
Head and Body Motion Prediction to Enable
Mobile VR Experiences with Low Latency

Xueshi Hou1, Jianzhong Zhang2, Madhukar Budagavi2, Sujit Dey1
1University of California, San Diego 2Samsung Research America

x7hou@ucsd.edu, {jianzhong.z, m.budagavi}@samsung.com, dey@ece.ucsd.edu

Abstract—As virtual reality (VR) applications become popular,
the desire to enable high-quality, lightweight and mobile VR leads
to various edge/cloud-based techniques. This paper introduces
a predictive pre-rendering approach to address the ultra-low
latency challenge in edge/cloud-based six Degrees of Freedom
(6DoF) VR. Compared to 360-degree videos and 3DoF (head
motion only) VR, 6DoF VR supports both head and body
motions, thus not only viewing direction, but also viewing position
changes. In our approach, the predictive view is rendered in
advance based on the predicted viewing direction and position,
leading to a reduction in latency. The key to achieving this
efficient predictive pre-rendering approach is to predict the head
and body motion accurately using past head and body motion
traces. We develop a deep learning-based model and validate its
ability using a dataset of over 840,000 samples for head and body
motion.

Index Terms—Virtual reality, video streaming, six Degrees of
Freedom (6DoF).

I. INTRODUCTION

Virtual reality (VR) systems have triggered enormous inter-
est over the last few years in various fields including enter-
tainment, enterprise, education, manufacturing, transportation,
etc. However, several key hurdles need to be overcome for
businesses and consumers to get fully on board with VR
technology [1]: cheaper price and compelling content, and
most importantly a truly mobile VR experience. Of particular
interest is how to develop mobile (wireless and lightweight)
head-mounted displays (HMDs), and how to enable VR/AR
experience on the mobile HMDs using bandwidth constrained
mobile networks, while satisfying the ultra-low latency re-
quirements.

Currently used HMDs can be divided into several cate-
gories [2]: PC VR, standalone VR, mobile VR. Specifically,
PC VR has high visual quality with rich graphics contents
as well as high frame rate, but the HMD is usually tethered
with PC [3], [4]; standalone VR HMD has a built-in processor
and is mobile, but may have relative low-quality graphics and
lower refresh rate [5], [6]; mobile VR is with a smartphone
inside, leading to a heavy HMD to wear [7], [8]. Therefore,
current HMDs still cannot offer us a lightweight, mobile,
and high-quality VR experience. To solve this problem, we
propose an edge/cloud-based solution. By performing the
rendering on edge/cloud servers and streaming videos to
users, we can complete the heavy computational tasks on the
edge/cloud server and thus enable mobile VR with lightweight
VR glasses. The most challenging part of this solution are
ultra-high bandwidth and ultra-low latency requirements, since
streaming 360-degree video causes tremendous bandwidth
consumption and good VR user experiences require ultra-low
latency (<20ms) [9], [10].

Specifically, the total end-to-end latency of edge/cloud-
based VR system includes following parts: time of transmitting
sensor data from HMD to server, time of rendering (and encod-
ing) on server, time of transmitting rendered video from server
to HMD, and time of (decoding and) displaying the view on
HMD. The encoding and decoding are optional according to
the specific application design. Once the user moves his/her

Rendering TransmissionBaseline

TransmissionProposed
Approach Latency Reduced

Rendering TransmissionBaseline

Proposed
Approach Latency Reduced

Encoding Decoding

TransmissionEncoding Decoding

(a)

(b)

Fig. 1. Illustration of rendering and streaming pipeline: (a) Without
encoding and decoding; (b) With encoding and decoding.

head or body position, high-quality VR requires this end-
to-end latency as less than 20ms [9], [10] to avoid motion
sickness. For edge/cloud-based VR system, it is extremely
challenging to meet this requirement.

Motivated by the latency challenge, in this paper, we pro-
pose a novel approach of enabling mobile VR with prediction
for head and body motions to satisfy ultra-low latency require-
ment. If we can predict head and body motion of users in the
near future, we can do predictive pre-rendering on the edge
device and then stream (even pre-deliver) predicted view to
the HMD. Note that both the choices can significantly reduce
latency: one does pre-rendering and the other does both pre-
rendering and pre-delivery. The latter reduces more latency
than the former but (i) needs a module on HMD to buffer the
predicted view and determine whether the predicted viewing
position and direction are correct; (ii) transmits extra content
when prediction is inaccurate. Hence, we adopt the former
method, where the latency can be significantly reduced since
the pre-rendered view will be transmitted if the predicted
viewing position and direction are ’correct’ (i.e. the error is
less than a given ultra-low value); otherwise, latency remains
the same with traditional streaming method because the actual
view will be rendered and transmitted to the HMD. Fig. 1
illustrates the latency reduced by our pre-rendering approach
compared to the traditional approach, in terms of rendering and
streaming pipeline (from server to HMD). The key to achiev-
ing this efficient predictive pre-rendering approach is solving
the problem of motion prediction stated in Section III.A.

In our earlier work [11], we proposed techniques for head
motion prediction in 360-degree videos and three Degrees
of Freedom (3DoF) VR applications. In this work, we are
addressing the problem of both head and body motion pre-
diction in six Degrees of Freedom (6DoF) VR applications.
Compared to 360-degree videos and 3DoF VR (support only
head motion), 6DoF VR supports both head and body motion.
For head motion prediction in 360-degree videos and 3DoF
VR, a certain prediction error is allowed, because the error
can be handled by delivering larger field of view (FOV) with
high quality or rendering larger FOV. However, the motion
prediction in 6DoF VR is much more challenging, where the
body motion prediction needs high precision to pre-render the
user’s view (otherwise may cause dizzy feeling). For 360-
degree videos and 3DoF VR, the 360-degree view at a time

To appear in 2019 IEEE Global Communications Conference (GLOBECOM'19), Waikoloa, HI, USA, Dec. 2019.

