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Abstract—With the development and deployment of ubiquitous 

wireless network together with the growing popularity of mobile 

auto-stereoscopic 3D displays, more and more applications have 

been developed to enable rich 3D mobile multimedia experiences, 

including 3D display gaming. Simultaneously, with the emergence 

of cloud computing, more mobile applications are being developed 

to take advantage of the elastic cloud resources. In this paper, we 

explore the possibility of developing Cloud Mobile 3D Display 

Gaming, where the 3D video rendering and encoding are 

performed on cloud servers, with the resulting 3D video streamed 

to mobile devices with 3D displays through wireless network. 

However, with the significantly higher bitrate requirement for 3D 

videos, ensuring user experience may be a challenge considering 

the bandwidth constraints of mobile networks. In order to address 

this challenge, different techniques have been proposed including 

asymmetric graphics rendering and asymmetric video encoding. 

In this paper, for the first time, we propose a joint asymmetric 

graphics rendering  and video encoding approach, where both the 

encoding quality and rendering richness of left view and right 

view are asymmetric, to enhance the user experience of the cloud 

mobile 3D display gaming system. Specifically, we first conduct 

extensive user studies to develop a user experience model that 

takes into account both video encoding impairment and graphics 

rendering impairment. We also develop a model to relate the 

bitrate of the resulting video with the video encoding settings and 

graphics rendering settings. Finally we propose an optimization 

algorithm that can automatically choose the video encoding 

settings and graphics rendering settings for left view and right 

view to ensure the best user experience given the network 

conditions. Experiments conducted using real 4G-LTE network 

profiles on commercial cloud service demonstrate the 

improvement in user experience when the proposed optimization 

algorithm is applied. 

 

Index Terms— Cloud Mobile Gaming, 3D, user experience 

I. INTRODUCTION 

he growing popularity of auto-stereoscopic 3D displays for 

mobile devices, together with ubiquitous wireless networks, 

have fueled an increasing user expectation for rich 3D mobile 

multimedia experiences, including 3D display gaming. 

According to [1], the world’s first glass free 3D tablet was 

released in December 2013; and by August 2014, there are 

already more than 10 different brands of glass free 3D tablets in 

the market. Recently, a new architecture called Cloud Mobile 

3D Display Gaming (CMG(3D)) has been proposed to leverage 

the growing trend of glass free 3D mobile devices, and bring 

true 3D gaming experience to mobile users. Figure 1 shows the 

CMG(3D) architecture [4], where the 3D rendering is 

performed on the cloud server in response to gaming 

 
 

commands from the mobile device, instead of the mobile 

device itself. This architecture extends mobile cloud gaming for 

2D devices that were introduced earlier [6]. For real 3D gaming 

experience, we place two virtual cameras in the game world to 

generate a left view and a right view of the game video. After 

the two views are generated, they will be encoded as a 3D video 

and transmitted through wireless network to the mobile device, 

and displayed on the device 3D screen. On the reverse side, 

game commands are transmitted from mobile device to the 

game server through wireless network. In this way, users can 

play 3D games as if the game is rendered locally, but with the 

advantages of a thin client, and no need to download/store each 

game to the mobile device. Moreover, the game developers can 

develop a single version of the game that runs on the cloud 

servers instead of having to develop platform/device specific 

versions.  

Although the CMG(3D) architecture has  great advantages 

compared to the traditional 3D gaming architecture, the 

challenge shifts from client side to server side on how to stream 

high quality 3D video through fluctuating network conditions 

with low latency.  

    To address the above problem, asymmetric video encoding 

techniques, which dynamically set QP/resolution differently for 

two views, can be potentially used to lower bitrate while 

minimizing impact on user experience [2][3]. More recently, 

asymmetric graphics rendering, which dynamically sets 

rendering parameters like texture detail and/or view distance 

differently for two views, has been proposed to lower bitrate 

while attempting to preserve user experience [4]. However, the 

above techniques are studied and applied separately. In this 

paper, we explore the possibility of combining asymmetric  
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Figure 1. Architecture of Cloud based Mobile 3D Display Gaming System 



 

video encoding and asymmetric graphics rendering techniques 

together to jointly optimize the whole system and thus to 

provide the best user experience.  To quantitatively measure the 

user experience by different video encoding settings and 

graphics rendering settings, we perform subjective tests and 

develop a user experience model. Moreover, we also develop a 

rate model to estimate the bitrate value as a function of video 

encoding settings and graphics rendering settings. By making 

use of the above two models, we further propose an 

optimization algorithm to automatically choose the video 

encoding settings and graphics rendering settings for the left 

and right views separately to ensure the best user experience 

given the network conditions. 

