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Abstract—Traditional physical therapy treatment for patients 
with Parkinson’s disease (PD) requires regular visits with the 
physical therapist (PT), which may be expensive and inconvenient. 
In this paper, we propose a learning-based personalized treatment 
system to enable home-based training for PD patients. It uses the 
Kinect sensor to monitor the patient’s movements at home. Three 
physical therapy tasks with multiple difficulty levels are selected by 
our PT co-author to help PD patients improve balance and 
mobility. Criteria for each task are carefully designed such that 
patient’s performance can be automatically evaluated by the 
proposed system. Given the patient’s motion data, we propose a 
two-phase human action understanding algorithm TPHAU to 
understand the patient’s movements. To evaluate patient 
performance, we use Support Vector Machine to identify the 
patient’s error in performing the task. Therefore, the patient’s 
error can be reported to the PT, who can remotely supervise the 
patient’s performance and conformance on the training tasks. 
Moreover, the PT can update the tasks that the patient should 
perform through the cloud-based platform in a timely manner, 
which enables personalized treatment for the patient. To validate 
the proposed approach, we have collected data from PD patients in 
the clinic. Experiments on real patient data show that the proposed 
methods can accurately understand patient’s actions and identify 
patient’s movement error in performing the task.  

Keywords—Parkinson’s Disease, Physical Therapy, Action 
Segmentation, Hidden Markov Model, Support Vector Machine 

I. INTRODUCTION 
Parkinson’s disease (PD) is one of the most common 

neurodegenerative movement disorders, especially in the elderly. 
More than 10 million people worldwide are living with PD. In the 
US, about 60,000 people are diagnosed with PD each year [1]. 
The major motor symptoms of PD include tremor, rigidity, and 
postural instability. Treatment for PD patients includes 
medication and physical therapy. In the traditional physical 
therapy treatment procedure (see Fig. 1(top)), a physical therapist 
(PT) decides the initial training tasks that the patient should 
practice in an initial mobility and balance evaluation session and 
instructs the patient on how to perform the tasks correctly. After 
the initial evaluation session, the patient is expected to practice 
the training tasks at home. In the next visit, the PT inspects the 
patient’s performance on the training tasks and progresses the 
tasks based on the patient’s performance.  

However, there are some problems with the traditional 
treatment procedure. First, patient’s performance and 
conformance on the training tasks cannot be tracked at home. In 
the traditional physical therapy session, the PT needs to carefully 
inspect the patient’s movements and identify his/her errors in 
performing the task. Practicing the task with incorrect technique 
is not only ineffective for motor learning, it may also cause injury 
due to the impaired mobility of PD patients.  However, patient’s 
performance cannot be tracked at home without the supervision 
of the PT. King et al. has shown poor outcomes with home-based 
exercise programs for PD patients [2]. To address this problem, 
some home-based automatic training systems have been 
developed, where patient’s movements are captured by motion 
capture sensors, including wearable sensors [3, 4] and camera-
based sensors [5, 6]. These training systems can motivate the 
patients and monitor their movements at home. However, 
patient’s performance cannot be accurately evaluated and no 
feedback is provided for the patients and the PT. Second, the 
training tasks cannot be updated in a timely manner before the 
patient’s next visit with the PT, even with patient’s significant 
progress or regress. Continuing to practice the same training task, 
which may not be suitable any more for the current state of the 
patient, could reinforce motor learning in a negative way. Third, 
PT’s instructions and assessments are based on their experience, 
sometimes with subjective bias.  

In this paper, we propose a learning-based treatment system 
for PD patients in Fig. 1(bottom). Three physical therapy tasks 
with multiple difficulty levels (shown in Table I) are selected by 
our PT co-author to help PD patients improve balance and 
mobility.  The patient trains himself/herself at home using the 
cloud-based system we proposed in [7], where the Microsoft 
Kinect sensor [8] is used to capture the patient’s movements and 
avatars are created to provide visual feedback instruction. Given 
the patient’s motion data, we propose a two-phase human action 
understanding (TPHAU) algorithm to understand the patient’s 
movements, including how many repetitions the patient has done, 
and which sub-action the patient is doing at any given frame. 
Furthermore, we propose a Support Vector Model (SVM) based 
method to identify the patient’s error in performing the task. 
Therefore, the patient’s error can be reported to the PT, who can 
be potentially offline or remote, to supervise the patient’s 
performance and conformance on the training tasks. Moreover, 
the PT can decide change  in the training  tasks according to  the
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Fig. 1. Procedure for the treatment of PD patients. Top: traditional procedure. Bottom: the proposed treament system. 

