in their proximity (as per the tag tree) have a higher

chance of being present too, and the corresponding classifiers should

be tested sooner. Similarly, the predicted absence of tags brings down

the chance that tags in their proximity will be present. We define be-

low a priority score for the tags that have not been tested for, based

on their priors and the predictions for the tags that have been tested

for. For image i and tag tree T, we define

Proximity( j) = Pprior( j) +
∑

c∈Ctested

(P(c|i) − θ) × (1 − dist ′(c, j))

(9)

where dist′(c, j) is the distance dist(c, j) as defined in Section 4.3.1

for various methods, normalized with respect to its maximum value
uch that dist′(c, j) varies between 0 and 1. Pprior(j) is the prior proba-

ility of tag tj, and Ctested is the set of tags that image i has been tested

or. Algorithm 3 utilizes (9) and presents the algorithm employed to

ecide the order of classifications for each image i. For a given image

i and given K, the set of labels predicted as present, i.e., Pi,K can be

btained using Algorithm 3.

Algorithm 3.

Algorithm for efficient classification by using ontological tag tree.

Input:
• Cj: classifier for label j corresponding to tag tj (∀j ∈ T ), that can provide

P(j|i) for image i; threshold θ
• Pprior(j): prior probability for tag tj

• dist′(t,t′): normalized inter-tag distances calculated based on given tag

tree as outlined in Section 4.4.1
• K: number of binary classifications to perform

Initialize: Ltested = [ ]

Loop While |Ltested|≤K
• Calculate priority score for all tags in (T \Ltested) using (9)
• Test classifier Cĵ corresponding to tag t̂j with highest calculated

priority score to get P(̂j|i).
• Ltested = Ltested ∪ ĵ.

EndWhile. Output: Pi,K = {j:P(j|i) > θ , j ∈ Ltested}

Flickr corpus: We use the same set of 117 Flickr tags as described

n Section 4.3. In order to train image classifiers 500,000 Flickr train-

ng images are used. Each tag tj is treated as a class. Positive training

mages are those that are associated with the corresponding tag tj

nd negative training images are those that are not. We use a ratio

f 1:10 for number of positive instances to number of negative in-

tances for each class. SIFT features (Lowe, 2004) are used to train

inary SVM classifiers for each class. We provide results for the Ran-

om and Prior-based methods as discussed in Section 4.4, and for

ethods 2 through 6 described in Section 4.3.2 using the approach

utlined in Section 4.4.1. For θ = 0.5, the Tag Recall observed with

arying number of classifiers tested, i.e., K, are shown in Fig. 10. Note

hat Sigurbjörnsson and Van Zwol (2008) do not utilize the symmet-

ic similarities for an application as proposed in Section 4.4; how-

ver we utilize the symmetric Jaccard similarities as per Algorithm 3

nd compare against our approach for an understanding of the trade-

ff between performance and space requirement. It is clear that for

given K, our approach outperforms the tag tree constructed from

ordNet, the tag graph using Google Distance, and the ones that se-

ect classifiers randomly or solely based on prior. Performance of the

S-SA method is very close to that of the Symmetric sum method de-

pite having several orders of savings in the space requirement as

iscussed in Sections 1.1 and 4.3. For Tag Recall of around 4.4%, the

ag tree based on proposed approach (LS-SA) requires only 11 classi-

cations compared to 21 for LS-WAH, 31 for Google Distance based,

1 for WordNet, 36 Prior based, and 61 when the classifiers are ran-

omly selected. These correspond to 91%, 182%, 363%, 227%, 454% ad-

itional classifications used by these methods respectively, compared

o the proposed method with Similarity Approximation (LS-SA). The
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Fig. 11. Tag Recall obtained with respect to number of classifications performed for

Flickr corpus. θ is chosen to be 0.33.
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Fig. 12. Tag Recall obtained with respect to number of classifications performed for

Stock images corpus. θ is chosen to be 0.5.
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ordNet based method performs worse than the Prior-based

ethod, implying that the using semantics based distance with pri-

rs is less efficient than using priors alone. Visual-feature based im-

ge classification is a hard problem and the Tag Recall for 117 classes

ven after all 117 classifiers are tested, is observed to be less than

0%. This is also a result of the individual classifiers and of the chosen

hreshold θ . Note that the Tag Recall (8) is different from recall of a

lass. For θ = 0.5, when all the classifiers are tested, the average recall

ver all classes is 10.5% and the average precision is 15.9%.

