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Abstract—Current remote monitoring of COVID-19 pa-
tients relies on manual symptom reporting, which is highly
dependent on patient compliance. In this research, we
present a machine learning (ML)-based remote monitoring
method to estimate patient recovery from COVID-19 symp-
toms using automatically collected wearable device data,
instead of relying on manually collected symptom data.
We deploy our remote monitoring system, namely eCOVID,
in two COVID-19 telemedicine clinics. Our system utilizes
a Garmin wearable and symptom tracker mobile app for
data collection. The data consists of vitals, lifestyle, and
symptom information which is fused into an online report
for clinicians to review. Symptom data collected via our
mobile app is used to label the recovery status of each
patient daily. We propose a ML-based binary patient recov-
ery classifier which uses wearable data to estimate whether
a patient has recovered from COVID-19 symptoms. We
evaluate our method using leave-one-subject-out (LOSO)
cross-validation, and find that Random Forest (RF) is the
top performing model. Our method achieves an F1-score
of 0.88 when applying our RF-based model personalization
technique using weighted bootstrap aggregation. Our re-
sults demonstrate that ML-assisted remote monitoring us-
ing automatically collected wearable data can supplement
or be used in place of manual daily symptom tracking which
relies on patient compliance.
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I. INTRODUCTION

AROUND the world, healthcare systems have been over-
whelmed by the high numbers of COVID-19 cases, which

has surpassed 437 million as of March 2, 2022 according to the
World Health Organization (WHO) [1]. In the US, there were
approximately 4.5 million COVID-19 hospitalizations between
August 1, 2020 and February 28, 2022, according to the Center
for Disease Control and Prevention (CDC) [2]. While this is a
daunting number of hospitalizations, there have been approx-
imately 80 million cases in the US [3], meaning most cases
involve ambulatory patients being treated from home. This is an
unprecedented number of patients needing care in their home and
many are not being monitored in any way by medical personnel.

In order to combat this pandemic and provide more optimal
care at scale, hospitals are changing the way in which healthcare
is delivered. At the center of this changing landscape is a
shift towards remote, continuous, and automated delivery of
healthcare. This shift can lead to significant improvement in
and scalability of at-home patient care for COVID-19, while
at the same time enabling significant savings in human and
equipment resources. Current remote monitoring for COVID-19
patients relies on manual symptom reporting, which is highly
dependent on patient compliance. In this study, we demonstrate
that data automatically collected from wearable devices together
with machine learning (ML)-assisted diagnosis can enhance the
efficiency and increase the scalability of remote monitoring for
COVID-19 patients.

Wearable devices are one of the enabling technologies making
this shift in healthcare delivery possible [4], [5], [6], [7]. Con-
sumer wearables, such as Apple Watch, Fitbit, and Samsung
Galaxy Watch, remotely collect a great amount of lifestyle and
vitals data in high granularity and continuity. There is great
opportunity for ML to assist in remote monitoring due to the
large amount of data that is collected. Since it is not possible for
doctors to manually review all remotely collected data [8], ML
has the potential to provide automated insights into the health
status of patients and significantly increase the scalability of
remote patient care. This is especially helpful during a pandemic,
where in-person interaction and monitoring may pose risks to
healthcare workers and other patients. In addition, ML-assisted
monitoring can provide patients with insights regarding their
own progression, helping to keep them engaged and informed
about their health.

Current research on using wearables and machine learning
to combat COVID-19 is primarily focused on early detection
of infection. The authors in [12], [13], [14], [15], [16] have
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demonstrated that it is possible to detect deviations in health
data before significant symptoms arise. Using Fitbit devices,
the researchers in [12] found that 26 out of 32 (81%) infected
patients in their cohort had alterations in their heart rate, number
of daily steps, or time asleep before becoming symptomatic.
The authors in [15] used respiration rate, heart rate, and heart
rate variability data collected from their wearable devices and
proposed a deep learning method to estimate infection before
the onset of symptoms. Early detection will enable individuals
to quarantine earlier, helping reduce the spread of the virus.
These studies demonstrate that wearable device data can provide
actionable insights into the conditions of patients.

In this research, we propose a novel approach to estimate
patient recovery from COVID-19 symptoms using automatically
collected device data and machine learning. We partnered with
the UCSD Health and Neighborhood Healthcare COVID-19
telemedicine clinics in order to carry out this research. Our
remote monitoring system utilizes a Garmin wearable and symp-
tom tracker mobile app for data collection and fuses this data
into an online report for clinicians to review. We propose a novel
labelling logic for patient recovery from COVID-19 symptoms
using the symptom tracker data. The labelling logic was devel-
oped in collaboration with UCSD Health doctors and the details
are defined in Section III-B. Using this data, we train a patient
recovery classifier which uses wearable data to estimate whether
a patient has recovered from COVID-19 symptoms. We evaluate
our method according to leave-one-subject-out (LOSO) CV to
replicate the clinically relevant use case scenario in which a
newly infected patient will not have data for model training. We
compare the performance of different ML models and find that
Random Forest (RF) is the top performing model. We propose a
RF-based personalization technique in order to improve model
performance. This technique utilizes the RF’s weighted boot-
strap aggregation algorithm in order to tune the model to each
patient. The details are presented in Section III-D. Finally, we
conduct Shapley Value analysis to inspect which device features
have the greatest impact on classification. This analysis provides
an interpretation of what the model has learned, which is espe-
cially important for medical applications. Our contributions are
as follows:

� We deploy a remote patient monitoring system in two
COVID-19 telemedicine clinics. The system consists of a
wearable device, symptom tracker mobile app, and online
dashboard which collects and analyzes vitals, lifestyle,
and symptoms data. The estimated recovery status of
each patient using our ML approach is displayed on the
dashboard for clinicians to review.

