
 
Fig. 1.  The proposed system 
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Abstract— In this paper, we propose an Avatar based Virtual 
Reality user training system that efficiently trains users in 
performing a variety of activities using a pre-recorded avatar. To 
evaluate and monitor the user’s adherence to the avatar’s 
instructions, the system compares the user’s motion data against 
the avatar’s motion data, with the latter established as the 
ground truth dataset. Unfortunately, human reaction delay may 
cause the motion sequences between the user and the avatar to be 
misaligned. Consequently, to enable accurate comparison, we 
analyze four signal processing time delay estimation methods—
an existing method and three proposed methods—to align the 
motion sequences between the user and pre-recorded avatar, 
allowing the correct frames to be compared. Our experiments 
demonstrate that the proposed methods perform better data 
alignment than the existing method and the fourth method, 
which employs a novel spatial-temporal segmentation algorithm, 
has the highest potential to be the optimal delay estimation 
approach. Further, to provide real-time guidance to the user, we 
determine a unique tolerance threshold for each activity such 
that a user accuracy value below the threshold value prompts 
real-time guidance to correct the user and an accuracy value 
above the threshold is tolerated. We perform an experiment with 
the assistance of a physical trainer and use the experimental data 
to design a histogram-based method using Bayesian decision 
theory to determine the threshold values.   

Keywords—Virtual Reality, signal processing, gesture 
recognition, pattern classification 

I. INTRODUCTION 
Often times, after a physical therapy or fitness training 

session, patients and clients return home with verbal or 
pictorial instructions to follow. Unfortunately, these 
instructions are static and can be difficult to comprehend and 
comply with. To address the above problem, we propose an 
interactive avatar-based Virtual Reality platform, which 
enables individualized user training for a range of activities 
from home. Although there exist other avatar based training 
systems, our system provides real-time guidance rather than 
just providing scores, rendering our system unique. This 
feature allows the system to cater to the abilities of the user 
and to react to the user’s performance by demonstrating the 
necessary adjustments to establish optimal conditions. In 
essence, our system is dynamic, allowing every user 
experience to be distinct.  

Our avatar-based training system comprises of two 
sessions: (1) during an offline session, experts are recorded 
performing a specific set of activities with the trainee and their 
recorded data is used to render an avatar that serves as the 
user’s instructor later, and (2) during a live home session, 
users select an activity and follow the instructions given by the 
pre-recorded avatar. Further, our system employs the MS 
Kinect [12] to capture the user’s activity and gather the 
necessary data, which is delivered to and processed by the 
avatar training system.  

To determine the user’s accuracy in performing his or her 
chosen application, we compare the user generated motion 
data with the pre-recorded avatar motion data. However, as 
shown in Figure 1, there may be a human reaction delay - the 
time it takes for the user to react to the avatar frame shown on 
the screen. Because of the existence of human reaction delay, 
it is inaccurate to compare the user motion data received by 
the platform with the motion vector corresponding to the 
current avatar frame, F, being rendered. Rather, the user 
motion data should be compared with an earlier frame, F-i, 
where i is the time shift of i frames needed for proper data 
alignment. Figure 2 illustrates the motion data misalignment 
predicament. The problem is not trivial and cannot be easily 
addressed by techniques such as time-stamping the data and 
comparing it accordingly for the following reasons.  

1) Physical therapy consists of a group of activities. By 
time-stamping, we need to know where the activity begins, but 
the Kinect sensor only captures motion and is not aware of 
such information. 

2) Human reaction delay changes from time to time, so 
even if the timestamps start at the same time, they will drift as 
time accumulates without correction. 

Thus, to address possible data misalignment, we compare 
and analyze four time delay estimation methods, an existing 
method and three proposed methods, as pre-processing 
functions that align the user motion data with the proper avatar 
frame. The above allows accurate monitoring of user 
performance with regard to avatar instructions. To 
quantitatively evaluate the user’s performance, and provide 
real-time guidance to the user in an effort to enhance user 
adherence to the avatar training, we develop a tolerance 
threshold level such that an accuracy level below the threshold 
will demand real-time feedback and an accuracy above the 
threshold will be tolerated. 

In summary, the rest of this paper is organized as follows: 
In section 2, we examine related work. In section 3, we 
elaborate on the four methods to estimate user latency. The 
results of each method and a comparison between the 
approaches are also presented in this section. In section 4, we 
explain in detail our method in determining an activity’s 
tolerance threshold. Lastly, in section 5 we conclude the paper 
and propose future work. 