1

point is known and unchanged by any head motion, but for
6DoF VR it can be totally different due to the body motion.
Therefore, this paper will explore the feasibility of doing
motion prediction with high precision in 6DoF VR, and its
main contributions can be summarized as follows:

• For 6DoF VR applications, we propose a new predic-
tive pre-rendering approach involving both body and
head motion prediction, in order to enable high-quality,
lightweight, and mobile VR with low latency.

• We develop a prediction method using deep learning
to predict where a user will be standing (i.e. viewing
position) and looking into (i.e. viewing direction) in the
360-degree view based on their past behavior. Using a
dataset of real head motion traces from VR applications,
we show the feasibility of our long short-term memory
(LSTM) model for body motion prediction and multi-
layer perceptron (MLP) model for head motion prediction
with high precision.

• To the best of our knowledge, we are the first to come
up with this predictive pre-rendering idea for 6DoF VR
applications and show good results on a real motion
trace dataset in the VR applications. We demonstrate the
potential of our approach with high accuracy of head and
body motion prediction.

The rest of the paper is organized as follows. §2 reviews
related work. §3 presents the system overview and problem
definition. §4 describes our dataset. The methodology for head
and body motion prediction is described in §5. We present our
experimental results in §6, and conclude our work in §7.

II. RELATED WORK

In this section, we review current work in the following
topics related to our research.

Enable High-Quality Mobile VR: Some recent stud-
ies [12]–[14] explore solutions to enable lightweight and
mobile VR experiences, and improve the performance of
current VR system. To provide high-quality VR on mobile
device, [12] presents a pre-rendering and caching design called
FlashBack, which pre-renders all possible views for different
positions as well as orientations, stores them on a local cache,
and delivers frames on demand according to current position
and orientations. Due to infinite choices for different position,
they propose to only render the view at each 3D grid point
(grid density is 2-5cm). This may bring high inaccuracy and
error to the VR system, leading to negative user experiences.
Pre-caching all possible views will also cause overwhelming
storage overhead (e.g. 50GB for an app). In contrast, our
method aims to do a predictive pre-rendering based on head
and body motion predictions, thus eliminating the above error
as well as overwhelming storage overhead. [13] introduces a
parallel rendering and streaming mechanism to reduce the add-
on streaming latency, by pipelining the rendering, encoding,
transmission and decoding procedures. Their method focuses
on minimizing streaming latency, thus the latency for ren-
dering part remains the same with traditional method. [14]
presents a collaborative rendering method to reduce overall
rendering latency by offloading costly background rendering
to a server and only performing foreground rendering on the
mobile device. This method reduces the rendering latency to
some extent. In contrast, our method propose to pre-render
based on head and body motion predictions, reducing the
latency of rendering more drastically.

Human Motion Prediction: Learning statistical models
of human motion is challenging due to the stochastic nature
of human movement to explore the environment, and many
work [15]–[19] propose methods to address it. Based on

classical mechanics, there are some studies [15]–[17] showing
the efficiency of linear acceleration model (Lin-A) by doing
motion prediction or estimation with assumption of linear
acceleration, especially in a small time interval (e.g. order of
tens of milliseconds). [15] describes a good performance of a
simple first-order linear motion model for tracking human limb
segment orientation, and [16], [17] reveal acceptable results
when employing the linear model as a baseline to predict
human trajectory. Meanwhile, deep learning approaches [16]–
[19] for human body prediction have also achieved remarkable
accomplishments. Specifically, [16], [17] propose their LSTM
models to predict human future trajectories, but their models
aim to learn general human movement from massive num-
ber of videos and the corresponding precision of predicted
position is much lower than needed for pre-rendering in VR
scenarios. [18], [19] propose various recurrent neural network
(RNN) models for human motion prediction to learn human
kinematics from skeletal data. But these models are complex
because of being designed to learn the patterns from a series
of skeletal data and predict as long as 80ms ahead.

Moreover, [20]–[23] also explore the feasibility of doing
head motion prediction, however, head motion prediction in
6DoF is quite different than 360-degree video (3DoF), since
in the latter for each time point, the whole 360-degree view
displayed for viewers is fixed and more regularity and pattern
exist in their viewing directions. By learning viewers’ traces,
for 3DoF applications, the models can well predict the viewing
position since at a certain time point, there are always some
areas attracting most attention and viewers are more likely to
look at them. Head motion in 6DoF is more difficult to predict
because both position and viewing direction may continuously
change, and there is a much larger virtual space to explore
for users. Therefore, the above approaches cannot be used to
address our scenario: we aim to explore high-precision human
body and head motion prediction in 6DoF VR applications for
the purpose of pre-rendering.

III. SYSTEM OVERVIEW

In this section, we describe our system overview. In our
proposed system, a user’s head motion, body motion as well
as other controlling commands will firstly be sent to the edge
device, which performs the predictive pre-rendering approach.
Based on the past few seconds of head motion, body motion
and control data received from the user, the edge device
will do three things: (i) perform motion prediction; (ii) do
pre-rendering based on the predicted viewing position and
direction; (iii) cache the predicted frames in advance. Later,
if the predicted viewing position and direction are ’correct’
(i.e. the error is less than a given ultra-low value), the cached
predicted frames can be streamed from the edge device to
the HMD and displayed on HMD immediately; otherwise,
the actual view will be rendered by the edge device and
transmitted to the HMD. For the former case, latency needed
will be significantly reduced since the view is pre-rendered
and cached on the edge server before it is needed; for the
latter, latency remains the same with the conventional method
of streaming from the edge server. Note that although the
controller can affect the rendered frame by pointing at a certain
place to teleport in virtual space, we do not need to predict for
the new location triggered by the controller, as in this case,
users will expect much larger latency than 20ms.