patient’s progress and update the tasks remotely through the 
cloud-based platform in a timely manner, which enables 
personalized treatment for the patient. Besides offering timely 
and personalized care, the proposed treatment system has the 
potential of significantly reducing cost, and can be particularly 
useful for remote care. It reduces PT’s subjective bias in 
evaluating patient’s performance by using machine intelligence. 
To validate the effectiveness of the proposed methods, we have 
collected real patient data in the Neurological Rehabilitation 
Clinic, UC San Diego Health. Experiments on the collected 
patient data show the accuracy of the proposed human action 
understanding and error identification methods. 

The remainder of this paper is organized as follows: Section 
II reviews related work about home-based training systems for 
PD patients and human action understanding techniques. In 
Section III, we introduce the training tasks selected by the PT for 
PD patients and the criteria used to identify errors. Section IV and 
Section V propose the TPHAU algorithm for human action 
understanding and the SVM-based patient error identification 
method. Section VI presents the experimental results. Section VII 
concludes the paper and discusses future work. 

II. RELATED WORK 
In recent years, more and more home-based automatic 

training systems are being developed for the treatment of 
patients with balance and/or mobility problems. Esculier et al. [9] 
design a home-based balance training system using Wii Fit with 
Balance Board and show its ability in improving static and 
dynamic balance, mobility and functional abilities of PD patients. 
Finkelstein et al. [10] develop a home-based telerehabilitation 
system for patients with mobility limitations. Jeong et al. [11] 
introduce a physical telerehabilitation system and experiments 
prove high level of acceptance of this system by patients with 
significant mobility disability. However, patient’s movements 
cannot be accurately monitored in these systems. To solve this 
problem, some training systems use motion capture sensors, 
including wearable sensors and camera-based sensors, to capture 
patient’s movements during the home sessions. Chen et al. [3] 
propose a platform to enable home monitoring of PD patients 
using wearable sensors. Pan et al. [4] develop a cloud-based 
mobile application that enables home-based assessment and 
monitoring of major PD symptoms. In [4], the smartphone 3D 
accelerometer is used to collect patient’s motion data, and the 

smartphone is mounted on the patient’s hand or ankle with a 
strap. However, wearable sensors attached on the body may 
cause extra burden to PD patients due to their impaired mobility. 
Therefore, camera-based sensors were considered more 
convenient in monitoring the movements of PD patients. Galna 
et al. [12] prove the high accuracy of the Kinect sensor in 
measuring clinically relevant movements in PD patients. 
Pompeu et al. [6] and Galna et al. [5] design two game-based 
training systems using Kinect and prove their feasibility and 
safety for PD patients.  However, the game-based training 
systems are not able to carefully control the patient’s movements 
and cannot provide accurate feedback on the patient’s 
performance. Lin et al. [13] design a Kinect-based rehabilitation 
system to assist patients with movement disorders and balance 
problems. However, the performance evaluation method 
proposed in [13] fails to consider the patient’s reaction delay (i.e., 
delay by the patient to follow the standard movements) as the 
method simply compares the patient’s movements with the 
standard movements frame by frame. 

In our proposed treatment system for PD patients, we use the 
Kinect-based training system reported in [7] but redesign the user 
performance evaluation model. Although the Gesture-based 
Dynamic Time Warping algorithm proposed in [7] addresses the 
motion data misalignment problem caused by human reaction 
delay and network delay, it evaluates the patient’s performance 
by measuring the similarity between his/her motion data with a 
PT template, which may be subject to low accuracy when the 
patient’s performance is poor. The template provided by the PT 
may also contain PT’s subjective bias. In comparison, the 
TPHAU algorithm proposed in this paper does not need any 
template. It addresses the delay problem and evaluates patient’s 
performance accurately since the Hidden Markov Model (HMM) 
used in TPHAU can compensate for the temporal variation of 
patient’s motion data. Besides, the training tasks discussed in [7] 
(e.g., leg lift) are relatively simple and the criteria apply to the 
entire task, and hence cannot be applied to real tasks for PD 
patients considered in this paper. For example, the criterion “keep 
the right knee straight” used in [7] for task “leg lift” means that 
the patient should keep the right knee straight for the entire time 
when he/she is doing this exercise. In comparison, the training 
tasks selected for PD patients, as described in this paper, are more 
complex and are based on actual balance and agility programs 
that  have been developed  for  this patient population. The tasks 
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TABLE I.   TASKS AND VARIATIONS. FROM LEFT TO RIGHT: SQ, FL, BL. 