 The rest of the paper is organized as following: Section II 

reviews related work. In Section III, we propose a user 

experience model to quantitatively measure the user experience 

according to different video encoding settings and graphics 

rendering settings. In Section IV, we propose another model to 

estimate the video bitrate as a function of video encoding 

settings and graphics rendering settings. Section V proposes an 

adaptation algorithm to automatically choose the best video 

encoding settings and graphics rendering settings given certain 

mobile network conditions. Section VI shows the experimental 

results using our CMG(3D) prototype hosted on Amazon Web 

Service and using commercial cellular network profiles. 

Section VII proposes future work and concludes the paper. 

II. RELATED WORK 

As introduced in Section I, our objective is to reduce the 

bitrate and thereby reduce latency of the 3D video transmitted 

from the CMG(3D) cloud server to the 3D mobile device 

depending on the wireless network bandwidth available, while 

also preserving high perceived video quality. Several 

techniques have been proposed to optimize video encoder or 

rendering engine for the above purpose. Asymmetric 3D video 

encoding [2][3], where the videos of the left and right views are 

encoded with different quality, can be potentially used to 

reduce the 3D video bit rate, and hence the delay, while 

transmitting over constrained wireless networks.  Recently, 

another technique called asymmetric graphics rendering has 

been introduced [4] in which the rendering engine chooses 

different texture detail or view distance settings for left view 

and right view in a way that reduces the bit rate of the resulting 

encoded video in order to meet network constraint. However, 

none of the above work has considered the possibility of 

optimizing the whole system by applying both asymmetric 

video encoding and asymmetric graphics rendering at the same 

time. In addition, because we want to apply these two 

techniques at the same time, we need to first understand how 

the joint effects influence user experience. In the literature, [5] 

propose a user experience model but it only considers video 

encoding impairment and it is based on a 2D display CMG 

system. Authors of [6] have done user experience study of 

considering both video encoding impairment and graphics 

rendering impairment but the above is applicable only for 

single view video for 2D displays. Authors of [4] have done 

user study based on CMG(3D) system but it does not include 

video encoding impairment. Thus, in this paper, for the first 

time, we study the user experience considering the joint effect 

of video encoding impairment and graphics rendering 

impairment. To optimize jointly the video rendering and 

encoding settings for a given network constraint, we also need 

to develop a model to estimate the resulting video bitrate using 

given video rendering and encoding settings. Different from [7] 

which only include video encoding settings, our model also 

takes into account the influence of graphics rendering settings. 

III. USER EXPERIENCE MODEL 

In this section, we study and model user experience 

considering the joint effect of video encoding impairment and 

graphics rendering impairment, as opposed to [4] which takes 

into account the effects of graphics rendering impairment only. 

We use the same Cloud Mobile 3D Display Gaming Mean 

Opinion Score (CMG(3D)-MOS) introduced in [4] as a 

measurement metric for modeling CMG(3D)-UE, as shown in 

equations (1) and (2): 
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In Equation (1), the CMG(3D)-MOS metric is formulated by 

a transmission rating factor R, which represents the overall user 

experience. R factor takes value between 0 and 100; higher R 

value corresponds to higher CMG(3D)-MOS and better user 

experience. In Equation (2), the term I stands for the combined 

impairment caused by video encoding (VE) and graphics 

rendering (GR). 

In the following, we describe how we conducted subjective 

tests to derive the impairment functions and how we validated 

them. 

A. Subjective Test settings 

Table I shows the specific video encoding settings and 

graphics rendering settings we want to include in our 

experiment. In detail, for video encoding settings, we fix the 

resolution to be VGA (640x480) and frame rate to be 25fps in 

our experiment but change the quantization parameter (QP) 

only. For graphics rendering, we study the effect of asymmetric 

texture detail, but not the view distance as our subjective 

experiment shows that by applying asymmetric view distance, 

users will feel dizzy after playing the game for a long time. 

Texture detail defines the quality of the images on the surface 

of the objects. As is defined in [4], we define texture detail to be 

high when the game is using the original texture images, to be 

medium when the texture images are downsampled once and 

low when the texture images are downsampled twice.  