Note that the edge device can be either a Mobile Edge
Computing node (MEC) in the mobile radio access or core
network, or a Local Edge Computing node (LEC) located in
the user premises or even his/her mobile device, connecting
to the HMD through WiFi or WiGig. While each of the above

2

!""#$%

!""#$&

!""#$'

(a)

!"# $%&'()"'*!+# ,"--

!*# ,"-- !.# (.''"$.

!$# /0"--
$%&'()"'*

(b)

!

"

#

!"#

$%&'(
)*++

!

" #

(c)
Illustration of two virtual applications and other settings: (a) Virtual Museum and (b) Virtual Rome. (c) Boundary of walkableFig. 2. Illustration of two virtual applications and other settings: (a) Virtual Museum and (b) Virtual Rome. (c) Boundary of walkable area,

and coordinates for head and body motions.

choices has tradeoffs, this paper will not specifically address
these tradeoffs and select either MEC or LEC. Instead, we
focus on developing accurate head and body motion prediction
techniques, which can be used for the predictive pre-rendering
approach, and will apply to either of the edge device options.

Problem Statement: In each time point, the user can have a
specific viewing position and viewing direction, corresponding
to the body and head motion. Given previous and current
viewing directions and viewing positions, our goal is to predict
viewing direction and position for the next time point. After
rendering pixels based on predicted viewing position and
direction, frames can be further encoded to a video and
delivered to users, or directly streamed to users as a raw video.
Specifically, we describe the problem formulation for motion
prediction below.

A. Problem Formulation
Definition 1: (Trajectory Sequence): Spatiotemporal point

qt is a tuple of time stamp t, viewing position b, and
viewing direction h, i.e., qt = (t, b, h). The trajectory
sequence from time point tw to time point tw+n−1 is a
spatiotemporal point sequence, which can be denoted as
S(tw, tt+n−1) = qtwqtw+1

. . . qtw+n−1
.

Thus, the problem can be formulated as follows:

- Input: a trajectory sequence from time
point tw to time point tw+n−1, i.e.,
S(tw, tt+n−1) = qtwqtw+1

. . . qtw+n−1
;

- Output: predicted spatiotemporal point q̂tw+n
at time

point tw+n;

In this paper, we aim to predict the viewing position b and
viewing direction h for the next time point using current and
previous viewing positions and directions.

IV. DATASET

In this section, we first describe the dataset we use, and
then show characteristics of the dataset using certain metrics
we define.

To investigate head and body prediction in 6DoF VR appli-
cations, we conduct our study on a real motion trace dataset we
collected from over 20 users using HTC Vive to experience
two 6DoF VR applications called Virtual Museum [24] and
Virtual Rome [25] in our laboratory. The hardware setup
used will be described in Section VI. The trace consists
of 840,000 sample points of head and body motion data
collected from the users. Fig. 2(a)(b) show the illustration
of the two virtual applications, where Virtual Museum has
three exhibition rooms and Virtual Rome contains larger space
including different courtyards and halls. Walkable area is
restricted by the size of the tracked space in the room and
constrained to a fixed regular shape. Users can explore each
virtual space by walking in the walkable area or teleporting
by pointing at a place with a controller. The top subplot in
Fig. 2(c) uses light blue lines to show the boundary of walkable

area in the VR. As shown in Table I, we set three sessions
respectively for each application: (i) in session 1, users are
given a rough guidance of taking a stroll about the room at
the beginning of session, without controller in their hand; (ii)
in session 2, users walk around freely in the room, without
controller in their hand; (iii) in session 3, users walk around
freely in the room and have a controller in their hand; the
controller allows them to teleport to any position in virtual
space by pointing at that place, and the position of walkable
area in VR also changes accordingly.

TABLE I
EXPERIMENTAL SETTINGS FOR DIFFERENT SESSIONS IN THE VIRTUAL

MUSEUM AND VIRTUAL ROME.

Session
Virtual Museum (VM) Virtual Rome (RM)
VM1 VM2 VM3 RM1 RM2 RM3

With Guidance ✔ ✔

Use Controller ✔ ✔

TABLE II
DESCRIPTION OF VARIABLES.
Variable Seq. Unit

Measured
Timestamp ✔ Millisecond (ms)

Euler angles ✔ Degree (◦)
Position ✔ Meter (m)

Derived
Head Motion Speed ✔

Degree per
Millisecond (◦/ms)

Body Motion Speed ✔
Centimeter per

Millisecond (cm/ms)

Motion files include the user ID, session timestamp, euler
angles for head pose (pitch α, yaw β, roll γ) and position
for body pose (x, y, z). The session timestamp refers to the
time counted since application launches in milliseconds, and
timestamps appear each 11ms (corresponding to 90Hz, which
is the refresh rate of HTC Vive). The middle and bottom
subplots of Fig. 2(c) exhibit the coordinates for head pose
using euler angles and for body pose using position. To depict
key characteristics of the head motion and viewpoint changes
in the dataset quantitatively, we offer the following definitions.

Definition 2: (Head Motion Vector): The corresponding
head poses at time points t1 and t2 (where t1 < t2) can are
denoted by (α(t1),β(t1), γ(t1)) and (α(t2),β(t2), γ(t2)) re-
spectively. Head motion vector (△α,△β,△γ), i.e., (α(t2)−
α(t1),β(t2)− β(t1), γ(t2)− γ(t1)).