� We propose a patient recovery classifier which uses wear-
able data to estimate whether a patient has recovered from
COVID-19 symptoms. This ML tool can provide doctors
with automated insights into the recovery status of their
infected patients and bypass the need for manual daily
symptom tracking.

� We carry out LOSO CV to mirror the clinically relevant
use-case scenario and propose a RF-based personalization
technique that improves model performance by tuning the
model to each patient via weighted bootstrap aggregation.

The rest of the paper is organized as follows. In Section II,
we investigate related works that utilize machine learning for
COVID-19 diagnosis. In Section III, our remote monitoring

system and data acquisition are presented. We then detail the
proposed labelling logic and RF-based personalization tech-
nique for patient recovery classification. In Section IV, the
performance of our proposed ML method is evaluated. In addi-
tion, we carry out top feature analysis based on Shapley Values
and provide a discussion on research challenges. Finally, we
conclude the paper in Section V.

II. RELATED WORK

In this section, we present related research which is grouped
into the follow categories: COVID-19 symptom tracking, early
diagnosis, and recovery detection.

A. COVID-19 Symptom Tracking

The researchers in [9] utilize a smartphone-based app to
collect symptom data from patients. In the app, patients also
recorded when they had tested either negative or positive for
COVID-19 infection. They propose a logistic regression model
that combines the reported symptoms in order to predict COVID-
19 infection. A combination of loss of smell and taste, fatigue,
persistent cough, and loss of appetite resulted in the best model,
which achieved a sensitivity and specificity of 0.65 and 0.78,
respectively. The authors in [10] also used a mobile app for
collecting symptoms data and COVID-19 test results. They
trained a logistic regression model to predict COVID-19 in-
fection based on self-reported symptoms, and calculated the
odds ratio for each symptom in order to understand which
symptoms were the strongest predictors. Chills, fever, loss of
smell, nausea, and shortness of breath were the top five strongest
predictors of COVID-19 infection. Participants in their cohort
with a positive test result experienced 5.6 symptoms on average.
In [11], the researchers trained a gradient-boosting machine to
predict COVID-19 infection based on 8 features: cough, fever,
sore throat, shortness of breath, headache, age, sex, and known
contact with an individual confirmed to have COVID-19. Their
approach achieved a sensitivity and specificity of 0.86 and 0.79,
respectively. Fever and cough were the top 2 features with the
greatest impact on the model’s prediction. These past works
demonstrate that self-reported symptoms can be effectively
used to predict COVID-19 infection. However, these approaches
rely on patient compliance with manual symptom tracking. In
contrast, wearable devices can passively collect data that is
relevant to COVID-19 infection. In addition, wearable data can
be predictive of COVID-19 infection prior to symptom onset.

B. Early Diagnosis of COVID-19

The authors in [12] use data collected from wearable devices
for the early detection of COVID-19 infection. They propose
an anomaly detection technique based on two parameters: 1.
Resting heart rate (RHR), 2. Heart rate over steps (HROS).
HROS was calculated by dividing heart rate by steps data at
each hourly interval. They report that significant deviations in
these parameters relative to the individual baseline can indicate
COVID-19 infection. They utilize Gaussian density estimation
to classify anomalies in the dataset. Their results show that 63%
of COVID-19 cases in their cohort could have been detected
before symptom onset. The researchers in [13] also utilize devi-
ations from RHR to classify a patient as infected. They propose a
deterministic finite state machine which triggers an alert when a
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patient’s overnight RHR increases above the median of previous
overnight RHRs by an empirically determined threshold. Their
system generated alerts for 80% of the infected individuals prior
to symptoms, however, many of the alert-generating events were
not associated with COVID-19 and instead attributed to other
events, such as poor sleep, stress, alcohol consumption, intense
exercise, or travel. While these studies demonstrate that devia-
tions in physiological and activity data measured by wearable
devices can be used for early detection of COVID-19, they only
utilize a subset of possible device features (RHR and steps) and
do not investigate ML-based approaches which are well suited to
handle larger feature sets. Furthermore, they do not investigate
if wearable device data can be used to monitor patient recovery
from COVID-19.

The researchers in [14] trained a logistic regression model
to differentiate COVID-19 positive vs. negative cases in symp-
tomatic individuals based on symptoms and wearable device
data. Baseline device data was calculated as the median of the
data from 21 to 7 days before the onset of symptoms. They show
an increase in model performance when including device data
(RHR, sleep duration and step count) in addition to symptoms
data as part of the feature set. The authors in [15] trained a
convolutional neural network to predict illness given health
metrics for that day and the preceding 4 days. These metrics
included the mean respiration rate (RR) during sleep, mean heart
rate during sleep, the root mean square of successive differences
(RMSSD) of the nocturnal RR series and the Shannon entropy
of the nocturnal RR series. They organize each data sample into
5 × 4 matrix and resize each matrix into a 28 × 28 image as the
input to the network. Their method achieved a sensitivity and
specificity of 51% and 90%, respectively. In [16], the researchers
presented a gradient-boosting model based on decision trees to
detect COVID-19 infection. Their approach achieved a sensi-
tivity and specificity of 71% and 67%, respectively, when only
using device features as input to the model. They grouped the
device features into activity, sleep, and heart rate categories, and
found that activity related features had the greatest impact on
the model’s prediction, followed by sleep and heart rate-related
features. These works demonstrate the ability of ML models to
learn meaningful relationships between wearable device features
and the onset of COVID-19 infection.