Figure 2 shows the testbed used for the subjective tests. We 

use a 3D monitor with a laptop to substitute for 3D display of 

mobile devices because current available mobile 3D displays 

do not have as good quality as 3D monitors that may cause 

additional impairment which we want to avoid. The laptop is 

connected to a network emulator via an access point and the 

network emulator is connected to the game server. The selected 

game which runs upon the above framework is an online 

open-source MMORPG game PlaneShift [8]. We then invited 

15 students (10 male, 5 female; aged 18~24) to participate in 



 

our subjective experiments. Firstly, we asked the testers to sit 

before a 23 inch LG D2342 3D Monitor, and show them a 3D 

video as a training sequence before the real test starts to let the 

testers adjust their viewing angle. After that, we start the game 

and manually set the video encoding settings and graphics 

rendering settings according to Table I independently for each 

view. Once a combination of rendering and encoding factors is 

set, we ask the testers to play the game for 1 minute and 

evaluate the impairment according to the criterion listed in 

Table II at the end of each condition. During the whole 

experiment, the testers were asked to control the avatar to 

perform multiple tasks (including attacking an enemy, looking 

for an object, talking to an NPC, etc.).  

  

 

 

 

 

 

B. Impairment Function Derivation 

Considering the graphics rendering and video encoding 

settings used in our CMG(3D) platform and the two views, we 

can set the impairment function as follows. 

                 , , , ,
L R L R

I I VE GR I TD TD QP QP                    (3) 

where TD means texture detail, QP means quantization 

parameter. The subscripts L and R represent left view and right 

view respectively. In order to study I, we first keep one of the 

four parameters fixed to its best quality value during the test 

and see how the impairment I changes according to other three 

parameters. 

Figures 3(a) and 3(b) show the results (average impairment 

values) when we keep QP of one of the views to be 25 (right 

view for (a) and left view for (b)) but change QP of the other 

view and at the same time change the texture detail settings for 

both views. From these two figures we can clearly observe that 

for each texture detail combination, the impairment values 

remain similar till some QP level (marked as cross in the figure), 

beyond which the impairment increases. For example, for curve 

L-L in Figure 3(a), the threshold is at QP = 35. Clearly the 

value of this threshold is related to the texture detail setting. 

Further, we found that this threshold was only related to the 

texture detail setting of the view whose QP is changing. For 

example, in the Figure 3(a), the threshold of M-M is the same as 

the threshold of M-L and that value is also very close to the 

threshold of H-M and M-M in Figure 3(b). Thus, it means for a 

specific texture detail setting of one view, there is a 

corresponding QP value so that when QP is less than or equal to 

that value, the video encoding won’t cause additional 

impairment besides the impairment caused by texture detail. 

According to the results from Figures 3(a) and (b), we list the 

threshold and the corresponding impairment ITD in Tables III 

and IV. Note that although the above relationship as well as all 

the models derived subsequently are general, the values of the 

parameters need to be derived for specific games. The values in 

this paper are derived based on the game Planeshift [8]. 
 

Because we have this threshold, we propose to model I by 

two parts. The first one is the ITD that is the impairment caused 

by texture detail and the second part is IA that is the additional 

impairment when QP is bigger than the threshold. Equation (4) 

shows the relationship. 
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in which ITD is the value form Table IV. T function is the value 

from Table III.  

    Next, we model f(x) shown in Equation (5); we use nonlinear 

regression to derive this relationship and coefficients as shown 

in Figure 4. The MSE of the regression is 0.8491.  

 
Figure 2. Testbed for Subjective Experiments 

TABLE I. EXPERIMENT SETTING 

Settings Experiment Values 

Texture Detail(Down Sample) High(0) Medium(2) Low(4) 

Quantization Parameter 25 27 29 31 33 35 37 39 

 
TABLE II. IMPAIRMENT CRITERION 

I Description 

0 No visual impairment 

0-20 Minor visual impairment 

20-40 Noticeable visual impairment 

40-60 Clear visual impairment 

60-100 Unacceptable visual impairment 

 
TABLE III. QP THRESHOLD FOR DIFFERENT TEXTURE DETAIL 

SETTINGS 

Texture Detail H M L 

ITD 29 31 35 

 

TABLE IV.  AVERAGE ITD SCORES FOR DIFFERENT TEXTURE DETAIL 

COMBINATIONS 
Texture Detail 

Combination 
H-H H-M M-M M-L L-L 

ITD 0.2 8.35 12.3 19.14 24.5 

 

 
Figure 3. (a) left, Relationship between I and QPL under different 

texture detail combinations (b) right, Relationship between I and 

QPR under different texture detail combinations 
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in which a=0.05, b=0.41, c=1.49 for the game Planeshift. 