Definition 3: (Head Motion Speed): Head motion speed
vhead is defined as the distance the head moved divided by
time, i.e., vhead = (△α

t2−t1
, △β
t2−t1

, △γ
t2−t1

).
Definition 4: (Body Motion Vector): The corresponding

body poses at time points t1 and t2 (where t1 < t2) can
are denoted by (x(t1), y(t1), z(t1)) and (x(t2), y(t2), z(t2))
respectively. Head motion vector (△x,△y,△z), i.e., (x(t2)−
x(t1), y(t2)− y(t1), z(t2)− z(t1)).

Definition 5: (Body Motion Speed): Body motion speed
vbody is defined as the distance the body moved divided by

time, i.e., vbody = (△x
t2−t1

, △y
t2−t1

, △z
t2−t1

).

3

0 90 180 270 360 450
(a) Time points

-0.2
0

0.2
0.4

Sp
ee

d
(m

/s
) vx vx after filtering

0 90 180 270 360 450
(b) Time points

-0.5

0

0.5

1

Sp
ee

d
(m

/s
) vy vy after filtering

0 90 180 270 360 450
(c) Time points

-0.2

0

0.2

Sp
ee

d
(m

/s
) vz vz after filtering

0 90 180 270 360 450
(d) Time points

-100

0

100

Sp
ee

d
(º/

s)

v v after filtering

0 90 180 270 360 450
(e) Time points

-200

0

200

400

Sp
ee

d
(º/

s)

v v after filtering

0 90 180 270 360 450
(f) Time points

-50

0

50

Sp
ee

d
(º/

s)

v v after filtering

Fig. 3. Motion speed obtained before and after the preprocess: (a)(b)(c) for body motion; (d)(e)(f) for head motion.

Table II presents the description of variables. Apart from
measured variables in the dataset, for each sample point, we
can obtain the derived variables including head motion speed
and body motion speed using definitions above.

V. OUR APPROACH

In this section, we describe our proposed approach of
preprocessing and modeling for head and body motion pre-
dictions.

Preprocess: We aim to remove noise within head and body
motion in the preprocessing procedure. We first calculate head
motion speed and body motion speed for each time point.
Fig. 3 presents the body motion and head motion speed in
x, y, z,α,β, γ axis respectively for a sample in the motion
trace of one user in Virtual Museum. The blue line in each
subplot shows there can be at times significant noise in each
of motion speed, due to sensor noise and other measuring
error from HTC Vive HMD and base stations. This noise is
easy to identify since the speed cannot change so rapidly
and intensively within several milliseconds. To remove the
noise in body motion and head motion, we propose to use
the Savitzky-Golay filter method [26] because of its efficiency
and high speed. This filter approximates (i.e. least-square
fitting) the underlying function within the moving window by
a polynomial of higher order. The blue and red lines in Fig.
4 show the speed before and after the preprocessing. We can
see the noise is eliminated after the filtering.

Predictive Model: For motion features, we select 60 time
points as the prediction time window (i.e. predict head and
body speed according to speed traces in the latest 60 time
points), since it achieves better performance than 40, 50, 70,
80, 90 time points based on our experiments. For training the
model, we choose a simple representation for motion as a
1×60 vector, where each element equals to i when the speed
is i at that time point, and the dimension of 60 corresponds to
60 time points. With this representation, we can obtain motion
features from previous and current motion speed.

...LSTM
Unit

Predicted Speed

LSTM
Unit

LSTM
Unit

LSTM
Unit

LSTM
Unit

Motion Features

LSTM
Unit

Fully Connected Layer

...

... Encoder

Decoder

Encoded
Vector

...

Motion Features

Predicted Speed

Fully Connected Layer

Fully Connected Layer
...

...

(a)† (b)

Fig. 4. (a) LSTM model and (b) MLP model used for motion
prediction.

- LSTM Model: Inspired by the success of the RNN
Encoder-Decoder in modeling sequential data [27] and good

! !

!

"#$%
"#$%

!!"#

"!"#
#!

$%&&'()*!+!'

,'--)*!+!'
!!

"!

"!

&

&

&

'

$! %!

&!

('./+-)('!01/2
-+3'/

41%(!0%*')
14'/+!%1(

,1(,+!'(+!%1(

Fig. 5. The structure of LSTM unit.

performance of LSTM to capture transition regularities of hu-
man movements since they have memory to learn the temporal
dependence between observations [28], [29], we implement
an Encoder-Decoder LSTM model which can learn general
body motion as well as head motion patterns, and predict the
future viewing direction and position based on the past traces.
Fig. 4(a) shows the LSTM model we designed and used in
our training, where first and second LSTM layers both consist
of 60 LSTM units, and the fully connected layer contains
1 interconnected node. Our Encoder-Decoder LSTM model
predicts what the motion speed will be for next time point,
given the previous sequence of motion speed. The outputs are
the values of predicted speed for next time point. Note that
the settings including 60 LSTM units and 60 time points as
window length are selected during experiments and proved to
be good by empirical results. For the head and body motion
prediction, we use the mean square error (MSE) as our loss
function:

Loss =
1

|Ntrain|

∑

y∈Strain

L
∑

t=1

(yt − ŷt)
2,

where |Ntrain| is the number of total time steps of all trajec-
tories on the train set Strain, and L is the total length of each
corresponding trajectories. The proposed LSTM model learns
parameters by minimizing mean square error and training is
terminated after 50 epochs in our experiments.