C. Recovery Detection From COVID-19

The research presented in [9], [10], [11], [12], [13], [14],
[15], [16] focused on predicting COVID-19 infection using
self-reported symptoms or wearable device data. In contrast to
these works, the objective of our research is to estimate recovery
from COVID-19 symptoms using wearable device data. The
researchers in [17], [18] present different approaches to estimate
recovery from COVID-19 infection based on symptoms and
demographic data. The authors train a support vector machine
[17] and decision tree classifier [18] to estimate patient recovery
based on symptoms, demographic, and travel-related features.
In [17], the authors found that most of the patients who could not
recover experienced a fever, cough, and fatigue. In [18], the au-
thors extended their model to predict the number of days needed
to recover from infection. Their model predicted a minimum
of 5 days and a maximum of 35 days for COVID-19 patients
to recover. Both approaches presented in [17], [18] rely on
symptoms data and do not investigate the use of wearable device
data for patient recovery estimation. We did not find any previous

TABLE I
COHORT STATISTICS (N = 30)

research that investigates whether wearable device data can be
used to estimate patient recovery from COVID-19. This aligns
with the observations of the authors in [19] who provide a review
on the rise of wearables during the COVID-19 pandemic. None
of the works presented in their review are focused on estimating
patient recovery from COVID-19 symptoms. This motivates
us to develop our own labeling logic for patient recovery in
direct consultation with UCSD Health COVID-19 telemedicine
doctors. In addition, the dataset we collect consists of a rich
feature set spanning activity, sleep, stress, heart rate and SpO2

data. Our paper provides novel insights into which lifestyle and
physiological signals are associated with patient recovery from
COVID-19 symptoms.

III. METHOD

In this section, we first detail our study cohort and the pro-
posed remote patient monitoring and reporting system. We then
present the ML task of patient recovery classification and discuss
its application. Finally, we describe the data preprocessing, the
RF model, and our proposed personalization technique.

A. Clinical Study Cohort and eCOVID System

Our IRB-approved clinical study (protocol #181405) was in
collaboration with UC San Diego Health and Neighborhood
Healthcare, with patient enrollment, onboarding and manage-
ment conducted by the Altman Clinical & Translational Re-
search Institute at UC San Diego. The study was conducted
starting in May 2020. Patients who tested positive for COVID-19
at each location were referred to our study coordinator. Eligible
patients were required to be over 18 years old and stable for
monitoring in an ambulatory setting, as determined by healthcare
personnel at the point of care when testing was initially ordered.
The characteristics of the included cohort are shown in Table I.
Subjects digitally consented using our symptom tracker mobile
app, and those who did were provided a Garmin Vivosmart4
wearable device [20] to collect their lifestyle and vitals data for
the study duration of up to 3 months. One of the deciding factors
in using this device for this study is its ability to measure blood
oxygen saturation (SpO2). Based on the findings of [21] and
our discussion with UCSD Health doctors, SpO2 is a critical
metric in determining the condition of a COVID-19 infected
patient. Fig. 1 displays the overall architecture of our remote
monitoring system, namely eCOVID. The system consists of a
symptom tracker mobile app, developed using the Touchwork
platform, and the Garmin device. The daily questions in the
symptom tracker app were developed in collaboration with
doctors at the UCSD Health COVID-19 telemedicine clinic and
are detailed in Table II. The vitals and lifestyle data collected by
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Fig. 1. eCOVID remote monitoring and reporting system architecture.

Fig. 2. The left plot displays the number of patients who reported at least 1 day of the symptom. The right plot displays the distribution of the
number of days each symptom was reported per patient. Only patients who reported the symptom are included in this distribution.

TABLE II
DAILY QUESTIONS IN SYMPTOM TRACKER APP

the Vivosmart4 wearable are detailed in Section III-C. Data was
collected remotely through Garmin’s application programming
interface (API) [22].

Fig. 2 details the distribution of symptoms among patients and
describes how long each symptom lasted. For fatigue, shortness
of breath and cough, we marked the symptom as present if the
patient reported a severity score of 2 or greater. The bar graph
in Fig. 2 displays the number of patients that experienced each
symptom. Fatigue, shortness of breath and headache were the

3 most common symptoms with 23 (77%), 19 (63%) and 17
(57%) patients reporting these symptoms, respectively. Chills,
ageusia and subjective fevers were the 3 least common symp-
toms with 8 (27%), 7 (23%) and 5 (17%) patients reporting
these symptoms, respectively. The box plot in Fig. 2 details how
long each symptom was reported by patients. Only patients who
reported the symptom are included in this analysis. Based on
the median number of days, nasal/sinus congestion lingered the
longest with a median of 15 days followed by ageusia with a
median of 11 days. Although ageusia was only reported by 7
patients, the symptom lingered for a longer time compared to
other symptoms. Subjective fevers, chills and chest pain were
reported for the shortest period each having a median of 1 day.
Patients completed the daily symptom tracker an average of 73%
of days enrolled in the study. They wore the Garmin device an
average of 90% of days enrolled in the study. This indicates that
patient compliance with wearing the device was 17% greater
than compliance with answering the daily symptom tracker. This
statistic demonstrates the higher efficiency of wearable device
data for remote monitoring and helps motivate our proposed
ML task for patient recovery classification based on automatedly
collected device data, as opposed to relying on manually entered
symptom data.

B. Patient Recovery Classification

The objective of this ML task is to classify whether a patient
has recovered from COVID-19 symptoms based on their device
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Fig. 3. Symptom severity progression for two COVID-19 patients.
Patient 2’s symptom severities decrease by day 7 and then sharply
increase again after day 10. The shortness of breath (SOB), fatigue, and
cough severities correspond to questions 3-5 of the symptom tracker.