Variations 
of SQ 

Hand 
support 

Squatting 
angle  

Variations 
of FL 

Hand 
support 

Length 
of step 

 Variations 
of BL Hand support Length 

of step 

SQ1 
Yes 

Small FL1 
Yes 

Small  BL1 Yes Small 

SQ2 Large 
 

FL2 Large  BL2 Step back with hand support, 
then take hands off Large 

SQ3 
No 

Small FL3 No Small  BL3 
No 

Small 

SQ4 Large FL4 Arms up Large  BL4 Large 

for PD patients require more fine-grained application of criteria: 
different criteria applied to different subsets of sub-actions of a 
task (discussed in Section III-B), as opposed to all the criteria 
applied to the entire task (i.e., including all the sub-actions) 
assumed in [7]. Therefore, action understanding is needed to 
detect patient’s sub-actions in performing the task. 

There has been numerous research in the field of human 
action understanding. Most of them are focused on recognizing 
human actions from videos, including common RGB videos and 
RGB-D videos recorded by Kinect. Generally, these studies can 
be divided into two categories: action recognition and action 
detection/segmentation. Action recognition refers to the 
classification of an action from a given video into some 
templates. In action recognition, the time and space range of the 
action are known. Xia et al. [14] develop an approach to 
recognize human actions using the histogram of joint locations 
from Kinect depth maps. Sung et al. [15] propose a two-layered 
maximum entropy Markov model to recognize human actions 
from RGB-D videos. In our proposed treatment system for PD 
patients, action recognition is not needed since the task that the 
patient currently performs is known to us. What we need is to 
detect/segment the sub-actions that the patient performs. Action 
detection/segmentation refers to locating actions of interest in 
space and/or in time. Pirsiavash et al. [16] propose an algorithm 
to detect action segments from long video streams. Wu et al. [17] 
present an unsupervised learning algorithm for video 
segmentation and recognition from RGB-D videos recorded by 
Kinect. Most of these action detection/segmentation techniques 
are focused on the detection of long action segments. In [16] and 
[17], a detected segment is considered correct if the overlap 
between it and the ground-truth action segment is more than 40%, 
as this threshold is consistent with visual inspection. However, 
the sub-actions discussed in this paper are much shorter in time 
length and closer to each other (the pause between adjacent sub-
actions is negligible), which makes the segmentation between 
them much more challenging (i.e., frames around the boundary 
between two sub-actions may be incorrectly segmented). In this 
paper, we propose the TPHAU algorithm to accurately detect 
patient’s sub-actions in performing the task, which will be 
discussed in Section IV. 

III. KINECT-BASED AUTOMATIC TRAINING SYSTEM FOR 
PATIENTS WITH PARKINSON’S DISEASE 

In this section, we will first introduce the physical therapy 
tasks selected by our PT co-author for PD patients. Then we will 
discuss how the proposed Kinect-based training system can be 
used for self-training on these tasks at home and how it can 
identify patient’s error in performing the task automatically. To 

avoid confusion, we would like to clarify the definition of four 
terms: task, movement/action, repetition, and sub-action. Task is 
an exercise designed by the PT to train patients. 
Movement/action is the execution/performance of the task by a 
patient, which may contain one or multiple repetitions. Each 
repetition can be further divided into several sub-actions, which 
will be introduced in Section III-B. 