Specifically, encoder and decoder sections work as follows.
Given the input sequence X = (x1, . . . ,xt, . . . ,xT) with
xt ∈ Rn, where n is the number of driving series (e.g.
dimension of feature representation), the encoder learns a
mapping from xt to ht with

ht = f(ht−1,xt),

where ht ∈ Rm is the hidden state of the encoder at time
t, m is the size of the hidden state, and f is a non-linear
activation function of LSTM unit. As shown in Fig. 5, each
LSTM unit has (i) a memory cell with the cell state st, and
(ii) three sigmoid gates to control the access to memory cell

4

(forget gate ft, input gate it and output gate ot). We follow
the LSTM structure from [27], [30]:

ft = σ(Wf [ht−1;xt] + bf),

it = σ(Wi[ht−1;xt] + bi),

ot = σ(Wo[ht−1;xt] + bo),

st = ft ⊙ st−1 + it ⊙ (tanh(Ws[ht−1;xt] + bs)),

ht = ot ⊙ tanh(st),

where [ht−1;xt] ∈ Rm+n is a concatenation of the previous
hidden state ht−1 and current input xt. Wf , Wi, Wo, Ws ∈
Rm×(m+n) as well as bf , bi, bo, bs ∈ Rm are parameters to
learn. Notations of σ and ⊙ are the logistic sigmoid function
and element-wise multiplication. After reading the end of input
sequence sequentially and updating the hidden state as above,
the hidden state of LSTM is a summary (i.e. encoded vector
c) of the whole input sequence. Subsequently, the decoder is
trained to generate the target sequence (y1, . . . , yt, . . . , yT) by
predicting yt given hidden state dt of LSTM units in decoder
at timestep t. Note that yt ∈ R, and dt ∈ Rp, where p is the
size of the hidden state in decoder. The update of hidden state
is denoted by

dt = f(dt−1, yt−1, c).

Since the nonlinear function is the LSTM unit function,
similarly, dt can be updated as:

f ′

t = σ(W ′

f [dt−1; yt−1; c] + b′f),

i′t = σ(W ′

i [dt−1; yt−1; c] + b′i),

o′

t = σ(W ′

o[dt−1; yt−1; c] + b′o),

s′t = f ′

t ⊙ s′t−1 + i′t ⊙ (tanh(W ′

s[dt−1; yt−1; c] + b′s)),

dt = o′

t ⊙ tanh(s′t),

where [dt−1; yt−1; c] ∈ Rp+m+1 is a concatenation of the
previous hidden state dt−1, decoder input yt−1, and encoded
vector c. W ′

f , W ′

i , W ′

o, W ′

s ∈ Rp×(p+m+1) as well as b′f , b′i,
b′o, b′s ∈ Rp are parameters to learn. Subsequently, the output
of the decoder is further fed to the fully connected layer.

- MLP Model: Apart from the LSTM model, we propose
to use an MLP [31] model presented in Fig. 4(b) to do
motion prediction. Using the same representation and loss
function described above, this model also takes the motion
speed during the latest 60 time points as input to predict the
motion speed for next time point. The MLP model contains
two fully-connected layers with 60 and 1 interconnected nodes
respectively for training. We build up models for body motion
and head motion speed in x, y, z,α,β, γ axis respectively.
Given the current and previous speed traces, our predictive
models can predict the speed for next time point and thus
predict the viewing position b and viewing direction h for
next time point (described in Section III.A).

HMD with
Wireless
Adaptor

Server with Nvidia
GeForce RTX 2060

and WiGig Card

Link Box

Video

Controlling Command Controller

Head & Body
Motion

Fig. 6. Hardware setup.

TABLE III
DATASET STATISTICS.

Virtual
Session

#Samples #Samples
Application for Training for Testing

Museum
VM1 41,600 10,354
VM2 80,484 20,076
VM3 195,197 48,754

Rome
RM1 24,912 6,183
RM2 48,586 12,103
RM3 280,540 70,091

VI. EXPERIMENTAL RESULTS

The hardware setup of our experiments is shown in Fig. 6,
where the rendering server is an Intel Core i7 Quad-Core
processor with GeForce RTX 2060. It is equipped with a
WiGig card connecting with the HTC Vive’s link box using a
cable. This link box will be within user’s room and transmit
rendered frames in a video format from the server to the
HMD. On the user side, there are the link box and two HTC
lighthouse base stations in the room. User will wear a HTC
Vive HMD equipped with Vive wireless adaptor [32], and use
a controller if needed. Note the wireless adaptor and link box
aim to transmit and receive the rendered frames using WiGig
communications, while the HTC lighthouse base stations are
set for capturing 6DoF motions (e.g. including head and body
motion). The walkable area is around 3m×3m of free space in
our experiments, which cannot exceed 4.5m×4.5m since the
maximum distance between base stations is 5m [33]. All head
and body motions on HMD can be captured accurately using
this HTC Lighthouse tracking system while controller detects
user’s controlling commands. For software implementation, we
implement our proposed techniques based on SteamVR SDK
[34], OpenVR SDK [35] as well as the Unity game engine [36]
for data collection, and use Keras [37] in Python for motion
prediction.

We use 80% of the dataset for training the prediction model,
and 20% for testing, ensuring the test data is from viewers
which are different than those in training data. Table III
presents the number of samples used as training data and
testing data for each type of session of the two applications
Virtual Museum and Virtual Rome (described in Section IV
and listed in Table I).

Evaluation Metrics: We choose several popular metrics in
sequential modeling to evaluate performance on our prediction
task:

• Root Mean Square Error (RMSE):

RMSE =

√

√

√

√

1

|Ntest|

∑

y∈Stest

L
∑

t=1

(yt − ŷt)2,

• Mean Absolute Error (MAE):

MAE =
1

|Ntest|

∑

y∈Stest

L
∑

t=1

(yt − ŷt),

where |Ntest| is the number of total time steps of all trajecto-
ries on the test set Stest.