 
Fig. 2. User-avatar motion sequence misalignment caused by user delay; 
note that ΔF = i represents the delay between the sequences 
 
 

II. RELATED WORK 
Previous work has been done in determining the 

appropriate time-shift, or delay, for proper data alignment. In 
particular, an existing time delay estimation method proposed 
by [1], calculates the time-shift between two sequences by 
determining the modulus of the quaternionic cross-covariance 
for all joints. However, as we will demonstrate in this paper, 
this approach is ineffective as it assumes the time-shift to be 
invariant. Thus, we present three new data alignment methods 
to account for a varying delay. In addition, [1] provides visual 
feedback to the user by displaying the user’s calculated 
correlation-based score. As previously noted, we expand upon 
existing avatar based training systems by providing real-time 
guidance to the user as opposed to only providing scores, 
which merely indicate the accuracy of the user’s performance 
but do not offer the necessary adjustments to correct existing 
inaccuracies. Furthermore, it is impossible for the user to 
impeccably duplicate the avatar’s instructions. Thus, rather 
than potentially inundating the user with continuous visual 
feedback, we introduce a threshold tolerance level that alerts 
the system to only provide real-time guidance if the user is 
performing at an unacceptable level. In terms of quantitatively 
evaluating the user’s performance, we adopt the metric 
proposed by [2], which calculates the user’s accuracy by 
comparing the angles of the joints of interest between the 
subjects. Thus, our work builds upon the methods proposed by 
[1] and [2] by using the joint angles as a dataset for 
comparison with an appropriate tolerance threshold value for 
each application to provide beneficial real-time guidance to 
the user. 

III. TIME DELAY ESTIMATION 
As previously mentioned, user delay, which is defined as 

the time difference or offset between the moment the user 
views the instruction and the moment when he or she 
correspondingly responds physically to the instruction, is not 
invariant. Thus, to accurately evaluate the user’s performance, 
the temporal misalignment, which is the time-shift 
corresponding to the motion sequences of interest between the 
user and the avatar, must be corrected. As a result, in an effort 
to align the user’s motion sequence with that of the instructor 
avatar’s, we compare four distinct signal processing 
methodologies to estimate the time delay. However, prior to 
any time-shifting, we first pre-process the data by aligning 

both the user and avatar root joint positions, located at the 
center of the hip, to the 3-dimensional coordinate space origin, 
allowing for both a better comparison of the motion sequences 
and a reduction of noise caused by the Kinect. Furthermore, 
Smartbody [11], the open source character animation platform 
we developed upon, accounts for body size differences 
between the user and the avatar by retargeting the joint 
positions. In order to determine the estimated time-shift, we 
calculate the cross correlation given by 
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where f and g are the two discrete time real signals of interest, 
representing the avatar and user joint position motion data, 
respectively. The estimated time delay is then computed as 

                                arg max(( )[ ])delay f g nτ = ∗                 (2) 

Because the Kinect captures 20 joints with an x, y, z 
component for every joint, we find the delay by determining 
the argmax of the sum of the cross correlations between each 
joint coordinate 
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where K = 60 is the total number of joints and their 
corresponding coordinates, f and g are the K × N matrices of 
the joint values over the total number of frames N, and 
subscript i corresponds to the row index of matrices f and g. 

A. Gesture Recognition 
To implement the third and fourth time delay estimation 

methods, we introduce a gesture recognition program. For the 
purposes of our system, we define a gesture as a sub-motion of 
a complete motion sequence, i.e., a gesture is dynamic and 
characterized by a motion trajectory over a subsequence of 
frames. For example, in an activity where the user is to raise 
his or her hands into the air, touch his or her toes, and then 
spread his or her arms to the side, the described activity can be 
defined by and divided into three different gestures. Because 
gesture identification falls under a classification problem, we 
use a multi-class support vector machine (SVM) with a 
Gaussian radial basis function using the libSVM library [10].  
Our feature vectors contain information on data including, but 
not limited to, the joint positions, joint velocities, joint angles, 
joint segment forces, joint segment momentum, and joint 
segment kinetic energies; the last three features were adopted 
and calculated using the equations presented by [4]. 
Furthermore, to avoid overfitting, we implement a grid search 
using k-fold cross validation to obtain the optimal 
regularization parameter, C, and bandwidth parameter, γ, to 
establish the optimal kernel. Thus, to classify a gesture, we 
compare the feature vector of the user’s motion subsequence 
against previously generated feature vectors, which 
correspond to the pre-recorded avatar. In Table 1, we present 
the recognition results for the user in the form of a confusion 
and probability matrix of a motion sequence consisting of 
three gestures: (1) shoulder flexion (2) shoulder abduction (3) 
shoulder extension. This motion sequence will be the 