A more lenient (i.e., lower) θ would lead to higher Tag Recall as can

e seen in Fig. 11. θ = 0.3 corresponds to an average recall of 37.7% and

verage precision of 4.9%. A lower θ also implies less relative weight

iven to PPrior(j) in (9) and as a result, the WordNet method performs

orse than even the Random method.

Stock images corpus: We perform experiments on the same corpus

hat was described in Section 4.3. In order to show the applicability

f our approach to different modalities that can be used to represent

given resource, we utilize the textual caption accompanying the im-

ge i to represent the image. A TF-IDF based bag-of-words represen-

ation is used for each image, followed by binary SVM classifiers for

ach class. As in the case of Flickr, we present variation of Tag Recall

ith K for various methods for θ = 0.5 in Fig. 12. θ = 0.5 corresponds

o an average recall of 73.6% and average precision of 75.6%. Our ap-

roach is seen to be able to better decide which classifiers to test, for a

iven K and as a result, leads to higher Tag Recall for a fixed K. For Tag

ecall of around 48%, the tag tree based on the proposed approach

LS-SA) requires only 7 classifications compared to 9 for LS-WAH, 9

or Google Distance based, 15 for WordNet, 11 for only prior based

nd 21 when the classifiers are randomly selected. These correspond

o 29%, 29%, 114%, 57%, 200% additional classifications used by these

ethods respectively, compared to the proposed method with Simi-

arity Approximation (LS-SA).

It should be noted that the goodness of predictions i.e., the preci-

ion and recall obtained when all classifiers are tested, is essentially a

roperty of the set of classifiers, which are the same for various meth-

ds used for this task. Based on the experiments, we have demon-

trated that using ontological tag trees constructed through the pro-
osed approach makes selection of classifiers much more efficient as

ompared to using purely semantics based tag tree or tag graphs built

sing commonly used techniques. We have also shown that we can

chieve a performance almost as high as other approaches despite

aving several orders less space requirement.

. Robustness analysis

We provide an analysis of the robustness of the proposed ap-

roach for constructing ontological tag trees. For the purpose of this

ection, we refer to the resource tag data using which the tag tree is

onstructed, as training data. The resource tag data over which the

onstructed tag tree is tested for evaluation purpose, is referred to

s the test data. As can be seen in Section 4, the LS-SA method has

onsistently outperformed LS-WAH across different corpora and for

oth data-driven tasks. Therefore, in this section we only study the

obustness of the LS-SA method, i.e., the proposed local search based

pproach using Similarity Approximation based objective function

4). In order to evaluate the constructed tag trees under various sce-

arios, we provide evaluation using tag prediction task as detailed in

ection 4.3. Annotated image corpora are used for this purpose. We

tudy the robustness of proposed approach with respect to label

oise, difference between training and test data, and the size of train-

ng data. These are discussed in detail below.

.1. Robustness to label noise in training data

As described in Section 1, a vast majority of the user generated

ata available over the Internet has noisy labels (tags) associated with

he resources. We study the effect of different degrees of label noise

n the tag tree constructed from such a noisy corpus. Fundamentally,

e attempt to understand how robust the proposed tag tree construc-

ion approach is, to different degrees of label noise. We also attempt

o answer questions such as – how much noise is too much for tag

ree construction?

We work with stock image corpus since stock images are profes-

ionally curated and have little to no label noise, thus providing a

etter control on the amount of noise in the experimental data. We

elect top 150 tags (keywords) from this corpus and remove those

hat do not occur in Flickr or in WordNet. This gives a set T of 108

ags. Each stock image has on an average 3 tags amongst T . A total of

00,000 stock images are used in training set and 50,000 stock im-

ges in the test set. In order to simulate varying degrees of label noise

n training set, we replace stock images in the training data with ar-

ificially created images with noisy tags. The total number of training

mages (stock images and noisy images) is kept constant at 100,000.

he artificially created noisy images are defined as images having

xactly 3 randomly chosen tags from T . The test set is not varied.

ig. 13 shows the variation of Overall Tag Prediction Accuracy (%) as

efined in Section 4.3, with number of images that were from stock

mages in the training set. It can be seen that even with 87.2% noisy

mages in the training set, the performance of the constructed tag

ree (39%) is very close to the performance when there are no noisy

mages at all (40%). Even when 99.2% of the images in training set

re noisy, the Overall Tag Prediction Accuracy is 31.4%. An explana-

ion for such performance even at high levels of noise is that the

oisy images have uniformly random distribution of tags. The over-

ll effect of adding noisy images to a corpus can be understood as

dding certain intensity of white noise to the co-occurrence counts

etween tags. Unless the noise intensity dominates the corpus statis-

ics, the relative order of pair-wise connections between tags re-

ains fairly unchanged. In other words, since the noisy images have

o strong biases towards specific tag-pairs, the performance of tag

rees constructed using such a hybrid training set is not severely

ffected.