    For the g(x1, x2) function in Equation (4), a multivariable 

nonlinear regression is used to derive the relationship and 

coefficients shown in Equation (6). The MSE of the regression 

is 0.2366. 

       
  2 2
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in which a=0.043, b=0.7, c=-0.027, d=0.978 for the game 

Planeshift. 

    Equations (3) (4) (5) and (6) complete our user experience 

model. We will validate it in the next subsection. 

C. Model Validation 

    In order to validate the impairment model (Equations (3), (4), 

(5) and (6)) derived in the previous subsection, we conducted 

another set of experiments with a new group of 16 participants 

(10 male, 6 female; aged 18~25), playing the same game. This 

time, they give the CMG(3D)-UE score (Equation (1)) varying 

between 1.0 to 4.5 according to Table V. In addition, in this set 

of experiments, the texture detail and quantization parameters 

for both views are changed at the same time. Furthermore, to 

ensure the generality of the model, the subjects are asked to 

evaluate three different scenes.  Figures 5(a)(b)(c) show the 

relationship between predicted CMG(3D)-UE score computed 

by the derived impairment function (y-axis) and subjective 

CMG(3D)-UE score given by human subjects (x-axis) for the 

three scenes. In the figures, each data point represents one 

combination of graphics rendering settings and video encoding 

settings.  We also plotted 95% confidence interval for each 

measurement as blue lines in the figure to show the variety 

among different subjects. The correlation in scene 1 is 0.96 

while it is 0.95 for scene 2 and 0.97 for scene 3. The above 

results show the accuracy of the derived CMG(3D)-UE model, 

and its applicability to different scenes.  

 

 

IV. BITRATE MODEL 

    In this section, we develop a bitrate model that estimates 

the encoding bitrate of a view from both the graphics rendering 

and video encoding settings for this view. 

Several techniques have been proposed to model the bitrate 

of encoded video as a function of the video encoding 

parameters.   For example, in [8], Ma et al. proposed Equation 

(7) to model bit rate R using quantization step q and video 

frame rate t. 

                          
max

min max

,

ba

q t
R q t R

q t




  

   
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                       (7) 

In Equation (7), coefficients qmin and tmax represent the 

minimum quantization step and the maximum frame rate, 

respectively, and are chosen based on the application; Rmax 

indicates the maximum bitrate when encoding a video at qmin 

and tmax; coefficients a and b are model parameters that depend 

on the content of the video. The authors in [7] further proposed 

a method to estimate a and b based on content features shown in 

Equation (8) and (9). 
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Figure 4. Derivation of f(x)              
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TABLE V. CMG(3D)-UE CRITERION 
CMG(3

D)-MOS 
Description 

4.5 No visual impairment 

4.0-4.5 Minor visual impairment 

3.0-4.0 Noticeable visual impairment 

2.0-3.0 Clear visual impairment 

1.0-2.0 Unacceptable visual impairment 

 

 

 

 
Figure 5. Validation of CMG(3D)-MOS with blue line showing 

95% confidence interval (a) top, results for scene 1  

(b), middle results for scene 2 (c) bottom, results for scene 3 
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in which FD
  represents mean of frame difference, MVM

 stands 

for mean of motion vector magnitude and MDA
  means standard 

deviation of motion direction activity. 

Though reported in [7] that this model is of high accuracy, it 

is based on a data set containing videos that are natural scene 

videos and the resolutions are CIF (352x288) rather than the 

situation in our CMG(3D) application where the view is 

generated by computer instead of camera in the real world and 

the video resolution for each view is VGA (640x480). 

Moreover, this work only considers video encoding parameters 

but do not consider any graphics rendering settings. Thus, the 

model equation (7) ~ (9), especially the model parameter may 

not be accurate enough in our CMG(3D) application. Therefore, 

in this paper we extend their work by: 

1. Performing experiments using CMG(3D) videos with 

VGA resolution to validate the model equations. 

2. Performing additional experiments to adjust the model of 

parameter a (Equation (8)(9)) by incorporating graphics 

rendering setting. 