A.  Tasks and Variations 
Based on the work of King and Horak that describes 

sensorimotor agility training and shows improvements in 
balance and mobility in PD patients [18], our PT co-author has 
selected three balance/agility based tasks: squat (SQ), forward 
lunge (FL) and backward lunge (BL). For each task, four 
variations with different difficulty levels are designed (see Table 
I). The difficulty level increases from level 1 to level 4. During 
a traditional physical therapy session, a patient performs one 
variation of each task, and the PT identifies the patient’s error 
and decides how to update the tasks for the patient (see Fig. 1). 
For example, if the patient performs excellently on the current 
SQ2, the PT may instruct him/her to progress to SQ3. On the 
contrary, a patient who makes serious errors on the current SQ2 
may need to go back to SQ1. PT’s evaluation is based on self-
designed criteria for each task. Criteria are based on different 
sub-actions of the movements, which will be introduced in 
Section III-B. 

B. Sub-actions and Criteria 
For each physical therapy task, patient’s movements can be 

divided into several sub-actions. For example, movements in FL 
include: 1) stand, 2) step forward, 3) maintain balance control, 4) 
return to the original position, 5) stand. Therefore, we define five 
sub-actions S1 ~ S5 in Table II, which apply to all the tasks 
considered for PD patients: SQ, FL and BL. 

TABLE II.  SUB-ACTIONS OF PATIENT’S MOVEMENTS 

Sub-action Patient’s movements 
S1 Standing 

S2 Movement initiation: try to reach the target position 

S3 Balance hold: maintain balance control 

S4 Return to the original position 

S5 Standing 

Criteria of a task (i.e., the rules for evaluating the patient’s 
performance) are carefully designed by our PT co-author such 
that the patient’s performance can be evaluated by the proposed 
system in an automated and quantified way. A task criterion is 
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applicable to one or more sub-actions of the task. Table III shows 
the criteria defined by our PT co-author and the applied sub-
actions for SQ, FL, and BL. For example, in FL, the patient 
should keep the back knee straight only in S2 and S3. 

In the Kinect-based training system, the Kinect sensor 
captures 25 joints of the human skeleton with 3-D coordinates for 
each joint [8]. To enable automatic error identification, we first 
need to translate PT’s criteria into some Kinect-captured 
quantities (KCQs). KCQs are quantities that can be derived from 
the joint coordinates captured by Kinect. In this paper, we define 
the following six KCQs for the three tasks. (Considering the 
difference in body size, we use normalized quantities, e.g., angles 
and normalized length of step.) 

Thigh Angle (ThA): the angle between the thigh and the 
vertical direction. In SQ, we use the average of left and right thigh 
angles to represent the squatting angle. 

Trunk Angle (TrA): the angle between the trunk and the 
vertical direction. It represents the forward-leaning angle in SQ 
and can be used to check whether posture is tall in FL. 

Trunk-Leg Angle (TrLA): the angle between the trunk and 
the back leg. In BL the patient should slightly lean forward thus 
keep the trunk parallel with the back leg. 

Knee Angle (KA): the angle between the thigh and the shank, 
representing whether the knee is straight. 

Normalized Length of Step (NLoS): the distance between the 
two feet, normalized by the length of leg. 

Shank Angle (SA): the angle between the shank and the 
vertical direction, representing whether the shank is vertical. 

Fig. 2 illustrates these KCQs. KCQs that are used in more than 
one task (e.g., NLoS used in FL and BL) are shown in only one 
task for simplicity. The target value of each KCQ shown in Table 
III is either defined by the PT (e.g., KA: 180°) or derived from 
PT’s demonstration (e.g., ThA: 49° for small angle and 67° for 
large angle). 

 
Fig. 2. Tasks and KCQs. From left to right: SQ, FL, BL. 

Given the KCQs, patient’s performance can be evaluated 
automatically by checking the KCQs in the applied sub-actions. 
In Section IV, we will introduce how to segment sub-actions in 
patient’s movements, i.e., understand which sub-action the 
patient is in for a given time/frame, from his/her motion data. 

IV. HUMAN ACTION UNDERSTANDING 
In this section, we propose an algorithm based on Hidden 

Markov Model (HMM) to detect sub-actions in patient’s 
movements. Section IV-A introduces the  two HMM models we 
propose for single repetition and multiple repetitions of a task. 
Section IV-B discusses the selection of HMM features. In Section 
IV-C, we propose the TPHAU algorithm which uses two different 
HMM models in two phases to segment sub-actions in patient’s 
movements. 