9600 C. Verma et al. / Expert Systems With Applications 42 (2015) 9587–9602

10
2

10
3

10
4

10
50

10

20

30

40

Number of stock images in training set

O
ve

ra
ll 

A
vg

. T
ag

   
   

   
P

re
di

ct
io

n 
A

cc
ur

ac
y 

(in
 %

)

Stock + Noisy images
Stock + Flickr images
Stock images only
WordNet
Random

Fig. 13. Overall tag prediction score (in %) obtained by proposed approach in Section

4.3.1. The training set used to construct an ontological tag tree is formed by using cer-

tain number of stock images, with (A) Flickr images, or (B) noisy images, or (C) none.

Testing of the constructed tag tree is done on images of stock photos only. For compar-

ison, the Overall Tag Prediction Accuracies for Random method, and WordNet method

(as outlined in Section 4.3.2) are also provided.
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5.2. Robustness to difference between training and test data

In several machine learning applications, the data over which a

model is trained has certain amount of distributional difference as

compared to the data over which it is tested. Looking at the construc-

tion of tag tree as model training, the degree to which a tag tree will

be effective on a test set is a function of the difference between the

test set and the training set using which the tag tree is constructed.

Here we study how the performance of a tag tree varies for different

degrees of difference between the training and the test sets. We uti-

lize the same stock images corpus as used in Section 5.1. In order to

vary the difference between training and test sets, we replace vary-

ing number of stock images in training set with images from Flickr

corpus (Section 4.1). The total number of images (stock images and

Flickr images) used for training of tag tree is kept constant at 100,000.

Fig. 13 shows the variation of Overall Tag Prediction Accuracy (%) with

number of images that were from stock images in the training set.

It is interesting to note that for the same number of stock images,

adding completely noisy images leads to better performance than

adding Flickr images. For instance, for the case when 99.2% of train-

ing images are from Flickr, performance of the constructed tag tree

(23.1%) is seen to be substantially worse than when 99.2% of training

images are noisy (31.4%). The reason for this is that the tag distribu-

tion in Flickr corpus is not random, unlike in the case of noisy images.

As a result, there are strong relationships between tags in Flickr cor-

pus that are absent in stock image corpus. Constructing a tag tree on

such a hybrid corpus attempts to capture corpus statistics of varying

numbers of Flickr images and stock images, and in the process, is less

effective at capturing the relationships that were present in the test

data that has only stock images.

5.3. Size of training data

In this section, we study the effect of size of training set on con-

struction of tag trees. Fig. 13 shows the variation of Overall Tag Pre-

diction Accuracy (%) with number of stock images in the training data.

Here the size of training set is equal to the number of stock images in

it and there are no Flickr images or noisy images. The performance of

constructed tag tree improves with size of training data and almost

saturates after certain number of training images. This is quite simi-

lar to the variation in performance of most machine learning models

with the size of data over which they are trained. The performance

of constructed tag tree from only 800 stock images is very close to

the performance when 100,000 images are used. Even when only 100

stock images are used, the constructed tag tree performs much better

than the tag trees using 100 stock images with 99,900 Flickr or noisy

images. Based on above, one can conclude that for the construction
f ontological tag trees, it is better to use fewer training images than

larger set which is noisy or dissimilar to the test set.

. Discussion

In this section, we provide a discussion on the key insights and ob-

ervations made during the course of study on ontological tag trees.