A. Model Equation Validation 

In this subsection, we introduce how we perform experiments 

to validate the model equations. Firstly, because in this paper, 

we do not evaluate the influence of framerate to user experience 

or bitrate, we will fix the framerate and set t to be tmax and thus 

we can simplify the equation as: 

                                  
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                        (10) 

In order to validate this model, we captured 3 videos using 

our CMG(3D) system with different texture detail settings and 

encode them using different QP settings from Table I. Using the 

H.264/AVC standard definition that q=2^((QP-4)/6), the 

corresponding q values are 11, 14, 18, 23, 28, 36, and 45. For 

each video, we encode it by using x264 encoding library and 

record the bitrate under each q value. We set Rmax to be the 

bitrate when encoding with qmin and calculate normalized 

bitrate R(q)/Rmax. Figure 6 shows the results. X-axis of the 

figure is q which ranges from 11 to 45 and y-axis is the 

normalized bitrate. The results of each video are represented by 

a specific color. Besides the bit rates shown as circles for the 3 

videos with different texture details, we also plot a line for each 

video to represent the model equation. The parameter a is 

obtained by minimizing the squared error between the model 

predicted and measured rates for each video. From figure 6, we 

can conclude that Equation (10) can model the bit rate of 

CMG(3D) videos with high accuracy.  

B. Model Parameter Prediction 

In this subsection, we discuss how we adjust the parameter 

model (Equation (8)(9)) proposed in [7] to cope with CMG(3D) 

application.  As is reported in [7] that FD
 , MVM

 and MVM
 / MDA

 are 

the most related content features which influence parameter a. 

However, as is shown in Figure 6, the parameter a will vary for 

different texture detail settings. Thus we combine texture detail, 

TD, with the content features in Equation (8) as the input 

parameters for predicting a.  Further, we captured 18 video 

clips with different texture detail settings and in different 

scenes performing different tasks and we use the same 

generalized linear predictor with leave-one-out cross-validation 

error method reported in [7] to derive the equations, which are 

shown in Equation (11)(12).  

                          [1 ]
TMVM

MDA

FD
B TDa




                             (11) 

               1.2 0.068 0.00017 0.0024B                       (12) 

Figure 7 shows the validation of the proposed model 

parameter prediction (Equations (11) (12)). Our results show 

that using FD
 , MVM

 / MDA
 and TD is sufficient to predict the 

model parameter accurately.  

Thus, Equations (10) (11) (12) completes our bitrate model. 

 

 

 

Given: 

  1) Network bandwidth BW 

  2) Texture Detail bound TDmin and TDmax 

  3) Quantization Parameter bound  QPmin and QPmax 

  4) Current content features
FD

 , 
MVM

  and 
MDA

  

Find:  
  The optimal TDL, TDR, QPL, and QPR  to minimize impairment I 

                                      
 min

opt

I I            
 

s.t.                           
min maxL R

TD TD TD TD  
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Figure 8. Problem Formulation 

 
Figure 6. Validation of model equation  
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Figure 7 Validation of model parameter 

1 1.1 1.2 1.3 1.4
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Predicted parameter a

A
c
tu

a
l 
p
a
ra

m
e
te

r 
a



 

Algorithm Joint Asymmetric Video Encoding and Asymmetric Graphics 

Rendering Adaptation (AVARA) 

Input: 
   1) Network bandwidth BW 

  2) Content features
FD

 , MVM
  and MDA

  

Output: IOPT, TDL
OPT, TDR

OPT, QPL
OPT, QPR

OPT 

Step 1: Initialize upper bound and lower bound of TDL, TDR, QPL, QPR; set 

iteration to be 0; set IOPT to be infinite;  

            inqueue(original_problem, subproblem_queue) 

Step 2: While (length(subproblem_queue) > 0 && 
                         iteration < MAX_INTERATION) 

            iteration = iteration +1 

            subproblem = outqueue(subproblem_queue) 
            Step 3: [TDL, TDR, QPL, QPR , I] = s =  

                     non_linear_continuous_variable_optimization(I) 

            Step 4: If s = Integer solution 
                             If I < IOPT 

                                 IOPT = I 

                                 [TDL
OPT, TDR

OPT, QPL
OPT, QPR

OPT
 ] =  

                                 [TDL, TDR, QPL, QPR ] 