Baselines: We consider the following baselines to compare
against the performance of our proposed model:

• Linear Acceleration Model (Lin-A): Following the
work of [15]–[17], we compare against this linear regres-
sion model, which extrapolates trajectories with assump-
tion of linear acceleration. The Lin-A model employs the
motion speed at the latest 3 time points to predict the
expected motion speed.

• Equal Acceleration Model (Eql-A): The Eql-A model
is our modified version of Lin-A, where we assume the

5

TABLE IV
BODY MOTION PREDICTION FOR VIRTUAL MUSEUM.

Session Model
dx (mm) dy (mm) dz (mm)

RMSE MAE RMSE MAE RMSE MAE

VM1
Lin-A 0.139 0.068 0.167 0.061 0.030 0.018

(w/ Guidance;
Eql-A 0.079 0.037 0.096 0.033 0.021 0.013

w/o Controller)
MLP 0.083 0.051 0.080 0.037 0.025 0.018

LSTM 0.061 0.035 0.074 0.030 0.019 0.013

VM2
Lin-A 0.094 0.045 0.099 0.041 0.048 0.021

(w/o Guidance;
Eql-A 0.053 0.025 0.056 0.023 0.029 0.013

w/o Controller)
MLP 0.044 0.029 0.047 0.030 0.032 0.015

LSTM 0.039 0.021 0.046 0.029 0.026 0.013

VM3
Lin-A 0.063 0.035 0.074 0.037 0.024 0.015

(w/o Guidance;
Eql-A 0.036 0.020 0.042 0.022 0.017 0.011

w/ Controller)
MLP 0.032 0.021 0.034 0.021 0.017 0.012

LSTM 0.032 0.021 0.033 0.019 0.015 0.010

TABLE V
HEAD MOTION PREDICTION FOR VIRTUAL MUSEUM.

Session Model
dα (′) dβ (′) dγ (′)

RMSE MAE RMSE MAE RMSE MAE

VM1
Lin-A 0.64 0.34 0.96 0.43 0.48 0.21

(w/ Guidance;
Eql-A 0.47 0.29 0.57 0.27 0.33 0.18

w/o Controller)
MLP 0.51 0.35 0.77 0.48 0.40 0.27

LSTM 0.44 0.28 0.54 0.30 0.30 0.17

VM2
Lin-A 0.80 0.35 1.31 0.52 0.41 0.23

(w/o Guidance;
Eql-A 0.49 0.27 0.78 0.34 0.32 0.19

w/o Controller)
MLP 0.47 0.30 0.64 0.41 0.31 0.18

LSTM 0.66 0.34 0.72 0.42 0.55 0.28

VM3
Lin-A 0.61 0.35 1.38 0.61 0.33 0.21

(w/o Guidance;
Eql-A 0.45 0.29 0.82 0.39 0.26 0.17

w/ Controller)
MLP 0.41 0.27 0.66 0.37 0.22 0.15

LSTM 0.48 0.30 0.99 0.55 0.28 0.17

acceleration is approximately equal during a small time
interval (e.g. 22ms). The advantage of this modification
is as follows: by employing a smaller number of time
points, the acceleration estimated may approach more the
actual value for the following 11ms, than is achieved by
the Lin-A model. We implement the Eql-A model using
motion speed at the latest 2 time points to predict the
expected motion speed of next time point.

Tables IV, V, VI, and VII exhibit the results of our body
motion and head motion prediction for the two applications
respectively. Specifically, for results of body motion prediction
in Tables IV and VI we give the distance between actual and
predicted body position in x, y, z axis (denoted as dx, dy, dz),
while for results of head motion prediction in Tables V and VII
we present the angular distance between actual and predicted
head pose in α,β, γ axis (denoted as dα, dβ , dγ). Note that
we use MSE as the loss function when doing training. In each
table, we compare four models and can make the following
observations:

• Tables IV and VI, which report on the accuracy of body
motion prediction, show that our LSTM model achieves
smallest RMSE in each session and smallest MAE in
most sessions except VM2 compared to Lin-A, Eql-A,
and MLP models. It demonstrates the effectiveness of
using our proposed LSTM model to predict body motion
positions.

• Tables V and VII, which report on the accuracy of head
motion prediction, show that while the LSTM model has
smallest RMSE for session 1, the MLP model performs
better (results in smaller RMSE) than other three models
in sessions 2 and 3 for both the applications. Compared
to session 1 (where users take a stroll about the room and
have a relatively fixed trajectory), sessions 2 and 3 are
more general and closer to normal 6DoF VR scenario.
Thus, we can see that MLP is a more feasible model to
do head motion prediction in general cases.

We can observe that (i) LSTM model achieves a better

TABLE VI
BODY MOTION PREDICTION FOR VIRTUAL ROME.

Session Model
dx (mm) dy (mm) dz (mm)

RMSE MAE RMSE MAE RMSE MAE

RM1
Lin-A 0.174 0.086 0.299 0.084 0.046 0.022

(w/ Guidance;
Eql-A 0.100 0.051 0.172 0.047 0.031 0.017

w/o Controller)
MLP 0.118 0.075 0.098 0.062 0.024 0.018

LSTM 0.032 0.021 0.073 0.044 0.024 0.019

RM2
Lin-A 0.125 0.053 0.145 0.048 0.036 0.020

(w/o Guidance;
Eql-A 0.074 0.032 0.085 0.030 0.025 0.015

w/o Controller)
MLP 0.066 0.037 0.064 0.030 0.064 0.021

LSTM 0.058 0.030 0.065 0.032 0.025 0.015

RM3
Lin-A 0.074 0.041 0.077 0.041 0.034 0.019

(w/o Guidance;
Eql-A 0.044 0.025 0.046 0.025 0.023 0.013

w/ Controller)
MLP 0.040 0.025 0.041 0.026 0.077 0.040

LSTM 0.040 0.024 0.040 0.024 0.023 0.013

TABLE VII
HEAD MOTION PREDICTION FOR VIRTUAL ROME.