As outlined in Section 3, the motivation for the objective function

3) in the proposed approach is that in order to get a lower value for

3), it is more important to separate the tags ti and tj having high JT (i,

) with less number of hops, as compared to the tags with low JT (i, j).

owever, separating the latter set of tags by fewer hops would also

ower the value of (3). Since (3) attempts to minimize the weighted

umber of hops between tag pairs, a local search in the space of all

ossible trees on T would lead to connecting most tags to a central

ag, thus forming a star graph. Such a minimum weighted hops span-

ing tree problem on an all connected graph can be solved in poly-

omial time using Gomory–Hu trees (Panigrahi, 2008); however star

raphs need not reflect the true relationship between tags in a cor-

us. In order to ensure that the proposed approach does not induce

rtificial structures because of bias of the objective function, we con-

train the search space to be spanning trees of a suitably constructed

imilarity Graph with the help of a threshold τ , as outlined in

ection 3.2. Experimentally, constraining as above does succeed in

nsuring that we do not get a star graph. However upon visual inspec-

ion, the proposed approach yields star subtrees connected through

heir centers. The objective function (4) in comparison has no such

ias for shorter trees and as a result, the results for proposed ap-

roach using (4) outperform those using (3). Figs. 14–17 show the

ariation of different aspects of constructed tag trees with τ for 117

lickr tags. Fig. 15 shows that with increasing τ , the number of tag

rees that are eligible candidates in an iteration of the local search,

rops drastically for both LS-WAH and LS-SA. As discussed above, a

enient τ leads to the LS-WAH based local search converging to star

raphs which are an artifact of the procedure and not of the true rela-

ionships between the tags. As a result, for lower τ , the performance

f LS-WAH based approach degrades substantially as can be seen in

ig. 17. For large values of τ , the number of candidate neighbors at

ach iteration of the local search becomes less. This constrains the

ocal search and prevents it from attaining a lower value for the ob-

ective function (4). This leads to a drop in the performance of LS-SA

s can be seen in Fig. 17. We have chosen a threshold as the median

f the pair-wise Jaccard similarity values since it offers a convenient

rade-off between number of candidates and performance for LS-SA.

At each iteration of the proposed approach, there are O(N2) neigh-

ors of a tree to explore, where N =| T |. Calculating the pair-wise
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Fig. 16. Variation of time (hours) taken by local search to converge.
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istances (or hops) and computing (3) or (4) require O(N2) operations

er neighbor (Ford & Fulkerson, 2010). Thus, the complexity of the

roposed approach, for either objective function, is O(N4) per itera-

ion. A bottleneck of the proposed tag tree construction approach is

he time taken for local search to terminate. Fig. 16 shows the varia-

ion of the time taken by the proposed local search based approach,

ith respect to τ . Matlab on a 2.9 GHz, 8GB RAM 4 core processor is

sed. One way to reduce the time taken at each iteration is to reduce

he number of neighbors. This is achieved by constraining the solu-

ion space to spanning trees of a Similarity Graph. While the order of

omplexity at each iteration remains at O(N4), the time taken is much

ess. For instance, when τ is chosen as median of the pair-wise Jac-

ard similarity values as in Section 4, the time taken is nearly half of

he time taken when τ = 0, which corresponds to having search space

s all possible trees on T . Thus, for the proposed approach using ob-

ective function (3), constraining the local search to spanning trees of

Similarity Graph is necessary to ensure that we do not get a triv-

al solution. Doing so also makes the local search faster. As compared

o this, for the proposed approach using objective function (4), using

Similarity Graph only makes the optimum search faster as can be

een in the reduced number of candidates in Fig. 15 and the reduced

umber of iterations to converge, as shown in Fig. 14.

Intuitively, using (4) as the objective function minimizes the

eighted L1 norm of the difference between pair-wise Jaccard sim-

larity and the similarity estimated using a tag tree, thus trying to

pproximate the normalized symmetric second order statistics of a

orpus using a tree on the set of tags. We have chosen weighted L1

orm since it was observed to lead to the best results across different

orpora among other variants such as L1, L2 and weighted L2 norm.

mplementation of the similarity estimated using a tag tree ( 5 ) can

e conveniently done by using Logarithms and Ford Fulkerson Algo-

ithm (Ford & Fulkerson, 2010). Also, since the LS-SA approximates

he pair-wise similarities JT (i, j) in O(N) as compared to O(N2), ap-

roaches such as Sigurbjörnsson and Van Zwol (2008) that utilize JT (i,

) lead to equal or only marginally better performance, despite having

everal orders higher space requirement.

. Conclusions and future work

In this section we summarize the research contributions of our

aper, key practical insights, and advantages and limitations as com-

ared to existing expert systems. We also discuss limitations of our

ork, and provide several suggestions for future research directions.