                             Endif 

                        Else if s = Non-integer solution 

                             If I([TDL], [TDR], [QPL], [QPR]) < (1+m%)I 

                                 IOPT = I 

                                 [TDL
OPT, TDR

OPT, QPL
OPT, QPR

OPT
 ] =  

                                 [[TDL], [TDR], [QPL], [QPR]] 

                                 continue 

                             Endif 

                             For i=1; i<2number_of_non_integer_values; i++ 

                                Determine the ith variable range for subproblemi 

                                inqueue(subprobelmi, subproblem_queue) 

                             Endfor 

                        If s = No feasible solution 
                             continue 

                        Endif 

              Endwhile 

Step 3: Return [TDL
OPT, TDR

OPT, QPL
OPT, QPR

OPT
 ,I

OPT] 

Figure 9. Pseudo code of AVARA algorithm 

V. OPTIMIZATION ALGORITHM 

In Section III and IV we have proposed 1) a user experience model 

which models cloud mobile 3D display gaming user experience as a 

function of video encoding settings and graphics rendering settings, 

and 2) a bitrate model which estimates video bitrate needed to encode 

the rendered video as a function of video encoding settings and 

graphics rendering settings. In this section, we combine these two 

models so that by selecting proper graphics rendering (texture detail) 

settings and video encoding (quantization parameter) settings of the 

rendered video, we can find an optimal solution for maximizing user 

experience given a network bandwidth limit.  

    Figure 8 shows the problem formulation. Because according to 

Equation (1) and (2), maximizing CMG(3D)-UE is equal to 

minimizing I, we set our optimization target as minimizing I. TDmin, 

TDmax, QPmin and QPmax are the minimum and maximum boundaries of 

the settings being used for a game.  

In order to solve the above problem, we propose Joint Asymmetric 

Video Encoding and Asymmetric Graphics Rendering Adaptation 

(AVARA) algorithm which runs periodically (in this paper we set the 

period to be 1 second). At the beginning of each time period, we will 

obtain the inputs of this algorithm: 1) network bandwidth BW and 2) 

current content features ( FD
 , MVM

  and MDA
 ). We use content features 

in the previous time period with Equation (16) to estimate the bitrate 

consumption in the current time period. The output of the algorithm 

will be the optimal video encoding settings and graphics rendering 

settings for the current time period.  

Figure 9 shows the AVARA algorithm. As this problem is a discrete 

variable, non-linear objective function, with unequal non-linear 

constraint functions, the core idea in this algorithm is based on classic 

branch and bound algorithm [11]. Specifically, the original problem 

with an integer variable is first relaxed to an optimization problem 

with continuous variable (the first subproblem). After this, the 

program generated subproblems where the possible range of the 

variable (still continuous) is being reduced. Then it solves these 

subproblems. This process continues until the variable is fixed to a 

(integer) value. However, the disadvantage of the traditional branch 

and bound algorithm is that it is complex and time consuming while 

our application needs to meet real time computation constraint. 

Therefore, we add an “early exit” condition to signifiantly decrease the 

complexity while still achieving a near-optimal solution. The way we 

do it is that after every time we get a solution of the subproblem and if 

it is a non-integral solution, and before it is going to divide the current 

subproblem into k subproblems, we will round up the values of the 

variable and check whether this solution can get an IOPT which is 

within m% error of the optimal non-integral solution. We have 

implemented the algorithm in C; with m=2, the average running time 

for each time period is 1.3 ms on an Intel Xeon E5-2670 @2.60GHz 

processor with 15GB memory, demonstrating real-time adaptation 

capability. 

VI. EXPERIMENTAL RESULTS 

In this section, we report on experiments conducted using a 

commercial cloud service, Amazon Web Service (AWS) [12], 

to verify the performance improvement by applying the 

proposed Joint Asymmetric Video Encoding and Asymmetric 

Graphics Rendering Adaptation (AVARA) technique. We use 

the same testbed as shown in Figure 2, except that 1) we put a 

network simulator between AP and laptop and 2) we implement 

our CMG(3D) system, including the AVARA algorithm, on 

AWS servers. In detail, we modified the open-source game 

engine Planeshift and programmed a streaming software so that 

1) the game engine is able to pre-load different levels of 

textures when initializing the game loop so that when one 

specific texture detail setting is chosen it is able to switch to it 

very fast. 2) the streaming software will encode the left and 

right view videos and stream the videos to the client through 

TCP, and the algorithm is also implemented there using C++ to 

decide the best TDs and QPs 3) the streaming software is 

hooked with the game engine and they share some variables 

through process level share memory mechanism and in this way 

the pixels of left view and right view can be shared from game 

engine to the streaming software and the decision of the texture 

detail setting computed by the algorithm from the streaming 

software can be shared to game engine so that game engine can 

set the texture detail in its game loop. For the Amazon cloud 

server, the CPU is Intel Xeon E5-2670 @2.60GHz with 15GB 

memory and the GPU has 1536 CUDA cores and 4GB of video 

memory. The operating system is Windows Server 2008 R2 

SP1.  