Fig. 4. Labeling logic for patient recovery classification based on
symptom tracker questionnaire responses.

data. This binary classification model can provide healthcare
workers with automated insights into the recovery status of their
infected patients and bypass the need for manual daily symptom
tracking which relies on patient compliance. To the best of our
knowledge, there is no clear definition for full recovery from
COVID-19. The US CDC recommends removal of isolation for
COVID-19 infection when a patient’s symptoms have signifi-
cantly improved, they have been afebrile for at least 24 hours
in the absence of fever-reducing medications, and it has been at
least 10 days since symptom onset [23]. However, it is now un-
derstood some patients can suffer from ongoing symptoms from
COVID-19 for weeks and even months [24]. Unlike symptom
severity which can be identified by patients themselves, recovery
is a gradual, subtle, and implicit process. In this task, we classify
whether a patient has recovered from the COVID-19 symptoms
collected by our symptom tracker app. Most patients experi-
enced a steady decline in symptom severities, however, some
patients initially appeared to recover and then had symptoms
re-appear. Fig. 3 displays the symptom severity progression for
the first 30 days for two different COVID-19 patients in terms
of shortness of breath (SOB), fatigue, and cough. Patient 1 is an
example of a patient who experienced a steady recovery. Patient
2, however, demonstrates a complicated symptom progression.
The symptom severities for this patient declined by day 7 and
then sharply worsened after day 10, especially for SOB and
fatigue. All three symptoms linger for this patient for over a
month.

A binary label is generated on a daily basis for each patient:
recovered (0) or not recovered (1). The labelling logic for patient
recovery was developed in collaboration with UCSD Health
doctors and is displayed in Fig. 4. If symptoms are present be-
sides loss of taste/smell (Question 2), label as not recovered (1).
We do not consider loss of smell/taste because these symptoms
have been shown to linger after a patient has recovered from
COVID-19 [25]. If no symptoms are marked for Question 2

TABLE III
STATISTICS FOR LABEL COUNT PER PATIENT

and fatigue/cough/shortness of breath severity is ≤ 2 (Questions
3-5), label as recovered (0). If fatigue/cough/shortness of breath
severity is > 2 but there is an improvement over 3 consecutive
days in severity scores, label as recovered (0). In order to accom-
modate for complex cases such as Patient 2 in Fig. 3, in which
there may be a day labeled as recovered (0) between days labeled
as not recovered (1), we apply the following logic. If a patient is
labeled as recovered (0) for 7 consecutive days, all the following
labels are also marked as recovered (0). Otherwise, the recovered
(0) days shorter than 7 days are reverted to non-recovered (1)
days. This ensures there are no “recovered” days between “not
recovered” days and vice versa. The statistics of the symptom
tracker labels are shown in Table III. The average number of
“not recovered” and “recovered” samples per patient is 24 and
21, respectively. The median number of “not recovered” and
“recovered” samples per patient is 16 for both. This difference
in mean and median is the result of outlier patients who have a
high amount of one label. There are 10 patients for which 90%
of their labels are either “not recovered” or “recovered”. Patients
with few “not recovered” labels may be a result of being asymp-
tomatic or a delay in joining the study after being infected and
testing positive. Patients with few “recovered” labels remained
symptomatic for the study duration. These labels are used for
the patient recovery classification task. Note that the recovery
classification technique proposed here can be used with any other
labeling logic developed by other health care providers.

C. Device Data and Preprocessing

The Garmin vivosmart4 includes a heart rate monitor, ac-
celerometer, ambient light sensor, and blood oxygen saturation
(SpO2) monitor. The device uses these sensors in order to
calculate various health parameters, including lifestyle and vitals
information. The device data is presented in Table IV. The
Garmin API documentation provides a description of these pa-
rameters [22]. Lifestyle features include activity (steps, distance,
floors, active time, etc.), stress (average stress, max stress, stress
duration, etc.), sleep timing (duration, bed time, up time), and
sleep stages (deep, light, REM, awake). Stress-related features
are derived based on heart rate variability [22]. The variable
length of time in between each heartbeat is regulated by the
body’s autonomic nervous system. The less variability between
beats equals higher stress levels, whereas the increase in vari-
ability indicates less stress. As mentioned in the introduction, the
researchers in [12] found that COVID-19 affected the number
of daily steps and time asleep for patients in their study. This
result motivates us to include all lifestyle features when training
our patient recovery classification model. In addition to lifestyle
factors, the vivosmart4 measures vitals data including heart
rate and SpO2. The device is capable of manual SpO2 spot
checks during the day and 4 hours of continuous measurement
during sleep. Since the symptoms data and patient recovery
classification labels are generated daily, we aggregate the device
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TABLE IV
LIST OF GARMIN DEVICE FEATURES THAT OUR APPROACH USES

Features marked with * require additional processing after receiving the data from garmin. Features marked with ^ are available in the dataset from 

[12] which we discuss in section IV-B.

TABLE V
TOP 10 CORRELATIONS BETWEEN SYMPTOMS AND DEVICE FEATURES

data features for each day. The Garmin Health API provides
summarized activity, sleep, stress, and heart rate features daily.
The features in Table IV marked with a ∗ require additional
processing after receiving the data from Garmin. These include
BedTime, UpTime, MaxSpO2, MinSpO2, and MeanSpO2. The
BedTime and UpTime features are encoded as the number of
seconds before or after midnight (e.g., 11:30 PM bed time is
encoded as -1800 seconds, 8:00 AM wake time is encoded
as 28800 seconds). Since only the continuous SpO2 data is
available through the Garmin API, we transform the SpO2 time
series each day into the MaxSpO2, MinSpO2, and MeanSpO2

features displayed in Table IV. Note that a subset of the features
is marked with ^ in Table IV indicating they are available in
the dataset from [12] which we discuss in Section IV-B. Once
the device data is aggregated for each day, we match it with
the corresponding patient recovery label to form patient-day
samples. Each patient-day sample consists of the recovery label
and the summarized lifestyle and vitals features for one patient’s
day in the study. Note that symptoms data are not directly used
as part of the training data, but rather to generate the daily patient
recovery labels.