 
Fig. 3. Estimated time-shift employing existing method 1 
 

experimental motion sequence and activity for all of the 
experiments in section 3. In Table 1, the rows correspond to 
the actual class and the columns correspond to the predicted 
class. Note that classes 1-3 correspond to the gestures 1-3, 
respectively. Further, the confusion matrix represents the 
number of true positive, true negative, false positive, and false 
negative errors and the probability matrix represents the 
probabilities of the predicted classes. From Table 1, we 
conclude that the system correctly recognized the user’s 
gestures. 

Table 1. Confusion and Probability Matrices 
 Pred. 1 Pred. 2 Pred. 3 

True 1 1 0 0 
True 2 0 1 0 
True 3 0 0 1 

 Pred. 1 Pred. 2 Pred. 3 
True 1 .9968 .0048 .0071 
True 2 .0045 .9703 .0099 
True 3 .0000 .0039 .9969 

B. Method One: Existing Method 
For the first method, we estimate a single overall delay of 

the particular activity by comparing the entire motion 
sequences of the user and avatar, solely using Equation 3 
without any signal processing on the matrices f and g, the 
avatar and user motion sequences, respectively. This 
technique is similar to the method in [1]. A single, global 
time-shift is subsequently applied to the entire data set for all 
of the joints and for the entire activity period. Figure 3 
displays the estimated time-shift between the user and avatar 
motion sequences for the activity described in section 3.1 
using a preliminary implementation of our platform. Note that 
the peak of the plot corresponds to the time-shift value with 
the highest probability, representing the estimated user delay. 
As we will see in Figure 4(b), this method proves to be 
inaccurate. As mentioned previously, user reaction delay is not 
invariant. Thus, it is insufficient to estimate a single overall 
delay and apply a single time-shift to the motion data.  

C. Method Two: Spatial Segmentation 
In many exercises, the user is required to use multiple 

body parts at the same time. In these circumstances, it is quite 
possible that the user may end up having different delays for 
the different body parts. Thus, in the second method, we 
spatially segment the user and avatar bodies into five different 
parts: the head and torso, right arm, left arm, right leg, and left 
leg. The motivation behind our choices for the specific 
segmented body parts stems from the parent-child relationship 
between the joints [4]. Essentially, each child joint inherits the 
motion of its corresponding parent joint [5]. For instance, in 
the case of a shoulder rehabilitation exercise where the user 
lifts his or her right arm, the right wrist will inherit the 
momentum of the right elbow, which inherits the momentum 
of the right shoulder; simultaneously, each joint may possess 
its own momentum as well. As a result, we must include every 
joint of the arm to consider the arm as an independent body 
segment. A similar argument may be applied for the other 
body segments. Using the joint positions of each respective 
body part, we then estimate the delay of the entire temporal 
sequence for each body segment. That is, rather than using all 

60 joint values of the entire temporal sequence for time-shift 
estimation, we divide the 60 independent joint values into five 
distinct groups or body segments. Then, still using the entire 
temporal sequence, we find the time-shift of each body 
segment for a total of five individual delays and shift each 
body segment by its appropriate value. Our results in Table 2, 
which use the activity described in sections 3.1 and 3.2, 
demonstrate that our hypothesis was correct in that different 
body parts can possess unique delays. Note that each numeric 
value in Table 2 represents the estimated time-shift value for a 
particular body segment. The experimental results we present 
in section 3.6 will show that the second method performs 
better data alignment than the existing method. However, even 
though the second method incorporates spatial considerations, 
it still fails to account for a temporal varying delay. 
 