Session Model
dα (′) dβ (′) dγ (′)

RMSE MAE RMSE MAE RMSE MAE

RM1
Lin-A 0.71 0.47 1.32 0.61 0.40 0.27

(w/ Guidance;
Eql-A 0.55 0.38 0.79 0.39 0.30 0.21

w/o Controller)
MLP 0.55 0.38 0.80 0.49 0.30 0.21

LSTM 0.53 0.36 0.73 0.47 0.29 0.22

RM2
Lin-A 0.92 0.57 2.53 0.66 0.56 0.34

(w/o Guidance;
Eql-A 0.66 0.43 1.48 0.44 0.39 0.26

w/o Controller)
MLP 0.63 0.42 1.34 0.46 0.37 0.25

LSTM 0.64 0.43 1.52 0.55 1.23 0.30

RM3
Lin-A 0.88 0.50 1.57 0.72 0.44 0.27

(w/o Guidance;
Eql-A 0.63 0.38 0.98 0.49 0.33 0.21

w/ Controller)
MLP 0.57 0.36 0.82 0.43 0.28 0.18

LSTM 0.60 0.39 0.89 0.52 0.35 0.25

performance in every session of body motion prediction and
session 1 of head motion prediction. These sessions have
a relatively small range (e.g. body motion speed is mostly
smaller than ±1m/s), gradual variation and more regularity.
(ii) MLP model performs better in sessions 2 and 3 of head
motion prediction. These two sessions have a large value range
(e.g. head motion can be up to ±300◦/s), quicker variation
and more frequent fluctuations (e.g. head motion speed vβ has
a large and abrupt change from −180◦/s to 200◦/s within 1s,
shown in Fig. 3(e)).

To evaluate the adverse effect on user experience caused by
the prediction error between the actual view and the predicted
view which will be pre-rendered and delivered to the user,
we propose following metric. Assume that we have two views
V1 and V2 in the RGB format. Firstly, we convert the RGB
images (V1 and V2) to grayscale intensity images I1 and I2 by
eliminating the hue and saturation information while retaining
the luminance [38]. For each pixel i in the grayscale intensity
images, we calculate the difference between the two intensity
images, Idif , as follows.

Idif (i) =

{

I1(i)− I2(i), if I1(i) ≥ I2(i)
0, otherwise

(1)

Note that we set the Idif as 0 in the second case of Equation 1,
because otherwise the motion change of the same object will
be presented in Idif twice: positive and negative respectively.
Thus we only keep the positive one (i.e. the first case in
Equation 1) to evaluate the difference between the two views.
Fig. 7 presents an example of two views and the corresponding
Idif . In Fig. 7(c), we can see that most of pixels in the
view have the intensity value of 0 while the residual pixels
have intensity values larger than or equal to 1. We define the
percentage of mismatched pixels as

Rdif =
Ndif

Nframe
,

6

�!� �"� �#�

Fig. 7. (a) Actual user’s view; (b) Predicted user’s view with x-axis
error ∆x = 0.1m; (c) Idif obtained from views in (a)(b).

!
"
#
$
%
&
'
(

)*")*#)*$ +*" +*# +*$

,-./01. 2./3.4501. 67 *89:053;.< 28=.>9 ?@A

B84C, DE>C, *B2 BFG*

Fig. 8. The average percentage of mismatched pixels for different
models during each session.

where Ndif represents the number of pixels which have
difference in grayscale intensity and Nframe is the total
number of pixels per frame. Fig. 8 illustrates the average
percentage of mismatched pixels caused by predicted body
motion error. Due to the large number for each session in the
test dataset, we calculate this value by doing body motion
prediction and rendering corresponding predicted as well as
actual views for 300 randomly selected samples from test
data for every session. Fig. 8 demonstrates that compared
to other models in each session, our LSTM model achieves
less adverse effect on user experience caused by the body
prediction error (denoted with yellow bar). Using the LSTM
model, the average percentage of mismatched pixels can be
smaller than 1% in both VM3 and RM3 sessions.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a head and body motion prediction
model for 6DoF VR applications, to enable predictive pre-
rendering and thus address latency challenge in edge/cloud-
based 6DoF VR. We present a multi-layer LSTM model and
MLP model which can learn general head and body motion
pattern, and predict the future viewing direction and position
based on past traces. Our method shows good performance on
a real motion trace dataset with high precision.

While this work focused on prediction models, we will
next implement the full system and demonstrate the feasibility
of edge-based 6DoF VR based on predictive pre-rendering
achieving ultra-low latency. Our planned future work includes
further development and evaluation of proposed predictive pre-
rendering approach from latency perspectives, and performing
subjective studies to understand and quantify user experience
using our proposed approach.

ACKNOWLEDGEMENT

This work was supported in part by the Center for Wireless
Communications at UC San Diego.