Fig. 5 displays a heatmap of the correlation between the ag-
gregated daily lifestyle/vitals features and symptoms data for our
study cohort. We use Spearman correlation because the symptom
variables are not continuous. Spearman evaluates the monotonic
relationship between two continuous or ordinal variables [26].
The color of each heatmap square describes the magnitude and
directionality of the correlation. Darker red squares correspond
to a stronger positive correlation while darker blue squares
correspond to a stronger negative correlation. Table V displays

Fig. 5. Spearman correlation between lifestyle/vitals and symptoms.
Notable correlations are circled in yellow.

the top 10 most significant correlations between symptoms and
device features and in Fig. 5 we circle notable correlations
in yellow. These include distance and steps vs. fatigue and
shortness of breath (SOB) severity, and deep and REM sleep
vs. cough and fatigue severity. The correlations for distance
vs. SOB and fatigue are −0.38 and −0.37, respectively. The
correlations for steps vs. SOB and fatigue are −0.32 and −0.33,
respectively. It is sensible that distance and steps are negatively
correlated with cough and SOB severity. A patient is less likely
to be active if their symptom severities are higher. Deep and
REM sleep duration are positively and negatively correlated,
respectively, with cough, fatigue and SOB severity. The most
significant correlation is deep sleep vs. cough, which has a
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correlation of 0.47. REM sleep is most correlated with fatigue,
with a correlation of −0.34. According the American Academy
of Sleep Medicine, as the immune system fights infection, the
amount of time spent in REM sleep is decreased while deep
sleep is increased [27]. This is because it is during deep sleep
that many reparative bodily processes occur. This validates the
directionality of the correlations between REM/deep sleep and
symptom severities. While the individual correlations between
other lifestyle/vitals features and symptoms are not as promi-
nent, the heatmap in Fig. 5 indicates that a combination of
these features can provide useful information about symptom
severity when training the ML model. Overall, these correlation
observations help motivate our ML approach to patient recovery
classification based on device data.

D. Random Forest and Personalization

We train multiple ML classifiers in order to determine which
is most effective at modelling the patient recovery task, as
described in Section IV-A. As indicated in Table VI, the Random
Forest (RF) model results in the best performance during LOSO
CV. In this section, we discuss the operation of the RF model
and our personalization technique.

RF is an ensemble model that aggregates a collection of
decision trees in order to reduce overfitting and the resulting
high variance in prediction [28]. To do this, RF utilizes bootstrap
aggregation (bagging) and feature bagging. RF produces boot-
strap datasets that are randomly and independently drawn with
replacement from the training dataset. Each bootstrap dataset
has the same size as the original training set and is used to
train a decision tree. Bootstrap aggregation in RF averages
the prediction of all decision trees which greatly reduces the
variance compared to a single decision tree. Moreover, since
individual trees generated in the bagging process are identically
distributed, the expected prediction of RF is the same as the
expected prediction of individual trees. Combining the above
facts, RF has a lower variance than individual trees, while its
bias remains the same [29]. RF further reduces the correlation be-
tween its member decision trees by introducing feature bagging,
which randomly selects a subset of features when constructing
each tree. In addition, RF is known to perform well even when
using redundant or irrelevant features. Since we utilize multiple
lifestyle and vitals features for model training, it is possible that
some features do not provide useful information. Since RF is
more robust to noisy features as compared to the other models
[30], redundant or irrelevant features will not greatly impact
performance.

Multiple studies that focus on ML for health applications have
shown that model personalization is a key step in improving per-
formance due to the physiological differences between patients
[31], [32], [33], [34]. In this study, we observe that vitals and
lifestyle factors vary among patients and propose a RF-based
personalization technique to tune the model to each patient.
Our technique involves including the first k days of labeled
data from the test patient in the training set. In the traditional
RF bootstrapping process, each training sample has uniform
weight, which means each data sample is resampled with the
same probability. To emphasize the test patient’s calibration
samples during model training, we assign a greater weight to
these k samples using the Weighted Bootstrapping algorithm
[35]. In order to implement this algorithm, a vector of sample
weights W = w1, w2, . . . , wN is maintained where N is

the total number of training samples. Weights w1, . . . , wk

correspond to the k personalization samples from the test patient
and are given larger values. Weights wk+1, . . . , wN corre-
spond to the data samples from the remaining patients used for
training and are assigned lower values. The operation of the
Weighted Bootstrapping algorithm is as follows [35]: First, a
new bootstrap dataset for one decision tree is initialized. Then,

the weights in W are mapped into the interval
[
0,

∑N
j = 1 wj ,

]

with subintervals I1, I2, . . . IN . The length of each subinterval
is proportional to the value of its weight. Next, each data sample
is drawn using subintervals I1, I2, . . . IN and the uniform
distribution function. The process repeats N times such that the
size of all bootstrap datasets equals that of the original dataset.
Consequently, the samples with higher weights are more likely
to appear in each bootstrap dataset. In Section IV-B, we compare
the performance for different values of k and different values of
w1, . . . , wk. Fig. 6 displays a block diagram of our proposed
RF personalization technique. After preprocessing each patient’s
data, Hybrid-CV is carried out in which the training and test sets
are split on a per patient basis and the first k days of test patient
data are added to the training set as personalization samples, as
shown in Fig. 6. These k samples are assigned greater weights,
which are bolded in the figure, during weighted bootstrapping.
After training, the model is evaluated on the remaining, future
data samples of the test patient.