Table 2. Estimated time delays (in frames) employing method 2 
 Torso R. Arm L. Arm R. Leg L. Leg 
Delay -2 -5 -5 0 -11 

 

D. Method Three: Temporal Segmentation 
Similar to the argument made in the preceding paragraph 

that different body parts can possess different delays, the 
motivation behind the third method stems from the fact that 
the delay varies with respect to time as well. Thus, we propose 
a new method to account for this predicament. In essence, the 
third method executes temporal segmentation by means of 
gesture recognition. As previously mentioned, this method 
involves machine learning. When a gesture is identified, that 
particular temporal window is extracted from the entire 
temporal sequence. The delay of each temporal window is 
then calculated, resulting in an individual delay estimate for 
each individual gesture. In other words, we still use all 60 
joint values for processing, but rather than using the entire 
temporal sequence, we break the temporal sequence into 
subsequences. Our results in Table 3 demonstrate that 
different gestures can possess unique delays. Note that each 
numeric value in Table 3 represents the estimated time-shift 
value for a particular gesture. As a result, method three proves 
to possess a desirable trait for accurate latency estimation. 
However, similar to the first method, method three fails to 
account for a spatial varying delay. 

Table 3. Estimated time delays (in frames) employing method 3 
 Flexion Abduction Extension 
Delay 8 -9 -4 



 
Fig. 4. (b)-(f) displays the outputs after employing the four time estimation methods using the Spearman rank correlation coefficient as a metric to identify 
which technique best aligns the motion datasets between the user and avatar. Because the experimental activities target the upper body, we use the left and 
right shoulder angles show in (a) as the motion dataset used for analysis. 
 

E. Method Four: Spatio-Temporal Segmentation 
Our fourth method builds upon the second and third 

methods in accounting for both a spatial and time varying 
delay. Essentially, the fourth method conducts both spatial and 
temporal segmentation by dividing the body into five unique 
segments and recognizing gestures, respectively; we not only 
group all of the joint values into distinct segments, but we also 
divide the temporal sequence into separate temporal windows. 
Thus, the overall process works as the following: The entire 
temporal sequence is segmented by gestures, as recognized by 
the system, and converted into a series of temporal windows. 
Each subsequent temporal window is divided in the spatial 
space into five unique body parts. The delay of each body part 
of each temporal window is then calculated and the data set 
for each segment per gesture is shifted by its appropriate 
amount. Table 4 displays the results of applying method four 
for the same sample training session used throughout section 3. 
Note that each numeric value in Table 4 represents the 
estimated time-shift value for a particular body segment per 
gesture. 

Table 4. Estimated time delays (in frames) employing method 4 
 Torso R. Arm L. Arm R. Leg L. Leg 

Flexion 10 11 8 0 0 
Abduction -8 -9 -15 -11 -15 
Extension -4 -5 0 0 0 

 

F. Results 
In this subsection, we compare the effectiveness of each 

time estimation method. From our supplementary video, one 
can see the effects of user delay at 12 seconds by the 
misalignment between the user avatar, reflecting the activity 
of the user captured by the MS Kinect, and the pre-recorded 
instructor avatar. Figure 4 (b)-(f) displays the results where the 
blue/cyan plots represent the avatar and the magenta/red plots 

represent the user. Further, the x-axis represents the time in 
frames and the y-axis represents the left and right shoulder 
joint angles. The joint angles can be calculated by  

                                cos(θ ) = xT y

xT x ⋅ yT y
                      (4) 

where the vectors x and y represent the reference vectors, or 
body segments. To clarify, the reference vectors of an elbow 
angle would be defined as the shoulder-elbow and elbow-wrist 
vectors. Further, each column – with the exception to the first 
column, which represents the original joint angle sequences of 
the respective subjects – is the output after applying each 
method. We adopt the Spearman Rank Correlation Coefficient 
as a metric to determine which method produces the best 
motion sequence alignment. The Spearman rank correlation 
coefficient is given by 
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where n is the sample size and di = xi - yi is the difference 
between the ranks xi and yi determined from the raw scores Xi 
and Yi; for our purposes, n is the number of frames of the 
sequence and the raw scores Xi and Yi correspond to the user 
and avatar joint angles, respectively. Our results demonstrate 
that the fourth method, which conducts spatio-temporal 
segmentation, is the most effective, as it possesses the highest 
correlation coefficient value. By visual inspection, we can also 
identify that the fourth method, as seen in Figure 4(f), best 
aligns the joint angles over time.  