We firstly collected real 4G-LTE network traces by using 

network bandwidth testing software Speedtest.net [10] to 

record the bandwidth. Figure 10(a) shows a sample LTE trace, 

which is emulated using the network emulator in our testbed. 

We then measured the bandwidth from Amazon cloud server to 

our lab. We use iPerf to test, with testing every 10 minutes from 

8:00 a.m. to 10:00 p.m. for three days. Figure 11 shows the PDF 

of the results. We find that the bandwidth has some variance but 

is quite adequate. Compared to Figure 10(a) where the largest  



 

 

 
bandwidth of LTE is about 3.4Mbps, the lowest bandwidth 

from AWS to our lab is about 5.8Mbps. Thus we conclude the 

main bandwidth bottleneck is caused by the LTE trace. In 

addition, for comparison purpose, we also implemented three 

other algorithms. The first is Asymmetric Video Encoding 

Adaptation (AVA) that sets the rendering settings to the best 

values and only adapts video encoding settings (QP). The 

second is Asymmetric Graphics Rendering Adaptation (ARA) 

that sets the video encoding settings to the best values and only 

adapts graphics rendering settings (including texture detail and 

view distance proposed by [4]). The third is called No 

Adaptation (NA) where we fix the rendering and video 

encoding settings to the best values under the bandwidth 

limitation (We set TD=1 and QP=45 to take advantage of the 

conclusion from UE model). Figure 10(a) shows the bitrates 

resulting from using all 4 algorithms. The blue curve and red 

curve which enable changing video settings can adapt to the 

bandwidth limit very well while the green curve which only 

enables changing graphics rendering settings is worse. The 

black dotted line which represents NA has to be lower than the 

minimal bandwidth. Figure 10(b) shows the resulting 

impairment I of the three algorithms. The average I for AVARA 

is 11.65 while it is 20.07 for AVA, 15.49 for ARA and 35.8 for 

NA. Figure 10(c) shows the resulting CMG(3D)-UE score of 

the three algorithms computed using the user experience model 

proposed and validated in Section III. The average score for 

AVARA is 4.27 while it is 3.89 for AVA, 4.13 for ARA and 3.13 

for NA. We can conclude from Figure 10(b) and (c) that AVARA 

performs much better than AVA and NA but is slightly better 

than ARA. However, considering the fact that ARA includes 

asymmetric view distance and thereby causes side effects such 

as dizziness for users if they play 3D games for a long time, 

AVARA is also much better than ARA.  

VII. CONCLUSION 

    In this paper, we propose a novel joint optimization approach 

that makes use of both asymmetric video encoding and 

asymmetric graphics rendering techniques. It can significantly 

reduce 3D video encoding bitrate needed for a certain video 

quality, thereby making it easier to transmit cloud-rendered 3D 

gaming video over wireless networks to mobile devices. 

Specifically, we first conduct extensive user studies to develop 

a user experience model that takes into account both video 

encoding impairment and graphics rendering impairment. We 

also develop a model to relate the bitrate of the resulting video 

with the video encoding settings and graphics rendering 

settings. By making use of the above two models, we propose 

an optimization algorithm that can automatically choose the 

video encoding settings and graphics rendering settings for left 

view and right view to ensure the best user experience given the 

network conditions. Experiments conducted using real 4G-LTE 

network profiles on commercial cloud service demonstrate the 

improvement in user experience when the proposed 

optimization algorithm is applied. In the future, we plan to 

explore the use of more advanced 3D video codecs such as 

Multiview Video Encoder or Video+Depth 3D Video Encoder 

in performing joint asymmetric rendering and encoding 

adaptation to further optimize delivery of Cloud based 3D 

gaming video. 
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Figure 11. PDF of the bandwidth from Amazon cloud server to 
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