IV. RESULTS AND DISCUSSION

In this section, we describe the experiment settings and
present patient recovery classification results. We discuss the
effects of our RF model personalization technique on perfor-
mance and carry out feature analysis using Shapley Values in
order to interpret what the model has learned. Finally, we provide
a discussion on the challenges encountered during this study.

A. Experiment Setting

We implement and evaluate our machine learning models
using the Scikit-learn library in the python environment on an
Intel i5 3.2GHz quad-core and 16GB RAM computer. Accuracy,
sensitivity, specificity, and F1-score are calculated and used as
our evaluation metrics for the patient recovery classification task.
For this task, a negative and positive sample correspond to a “re-
covered” and “not recovered” patient-day sample, respectively.
Accuracy returns an overall measure of how much the model
is correctly predicting on the entire set of test data. Sensitivity
and specificity measure the true positive and true negative rate,
respectively. F1 score is calculated as the harmonic mean of
precision and recall (sensitivity) and is used to find the best
trade-off between the two quantities [36]. As a result, we use F1
score for deciding the top performing model.

We carry out LOSO CV to mirror the clinically relevant
use-case scenario of diagnosis for newly infected subjects [43].
LOSO CV separates the data into train and test sets on a per
patient basis in order to simulate the practical application. This
data split ensures that data from the same patient does not
appear in both the training and testing sets. We use LOSO
CV to compare the performance of different ML models. We
then carry out Hybrid-CV, in which a specified number of
samples from the test patient are included in the training set.
These personalization samples are not included in the test set
to ensure there is no overlap between train and test sets at the
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Fig. 6. Block diagram of our proposed RF personalization approach. After data preprocessing, the first k samples from the test patient are
included in the training set during Hybrid-CV. These samples are assigned larger weights, which are bolded in the figure, during weighted bootstrap
aggregation. After training, the model is evaluated on the remaining test patient data samples.

TABLE VI
COMPARISON OF ML MODEL PERFORMANCE FOR LOSO CV

sample level. We compare how performance is affected by
applying varying levels of personalization using our RF-based
personalization technique described in Section III-D. Since the
number of samples for each patient is different based on their
participation in the study, the training and testing sets will vary
in size for both CV experiments. Instead of averaging the results
over each data split, we save the model predictions for each data
split and calculate metrics over all predictions. This ensures that
each patient-day contributes equal weight to the final result.

In the LOSO CV experiment, we compare RF with the
following ML models: logistic regression (LR) [37], k-nearest
neighbors (KNN) [38], support vector machine (SVM) [39], ar-
tificial neural network (ANN) [40], and long short-term memory
(LSTM) neural network [41]. Model hyperparameter tuning is
performed with each training set using a randomized search
over a predefined hyperparameter grid for each model. Since
LSTM models take sequential data as input, we organize the
lifestyle and vitals features into sequential data samples using a
window length of 7 days and a step size of 1 day. A step size
of 1 day is used to extract the maximum number of samples.
As a result, each input sample has a dimension of (7, Nfeatures)
where Nfeatures represents the number of lifestyle and vitals
features. The patient recovery label for the last day of each
window is assigned to each input sample. We train the LSTM as a

many-to-one model, as opposed to a many-to-many model, since
the application of this method is only concerned with estimating
whether the patient is recovered or not for the current day. In
addition, training the LSTM to estimate one label at a time
matches the process for the other ML models, resulting in a
fairer comparison. We carry out two LSTM experiments using
16 and 32 hidden units for the LSTM layer followed by a fully
connected layer with 1 output unit. For these experiments, we
train the models using the Adam optimizer [42] and a dropout
rate of 50% to reduce overfitting. For the LSTM layers, we use
a sigmoid activation function for the input, forget and output
gates, and a hyperbolic tangent (tanh) activation function for
the cell state and hidden state. The fully connected layers use a
sigmoid activation function and we use binary cross entropy loss
as the loss function. We experimented with different numbers of
training epochs and batch sizes and found that 25 epochs and a
batch size of 32 resulted in the best performance.

B. Patient Recovery Classification Results

Accuracy, sensitivity, specificity, and F1-score for each ML
model during LOSO CV are presented in Table VI. The LSTM-
32 model achieves the highest accuracy and sensitivity, both
equal to 0.64, while the RF model achieves the highest specificity
and F1 score equal to 0.78 and 0.66, respectively. As described
in the experiment setting, we use F1 score for deciding the
top performing model since this metric calculates the tradeoff
between precision and sensitivity. Since RF achieves the highest
F1 score, we conclude that RF is the best performing model
for patient recovery classification. We attribute the RF’s top
performance to its ability to reduce the variance in prediction via
the bagging process and its robustness to redundant or irrelevant
features. The LSTM-32 model is the second-best performing
model, indicating that meaningful temporal information exists
in the data for estimating recovery from COVID-19. Since RF
is the top performer, we use this model in the next experiment to
understand how the number of personalization samples impacts
RF performance.