To further cement the fourth method as the optimal latency 
estimation approach, we conduct multiple trials on different 
activities using different joint angles and display the results in 
Figure 5. The results are presented as histograms whereby the 
y-axis represents the number of trials and the x-axis represents 



 
Fig. 5. The figures above plot the results of comparing the four time estimation methods for three activities: (a) bicep curls, (b) lateral raises, and (c) squats 
 the four distinct time estimation approaches. For this 

particular experiment, we conducted 25 trials per activity and 
plotted the number of times a particular method produced the 
highest Spearman correlation coefficient value. The three 
activities used in the experiment were as follows: bicep curls, 
lateral raises, and squats. The motion datasets corresponding 
to the three activities were elbow angles, shoulder angles, and 
knee angles, respectively. From all of the experimental results 
under this section, we conclude that the fourth method 
performs the best data alignment as it best accounts for a 
spatial and time varying delay. 

IV. DETERMING USER ACCURACY 
To assist the user in accurately performing their chosen 

activity, we provide real-time visual feedback and guidance to 
the user’s device. According to [3], real-time feedback can also 
potentially assist the user in avoiding injuries. As previously 
noted, we compare the user’s motion data with that of the 
avatar’s, which we treat as the ground truth. Because it is 
impossible for the user to achieve perfect accuracy, we develop 
a threshold tolerance level, such that an accuracy level below 
the threshold will demand real-time feedback and an accuracy 
above the threshold will be tolerated. To determine the desired 
threshold value, we conduct an experiment with the assistance 
of a professional personal trainer. 

A. Experiment Setup 
After collecting the dataset of timestamps, we process the 

motion data offline to determine the threshold level of 
accuracy for different activities. To find the threshold, we first 
execute our spatio-temporal algorithm, method four, to 
properly align the motion datasets and to also properly shift 
the timestamps accordingly. Next, we create a vector dataset 
containing the differences in joint angle values between the 
user and avatar at the shifted timestamps. Subsequently, we 
create a histogram of the vector set. Because histograms vary 
with respect to the bin size, we employ the Shimazaki-
Shinomoto histogram binwidth optimization method to find 
the optimal number of bins for better distribution estimation 
[7]. Finally, we fit the best distribution to the dataset and 
estimate the distribution parameters by using the Bayesian 
information criterion (BIC) 

         2 ln ( | , ) (ln( ) ln(2 ))BIC p x M k nθ π= − ⋅ + ⋅ −             (6) 

where x is the vector dataset, n is the number of frames, k is 
the number of estimated free parameters, and p(x|θ, M) is the 
maximized value of the likelihood function of the model M 
with θ being the set of parameter values that maximizes the 
likelihood function [8].  

At the same time, we create an “inverse” histogram, which 
represents the frequency at which the personal trainer did not 
mark the times when the same joint angle difference values 
were detected. Again, we fit the best possible continuous 
probability distribution to the “inverse” histogram using the 
method described above. Figures 7(a)-(b) under section 4.3 
depicts both histograms with their respective continuous 
probability distributions for the shoulder press exercise.  

Using both distributions, we now attempt to find the 
optimal threshold xopt. In doing so, we establish our decision 
function α(x), which enables the system to accurately classify 
the user performance as one of two categories ω: intolerable 
ω1 or tolerable ω2. To reach this threshold value, we minimize 
the overall risk 

                                    ( ( ) | ) ( )R R x x P x dxα= ∫                  (7) 

by selecting the action αi for i = 1,2 that minimizes its 
associated conditional risk  
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where M = 2 is the number of classes and λ(αi|ωj) is the 
element in the loss matrix representing the cost of selecting 
class ωi when the true class is ωj. Further, we assume our loss 
matrix to be biased towards type II errors (false negatives), i.e., 
λ(α2|ω1) > λ(α1|ω2). Thus, our loss matrix is defined as  
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whereby the columns represent the two classes and the rows 
correspond to the two system actions α: providing real time 
guidance α1 and tolerating the user’s performance α2. In other 
words, we assume the loss incurred for classifying the user’s 
performance as tolerable when the user is inaccurately 
following the avatar to be greater than the loss incurred for 



 
Fig. 6. This figure displays the two histograms, representing the 
intolerable class ω1 and tolerable class ω2, with their associated 
distributions P(x|ω1) and P(x|ω2) respectively. The dashed line represents 
the shoulder angle threshold xopt for the shoulder press exercise.  
 

classifying the user’s performance as intolerable when the user 
is accurately following the avatar. To compute the conditional 
risk given by Equation 10, we apply Bayes formula 
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to find the posteriors P(ωj|x) given the known prior 
probabilities P(ωj) and conditional probabilities, or likelihood, 
P(x|ωj) for the two categories. The evidence can also be 
calculated as  
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For our purposes, the prior probabilities P(ωj) are assumed to 
be equiprobable: P(ωk) = 0.5, k=1,2. We adopt this 
equiprobable assumption to account for varying priors. 
Specifically, consider the following two cases: (1) users who 
use our proposed system are assumed to perform to the best of 
their abilities with the intent to correctly learn the chosen 
application, thus we assume P(ω2) > P(ω1) (2) users who 
select new activities may be more prone to errors, thus we 
assume P(ω1) > P(ω2). Thus,, we assume equiprobable priors 

to balance the described scenarios. 