We have proposed ontological tag trees to enable expert systems

ddress the sparsity of folksonomies effectively and in a space effi-

ient manner. Ontological tag trees or tag trees are defined as sim-
le trees on the set of tags in a corpus. The construction of tag trees

s formulated as an optimization problem on corpus based statistics,

nd is solved through a novel local search based approach. We have

hown that this approach can be used to build tag trees for tags ob-

ained from two corpora, one composed of noisily annotated Flickr

mages and the other composed of cleanly annotated stock images.

o validate the utility of the constructed ontological tag tree, we pro-

osed two evaluation tasks involving tag prediction in images. We

ave demonstrated that for the task of predicting the unseen tags of

given image with a partially observed set of tags, the proposed on-

ological tag trees outperform those constructed using only semantic

elationships, or tag graphs constructed using commonly used tech-

iques that have comparable space requirements. In the second task,

e have shown that the tag tree obtained from the proposed ap-

roach makes the process of using appropriate classifiers to tag an

ntagged test image more efficient. Robustness analysis shows that

he proposed approach is fairly robust to tag noise and differences

etween the training and test set distributions.

Compared to previous expert systems, our work offers signifi-

ant advantages. In addition, several key insights can be derived from

ur study. Since expert systems such as Uddin et al. (2013) based

n only semantic relationships fail to capture the data-specific rela-

ionships between tags, their performance is significantly lower on

ata-driven tasks than that of ontological tag trees constructed using

he proposed approach. This is demonstrated through evaluations in

ection 4. In addition, we show that even though ontological tag trees

ave space requirement of only O(N) for N tags, as compared to O(N2)

or tag graphs, tag trees can provide equal or better performance than

everal existing expert systems on the evaluation tasks. Particularly,

ompared to Sigurbjörnsson and Van Zwol (2008) which may require

7 terabytes of space to store pair-wise similarities, our approach re-

uires less than 50 megabytes, and still achieves almost equal perfor-

ance. Ontological tag trees can thus offer a very convenient method

or expert systems to capture corpus based relationships for tasks

uch as tag prediction, and efficient resource classification. The sig-

ificant savings in space requirement facilitates practical deployment

f the expert systems even on computing devices that do not have

igantic memory available. The third key advantage of using onto-

ogical tag trees is that their construction does not depend on the

vailability of content-based features (such as textual or visual fea-

ures). Thus as compared to previous expert systems such as Chen

t al. (2015), Hsieh et al. (2009), Li et al. (2009), Sun et al. (2011)

nd Wu et al. (2009), our approach can help alleviate sparsity of on-

ine folksonomies even in domains where extracting content-based

eatures may be inefficient or infeasible (Huang et al., 2010; Song

t al., 2010; Yin et al., 2009; Zanetti et al., 2008). Lastly, as discussed in

ection 6, the performance of the LS-SA approach is significantly bet-

er than that of the LS-WAH approach. It can thus be recommended

hat the LS-SA approach be used to construct ontological tag trees.

While the proposed ontological tag trees can help expert systems

chieve high performance in a space efficient manner, there are cer-

ain limitations of the proposed approach. As discussed in Section 6,

he time taken per iteration of the local search based tag tree con-

truction approach varies as O(N4). For large number of tags, the to-

al time taken to construct tag trees can be high. In addition, the tag

rees only capture undirected weighted relationships between tags.

s a result, any directed relationships that may be present in the cor-

us (for example subsumption relationships (Schmitz, 2006)) are lost

y the constructed tag trees.

We provide several suggestions for future work directions based

n our work. Since the tag tree construction approach has a limita-

ion of high time requirement, one direction of future work could

e to make the proposed approach faster by choosing a higher or

n adaptive τ , with the possible trade-off being increasing the con-

traint on the local search, thereby achieving a sub-optimal tag tree.

nother direction of future work could be to keep a low τ but develop
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distributed and possibly approximated versions of the proposed ap-

proach, such that available distributed clusters, for example Amazon

EC2 cloud server (Amazon EC2, 2015) can be leveraged. In the cur-

rent work, the LS-SA approach can be thought of as approximating

the symmetric second order corpus statistics. An extension of the

work could be to construct tag structures that approximate higher

order corpus statistics. In addition, future work could utilize the con-

structed tag trees for other practical applications such as tag recom-

mendation: given set of tags associated with a test images, which

additional tags would you associate with the image? Removal of po-

tentially noisy tags can also be studied based on whether a tag ap-

pears too far in the tree from other tags associated with a given im-

age. Lastly, a hierarchical taxonomy could be constructed in future,

where the edges between the nodes are directed, by adopting similar

techniques and using the co-occurrence data from the corpus.
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