Next, we discuss the results of the Hybrid-CV experiment.
As mentioned in the experiment settings, LOSO CV separates
the data into train and test sets on a per patient basis. Since
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TABLE VII
HYBRID-CV RESULTS USING DIFFERENT LEVELS OF PERSONALIZATION

physiology and lifestyle differ between patients, we apply vary-
ing levels of personalization during the Hybrid-CV experiment.
We implement our RF-based personalization technique by in-
cluding the first 1-5 days of test patient data in the training
set. These personalization samples are assigned a larger weight
so that they are sampled more frequently during the bootstrap
aggregation step. Table VII displays the results for different
amounts of personalization. Evidently, the classification results
are worse when no personalization is applied. The accuracy, sen-
sitivity, specificity, and F1-score are 0.59, 0.52, 0.78, and 0.66,
respectively, when no personalization is applied. As personaliza-
tion samples are included in the training set, accuracy, sensitivity,
and F1-score increase, while specificity decreases. When using
5 personalization samples, the accuracy, sensitivity, specificity,
and F1-score are 0.82, 0.89, 0.63, and 0.88, respectively. Since
the personalization samples for each patient correspond to their
first 1-5 days in the study, these samples are primarily labeled
1 or “not recovered”. This means that as more personalization
samples are included in the training set, the model can increas-
ingly learn the infected baseline of the patient based on their
vitals and lifestyle data. This causes the sensitivity to increase
since the model will be able to increasingly correctly classify a
patient who has not recovered. This corresponds to increasing
true positives (classifying a patient as not recovered when they
are indeed not recovered) while minimizing false negatives
(classifying a patient as recovered when they are not recovered).
As the sensitivity increases, the specificity decreases. Since the
model is increasingly tuned to classify a patient as not recovered,
this will result in more false positives and a lower specificity.
For this ML task, false positives are more acceptable than false
negatives. Classifying a patient as not recovered when they are
recovered is less harmful than classifying a patient as recovered
when they are not recovered. Overall, adding personalization
samples increases the model performance. When applying this
personalization technique to a new patient, the first few days will
involve data collection without any classifications from the ML
model. After this initial data collection, the personalized model
will provide estimations with improved accuracy, sensitivity, and
F1-score. The results demonstrate the potential for ML-assisted
remote patient monitoring to supplement traditional manual
monitoring tools, like daily manual symptom tracking.

The results presented in Table VII are generated by setting the
bootstrap aggregation weights for the personalization samples
to 10. This means these samples are 10 times more likely to be
sampled during the RF weighted bagging process. In Table VIII,

TABLE VIII
PERFORMANCE COMPARISON WHEN APPLYING DIFFERENT RF BOOTSTRAP

AGGREGATION WEIGHTS TO 5 PERSONALIZATION SAMPLES

TABLE IX
EVALUATION OF PROPOSED METHOD ON OPEN DATASET FROM [12]

we compare how classification performance is affected by ap-
plying different bagging weights to 5 personalization samples.
We set the weights to 1, 10 and 100. Using a bagging weight of 1
means the personalization samples have the same probability of
being sampled as the training data from other patients. Evidently,
a bagging weight of 1 produces worse performance with an
accuracy, sensitivity, specificity, and F1-score of 0.7, 0.69, 0.73,
and 0.77, respectively. In this case, the personalization samples
are not emphasized and the model is not effectively calibrated.
Increasing the bagging weight from 10 to 100 does not improve
model performance. This indicates that at a certain weight, the
personalization samples are sampled frequently enough during
bagging to effectively calibrate the model. Further increasing
the bagging weight does not provide additional utility in model
personalization.

In order to extend the evaluation of our proposed method,
we applied our approach to the dataset collected in [12]. This
dataset includes sleep, heart rate and steps data collected from
a wearable device, and the date of first symptoms and date of
recovery which are manually recorded by each patient. Since
this dataset does not include SpO2, stress or activity (besides
steps) data, the number of features is significantly less than our
own dataset (12 vs. 28). In Table IV, features marked with ^ are
available in the dataset in [12]. We labelled all days between
the start of symptoms and recovery dates as “not recovered”
and all days after the recovery date as “recovered.” We then
combined these labels with the corresponding device features to
create the dataset in the same manner as our experiment setting.
After these data processing steps, 15 patients had sufficient data
to be included in this experiment. Table IX displays the results
when applying our method to this dataset. We train a Random
Forest model with and without personalization and calculate the
accuracy, sensitivity, specificity, and F1-score. We use 5 sam-
ples when applying our personalization technique and observe
that the performance significantly improves compared to the
non-personalized results. With personalization, our approach
achieves an accuracy, sensitivity, specificity, and F1-score of
0.61, 0.55, 0.67, and 0.61, respectively. Evidently, the perfor-
mance metrics are not as good for this dataset. This may be
due to the limited feature set and inaccurate recovery dates
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Fig. 7. Summary of Shapley top features where each point corre-
sponds to a data sample. The x-axis represents a feature’s impact on
model output. Positive SHAP values push the model to output 1 or “not
recovered”.

recorded by patients. We observe similar patterns in the results
compared with our own dataset which include that there is a
performance enhancement when applying our personalization
technique. Overall, these consistent observations between our
dataset and the dataset in [12] indicate that our proposed ap-
proach is not only applicable to our dataset, but can potentially
be applied to different datasets collected in clinical practice.

C. Model Interpretability Via Shapley Value Analysis

Next, we utilize Shapley Values [44], [45] in order to deter-
mine which lifestyle and vitals features have the most significant
effect on model classification for our dataset. Shapley Value
analysis is a model-agnostic interpretation method derived from
game theory. Given a set of feature values and a trained machine
learning model, the estimated Shapley value indicates how each
feature contributes to the model’s classification. We use the
tree SHAP (SHapley Additive exPlanations) framework [46],
[47], which is optimized for tree-based models, to interpret the
output of the RF model for patient recovery classification. Fig. 7
displays the Shapley results where the features are ranked from
the top to bottom based on their impact on the model’s output.
Each point on the plot corresponds to an individual data sample
and represents the contribution from the feature listed on the
Y-axis to the RF’s classification. The placement on the X-axis
represents the amount of positive/negative contribution to the
classification. Positive contribution corresponds to pushing the
model to estimate that a patient is not recovered. The color of
each point represents the actual value of the feature (red is high
while blue is low). The top two features based on Shapley anal-
ysis include deep sleep duration and resting heart rate. Higher
values of deep sleep duration (colored in red) contribute to a
positive, or not recovered, classification. This observation aligns
with the correlation analysis presented in Section III-C. As men-
tioned earlier, deep sleep increases when a patient is sick since