Further, each joint angle difference (the histogram bin 
variable) between the user and the avatar will receive a 
correlation-based score that is a real, scalar value x ∈ ℜ 
ranging from 0-100. Note that small differences between the 
joint angles of the user and avatar correspond to higher scores. 
Thus, our conditional probability densities, the best fit 
distributions to the two histograms, can be described as 
P(x=score|ω1=intolerable) and P(x=score|ω2=tolerable). 
Finally, we obtain the optimal threshold xopt for a particular 
activity by solving the equation 

                      1 21 1 2 12 2( | ) ( ) ( | ) ( )opt optP x P P x Pω λ ω ω λ ω=          (12) 

where λij = λ(αi|ωj). As a result, we can employ the likelihood 
ratio 
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to classify the performance as ω1 if the inequality is satisfied, 
i.e., the likelihood ratio exceeds the threshold xopt, and classify 
the performance as ω2 otherwise [9]. Note that the score x 
decreases in magnitude from left to right, as seen in Figure 6, 
while the difference in joint angles increases from left to right. 

B. Results 
In this section, we present our results in determining the 

threshold values for three activities: the shoulder press, 
altering shoulder rotation, and oblique engagement. To 
illustrate the method in determining the threshold described in 
section 4.2, we provide the following example for finding the 
shoulder joint angle threshold for shoulder presses. Employing 
the Shimazaki-Shinomoto histogram binwidth optimization 
method, we find the optimal bin size for class one’s histogram 
to be 5 bins and the optimal bin size for class two’s histogram 
to be 27 bins. Furthermore, class one’s histogram is fitted to a 
normal distribution characterized by N(41.821°,117.538°) 
while class two’s histogram is fitted to an exponential 
distribution with the rate parameter β = 0.0684 using the BIC. 
Thus, the shoulder angle threshold xopt is found by using 
Equation 14 with the appropriate likelihoods and solving 
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given λ21 = 1.5 and λ12 = 1. Solving this equation yields the 
threshold xopt ≈ 67, which is equivalent to an angle difference 
of 23.655°. In other words, a shoulder angle difference less 
than 23.655° is tolerable and a shoulder angle difference 
greater than 23.655° demands real-time guidance. The 
threshold values for activity two and three are xopt ≈ 84 (elbow 
angle) and xopt ≈ 78 (hip angle), respectively. 

V. CONCLUSION AND FUTURE WORK 
From our results, we identify the fourth method, which 

executes spatio-temporal segmentation, as the optimal 
approach to estimating user delay. Employing this method 
allows us to properly shift the datasets to accurately compare 
the user and avatar motion sequences at the correct frames. 
Future work will be dedicated to developing our data 
alignment method to also consider the possibility of the CP 
following the avatar faster or slower by identifying potential 
differences in speed for certain time periods and adjusting the 
CP sequences by the ratio of the speed difference prior to any 
time-shifting. Furthermore, the results of our experiments 
demonstrate that a unique and effective threshold value can be 
obtained for each exercise. However, because the recorded 
timestamp values obtained from the personal trainer may vary 
with other personal trainers, our timestamp dataset can be 
characterized as a subjective dataset. Thus, a larger dataset 
from a greater range of professionals/experts may be 
necessary to determine a more widely accepted threshold 
value. Furthermore, we calculated our threshold values under 
the assumption that a type II error was more detrimental than a 



type I error, i.e. λ(α2|ω1) > λ(α1|ω2), and under the assumption 
that the prior probabilities were equiprobable P(ω2) = P(ω1). 
Further examination and experimentation of these assumptions 
may help in optimizing our threshold values. Lastly, our 
current system employs the original Microsoft Kinect, which 
suffers from a myriad of issues, especially in accurately 
acquiring data from the subjects; this data corruption is most 
notable in particular exercises where skeletal merging or joint 
overlap occurs. As a result, we intend to substitute the original 
Kinect for the new Microsoft Kinect2 in an effort to process 
more accurate data.  
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