A. Hidden Markov Model 
HMM is a statistical Markov model that assumes the system 

to be a Markov process with hidden states. It is widely used in 
speech recognition [19]. A HMM model is characterized by the 
following elements. 

• Hidden state set: 1 2{ , , , }NS S S  where N is the number of 
hidden states. Note that one state in the HMM model 
represents a sub-action in patient’s movements, thus we use 
the same symbol iS  for both. 

• HMM feature: it is the quantity we observe in the HMM 
model. The HMM feature can be one-dimensional or multi-
dimensional. For example, we can choose NLoS as the HMM 
feature for task FL. Selection of the HMM features will be 
discussed in Section IV-B. 

• Observation sequence 1 2{ , , , }TO O O O= , where tO  is the 
value of the HMM feature at frame t and T is the total number 
of frames. For example, if we choose NLoS as the HMM 
feature for task FL, tO  is the value of NLoS at frame t. 

• Hidden state sequence 1 2{ , , , }TQ q q q= , where tq  is the 
hidden state at frame t. tq  can be any state from the hidden 
state set. For example, t iq S=  means that the patient is 
performing the sub-action iS  in frame t. The hidden state 
sequence can be used to segment patient’s sub-actions. 

• State transition probability matrix { }ijA a=  where 

 1[ | ],  1 , .ij t j t ia P q S q S i j N+= = = ≤ ≤  (1) 
It represents the probability of transferring from state/sub-
action iS  to state/sub-action jS . 

• Emission probability ( )jb X , which is the probability of 
obtaining the observation X under state jS . ( )jb X  is 
defined as 

 ( ) [ | ],  1 .j t t jb X P O X q S j N= = = ≤ ≤  (2) 

For example, if we choose NLoS as the HMM feature for the 
task FL, 2 (0.8)b  represents the probability of obtaining 

0.8N LoS =  at 2S . In discrete-HMM (i.e., observation is 
discrete), the emission probability is defined in a matrix. In 
continuous-HMM (i.e., observation is continuous), we can 
either quantize the continuous data via codebooks, or use a 
continuous probability density (e.g., Gaussian distribution). 
In the continuous case, ( )jb X  is not a probability as it can 
be larger than 1. However, it represents the relative 
likelihood of obtaining an observation under a certain state.
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TABLE III.  PT-DEFINED CRITERIA, KCQS AND APPLIED SUB-ACTIONS. FROM LEFT TO RIGHT: SQ, FL, BL. 

SQ: PT’s 
Criterion KCQ Applied 

sub-actions 
 

FL: PT’s 
Criterion KCQ Applied 

sub-actions  BL: PT’s 
Criterion KCQ Applied 

sub-actions 

Sit hips 
back 

towards a 
chair 

ThA: 49° 
(small), 

67° (large) 
S3 

 

Keep the back 
knee straight 

KA (back leg): 
180° S2, S3  Keep the back 

knee straight 
KA (back 
leg): 180° S3 

 

Keep the 
posture tall TrA: 0° S2, S3, S4  

Keep the trunk 
parallel with the 

back leg 
TrLA: 0° S2, S3, S4 

Lean 
forward 

TrA: 22° 
(small), 

27° (large) 
S3 

 Length of step 
NLoS: 0.47
(small), 0.79 

(large) 
S3  Length of step 

NLoS: 0.48 
(small), 0.78 

(large) 
S3 

 

Keep the front 
shank vertical 

SA (front leg): 
0° S3  Keep the front 

shank vertical 
SA (front leg): 

0° S2, S3 

 
• Initial state distribution iπ  where 

 1[ ],  1 .i iP q S i Nπ = = ≤ ≤  (3) 

 We define a 5-state HMM model HMM-S (where ‘S’ 
represents single) for the single repetition of a training task in Fig. 
3. Each state represents one sub-action in the movements. In this 
left-to-right model, the initial state is fixed to be 1S . Therefore 

1 1, 0  ( 1)i iπ π= = > . 

 
Fig. 3. HMM-S: the HMM model for single repetition. 