Fig. 8. Impact of feature categories on model output. Features are
grouped into 5 categories and a categorical SHAP score is calculated.
Red or green bars indicate that an increase in the category’s feature
values pushed the model to output “not recovered” or “recovered,” re-
spectively.

this is when many reparative bodily processes occur. Increased
resting heart rate also contributes to a positive classification by
the RF model. This relationship makes sense since resting heart
rate will decrease as a patient recovers. Additional observations
include that a lower number of floors climbed contributes to a
positive classification while an increased mean SpO2 contributes
to a negative, or recovered, classification. Both relationships are
sensible, as a patient who has not recovered will be less active
and a patient who has recovered will have a higher SpO2.

In addition to analyzing the impact of individual features, we
grouped the features into 5 categories (Activity, Sleep, Stress,
Heart Rate and SpO2) and investigated their impact on model
output. A SHAP score for each category was calculated as the
average of the absolute SHAP values for the features in that
category. Fig. 8 displays the ranking of feature categories based
on their categorical SHAP score. We also examined whether,
on average, an increase in the feature values for each category
pushed the model to estimate “recovered” or “not recovered.”
In Fig. 8, a red colored bar indicates that an increase in the
category’s feature values pushed the model to output “not re-
covered.” A green colored bar indicates that an increase in the
category’s feature values pushed the model to output “recov-
ered.” Evidently, the sleep category had the most significant
impact on model output. An increase in feature values in the
sleep and heart rate categories pushed the model to estimate
“not recovered” (red bars) while an increase in feature values
in the stress, activity and SpO2 categories pushed the model
to estimate “recovered” (green bars). Overall, the individual
feature and feature category Shapley analysis demonstrates that
our model can learn clinically relevant relationships between
device data and the status of patients. The interpretability of a
ML model is necessary for humans to understand what the model
has learned, especially in medical applications.

D. Limitations and Research Challenges Encountered

In this section, we discuss limitations to our proposed ap-
proach and challenges faced while implementing this study. One
limitation in our approach is that patients were only enrolled and
provided devices for data collection after testing positive for
COVID-19. It is likely that some patients started experiencing
symptoms before going for a COVID-19 test. This meant we
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were not able to collect symptoms and wearable data during
the initial days of the infection. In order to ensure that data
can be collected before and during the onset of COVID-19
infection, participation could be made available to a larger
number of patients that already own a wearable device. After
testing positive for COVID-19, a patient could immediately
enroll and begin sharing both past and current data. Another
limitation to our approach is that the RF model does not process
data sequentially while the progress of COVID-19 is sequential.
In this work, we experimented with LSTM, a popular temporal
model, however, found its performance to be worse than RF.
Training an LSTM requires significantly more data since neural
networks are highly prone to overfitting when the underlying
dataset size is small [48], [49]. In order to fully utilize temporal
relationships in the data, we plan to further investigate sequence
modeling with additional data in our future work. This will
include implementing many-to-many sequence models using
different time windows to learn temporal progression along with
the label. In addition, a larger dataset can enable the use of
additional features such as patient demographic information.
The model may learn relationships between COVID-19 recovery
and demographic data such as age, gender, and ethnicity.

Concern over privacy was an issue encountered during recruit-
ment for this study. As mentioned in Section III-A, we recruited
patients from both the UCSD Health and Neighborhood Health-
care (NH) COVID-19 telemedicine clinics. NH is a community
clinic that primarily provides care to underserved populations.
In order to increase accessibility to our study, we developed
a Spanish version of our symptom tracker app with assistance
from NH. Overall, we experienced more difficulty recruiting
from NH. One reoccurring reason why NH patients did not
want to partake in our study included a concern over privacy.
Certain patients expressed discomfort over wearing the device
24/7 due to concerns of being tracked. Our recruitment personnel
would highlight that the device does not collect any location data,
however, certain patients still declined participation. The above
challenge encountered during our study showed that privacy
concerns and lack of trust in wearables may further limit access
and use of digital technologies by underserved populations,
contributing to an increased digital divide in healthcare. As
healthcare begins to rely more on digital technologies, these
concerns must be addressed in order to ensure equal access to
high quality healthcare [50].

V. CONCLUSION

In this paper, we propose an intelligent remote monitoring
platform, namely eCOVID, for enhanced COVID-19 ambula-
tory care. Based on data collected from our study with the UCSD
Health and Neighborhood Healthcare COVID-19 telemedicine
clinics in San Diego County, we demonstrate correlations be-
tween automatically collected wearable data and manually en-
tered symptom data. We propose a novel ML approach to
estimate whether a patient has recovered from COVID-19 symp-
toms based on the automatically collected wearable data. Our
results demonstrate that ML-assisted remote monitoring using
wearable data can supplement or be used in place of manual
daily symptom tracking which relies on patient compliance.

By developing and demonstrating the ability to track pa-
tient recovery status remotely, our approach can enable more
optimal care of COVID-19 ambulatory patients at scale. Care
teams will be able to track patient recovery efficiently through

automatically generated and updated dashboards instead of the
current practice of manual symptom tracking and phone calls,
the latter becoming ineffective when there is a surge in cases.
This shift can lead to significant improvement in the efficiency
and scalability of ambulatory patient care, while at the same time
enabling savings in human and equipment resources. Moreover,
the approach can be used for providing scalable and efficient
care for future pandemic and epidemic challenges.
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