REFERENCES

[1] C. Wiltz, “Five major challenges for vr to overcome,” April
2017. [Online]. Available: https://www.designnews.com/electronics-
test/5-major-challenges-vr-overcome/187151205656659/

[2] L. Cherdo, “Types of vr headsets,” 2019. [Online]. Available:
https://www.aniwaa.com/guide/vr-ar/types-of-vr-headsets/

[3] Oculus, “Oculus rift,” 2019. [Online]. Available:
https://www.oculus.com/rift/

[4] HTC, “Htc vive,” 2019. [Online]. Available: https://www.vive.com/us/
[5] ——, “Htc focus,” 2019. [Online]. Available:

https://www.vive.com/cn/product/vive-focus-en/

[6] Oculus, “Oculus go,” 2019. [Online]. Available:
https://www.oculus.com/go/

[7] Samsung, “Samsung gear vr,” 2019. [Online]. Available:
https://www.samsung.com/us/mobile/virtual-reality/

[8] Google, “Google daydream,” 2019. [Online]. Available:
https://vr.google.com/daydream/

[9] X. Hou, Y. Lu, and S. Dey, “Wireless vr/ar with edge/cloud computing,”
in ICCCN. IEEE, 2017.

[10] Qualcomm, “Whitepaper: Making immersive virtual re-
ality possible in mobile,” 2016. [Online]. Avail-
able: https://www.qualcomm.com/media/documents/files/whitepaper-
making-immersive-virtual-reality-possible-in-mobile.pdf

[11] X. Hou, S. Dey, J. Zhang, and M. Budagavi, “Predictive view generation
to enable mobile 360-degree and vr experiences,” in VR/AR Network.
ACM, 2018, pp. 20–26.

[12] K. Boos, D. Chu, and E. Cuervo, “Flashback: Immersive virtual reality
on mobile devices via rendering memoization,” in MobiSys. ACM,
2016, pp. 291–304.

[13] L. Liu, R. Zhong, W. Zhang, Y. Liu, J. Zhang, L. Zhang, and
M. Gruteser, “Cutting the cord: Designing a high-quality untethered vr
system with low latency remote rendering,” in MobiSys. ACM, 2018,
pp. 68–80.

[14] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, and N. Dai, “Furion: Engineering
high-quality immersive virtual reality on today’s mobile devices,” in
MobiCom. ACM, 2017, pp. 409–421.

[15] X. Yun and E. R. Bachmann, “Design, implementation, and experimental
results of a quaternion-based kalman filter for human body motion
tracking,” Trans. on Robotics, vol. 22, no. 6, pp. 1216–1227, 2006.

[16] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in CVPR. IEEE, 2016, pp. 961–971.

[17] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social gan:
Socially acceptable trajectories with generative adversarial networks,” in
CVPR. IEEE, 2018, pp. 2255–2264.

[18] J. Martinez, M. J. Black, and J. Romero, “On human motion prediction
using recurrent neural networks,” in CVPR. IEEE, 2017, pp. 2891–
2900.

[19] J. Butepage, M. J. Black, D. Kragic, and H. Kjellstrom, “Deep repre-
sentation learning for human motion prediction and classification,” in
CVPR. IEEE, 2017, pp. 6158–6166.

[20] F. Qian, L. Ji, B. Han, and V. Gopalakrishnan, “Optimizing 360 video
delivery over cellular networks,” in AllThingsCellular. ACM, 2016, pp.
1–6.

[21] C. Fan, J. Lee, W. Lo, C. Huang, K. Chen, and C.-H. Hsu, “Fixation
prediction for 360 video streaming to head-mounted displays,” ACM
NOSSDAV, 2017.

[22] Y. Bao, H. Wu, T. Zhang, A. A. Ramli, and X. Liu, “Shooting a moving
target: Motion-prediction-based transmission for 360-degree videos.” in
BigData. IEEE, 2016, pp. 1161–1170.

[23] X. Hou, S. Dey, J. Zhang, and M. Budagavi, “Predictive view generation
to enable mobile 360-degree and vr experiences,” in VR/AR Network.
ACM, 2018, pp. 20–26.

[24] Unity, “Virtual museum,” 2019. [Online]. Available:
https://assetstore.unity.com/packages/3d/environments/museum-117927

[25] ——, “Virtual rome,” 2019. [Online]. Available:
https://assetstore.unity.com/packages/3d/environments/landscapes/rome-
fantasy-pack-ii-111712

[26] R. W. Schafer et al., “What is a savitzky-golay filter,” 2011.
[27] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[28] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in CVPR, 2016, pp. 961–971.

[29] J. Liu, A. Shahroudy, D. Xu, and G. Wang, “Spatio-temporal lstm with
trust gates for 3d human action recognition,” in ECCV. Springer, 2016,
pp. 816–833.

[30] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network
regularization,” arXiv preprint arXiv:1409.2329, 2014.

[31] R. J. Frank, N. Davey, and S. P. Hunt, “Time series prediction and neural
networks,” J. Intell. Robotic Syst., vol. 31, no. 1-3, pp. 91–103, 2001.

[32] HTC, “Htc vive wireless adaptor,” 2019. [Online]. Available:
https://www.vive.com/us/wireless-adapter/

[33] Valve, “Steamvr faq,” 2019. [Online]. Available:
https://support.steampowered.com/kb article.php?ref=7770-WRUP-
5951

[34] ——, “Steamvr sdk,” 2018. [Online]. Available:
https://valvesoftware.github.io/steamvr unity plugin/

[35] ——, “Openvr sdk,” 2018. [Online]. Available:
https://github.com/ValveSoftware/openvr/

[36] U. Technologies, “Unity,” 2019. [Online]. Available:
https://unity3d.com/

[37] Keras, “Keras,” 2019. [Online]. Available: https://keras.io/
[38] Matlab, “Convert rgb image or colormap to grayscale,” 2019. [Online].

Available: https://www.mathworks.com/help/matlab/ref/rgb2gray.html

7