In a typical physical therapy session, the PT may instruct the 
patient to perform each task for multiple repetitions. Therefore, 
after the fifth sub-action 5S  (i.e., standing, see Table II), the 
patient goes back to the second sub-action 2S  (i.e., movement 
initiation). In this case, 1S  and 5S  can be combined to define 
the following HMM model HMM-M (where ‘M’ represents 
multiple) for multiple repetitions on the task in Fig. 4. Although 
it is not a left-to-right model, we can still conclude that the patient 
starts from 1S , thus 1 1, 0  ( 1)i iπ π= = > . 

 
Fig. 4. HMM-M: the HMM model for multiple repetitions. 

1) Estimation of Model Parameters 
Parameters of a HMM model include the transition matrix A, 

the emission probability ( )jb X , and the initial state distribution 

iπ . Given any finite observation sequences trainingO  as training 
data, there is no optimal way of estimating the model parameters 

{ , ( ), }j iA b Xλ π= . In speech recognition, the Baum-Welch 
method [20] and gradient techniques [21] are often used to 
choose model parameters such that ( |trainingP O λ  is locally 
maximized (i.e., optimize the model parameters  so as to best 
describe how the given observation sequences trainingO  are 
produced by the model). Then based on all the HMM models 

1 2, , , Kλ λ λ  for the speech vocabularies (with one HMM model 
for one speech vocabulary), speech recognition can be further 
achieved by finding the model iλ that maximizes ( |test iP O λ
for any new observation te s tO . 

In the proposed HMM models for physical therapy tasks, 
there is no need to classify a new movement into an optimal task 
as the task that the patient is performing is known to us. Our goal 
is to infer the hidden state sequence Q from the observation 
sequence O, then segment the interval of each sub-action 
according to the hidden state sequence. Therefore, we choose 
supervised learning to train the model parameters. For all the 
training data, five sub-actions in the movements (see Table II) 
are manually segmented based on the patient’s motion video and 
motion data. (Note that for HMM-M, 1S includes the manually-
labelled 1S  and 5S .) The transition probability matrix is 
calculated as 

 
number of transitions from  to 

,  1 , .
number of transitions from 

i j
ij

i

S S
a i j N

S
= ≤ ≤  (4) 

For the emission probability, we use the Gaussian Mixture 
Model (GMM) as 

 
1

( ) ( , ),
C

j jc jc jc
c

b X w μ
=

= Σ  (5) 

where C is the number of mixture components, , ,jc jc jcw μ Σ are 
the weight, mean, and covariance of the c-th Gaussian 
component. Parameters of GMM are estimated from the training 
data using the Expectation-Maximization (EM) algorithm [22]. 
The GMM model of each sub-action/state is trained separately 
using the motion data in that state.  

2) Estimation of Hidden states 
Given an observation sequence O and the model parameters 

λ , our goal is to infer the hidden state sequence Q. The Viterbi 
algorithm [23] is a dynamic programming algorithm for finding 
the most likely hidden state sequence Q* of the observation O by 

 
* arg max ( | , )

   arg max ( , | ).
Q

Q

Q P Q O

P Q O

λ

λ

=

=
 (6) 

B. Selection of HMM Features 
A key issue to be addressed for the HMM model is the 

features to be selected for the model. The features can be any 
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subsets of the 25 joint coordinates captured by Kinect, or 
quantities derived from the joint coordinates (like the six KCQs 
defined in Section III-B). Among all the model parameters 

{ , ( ), }j iA b Xλ π= , the selection of features affects only the 
emission probability density ( )jb X . A high-dimensional feature 
requires more complicated GMM model and affects the accuracy 
of estimating ( )jb X  using the EM algorithm, and hence would 
be less desirable. Besides, the feature should reflect the difference 
of the emission probabilities ( )ib X  and ( )jb X for state Si and 
Sj, so that the hidden state of frames around the boundary between 
adjacent states/sub-actions can be correctly inferred. For the three 
physical therapy tasks for PD patients, the displacement d and 
velocity v of the related body parts are two typical features that 
represent the difference of patient’s movements in different sub-
actions. In the task SQ, the patient bends his/her legs to move the 
hips up and down, thus ThA represents the movement and can be 
used as the displacement d. In the tasks FL/BL, the patient is 
moving one foot back and forth so NLoS can be used as the 
displacement d.  The velocity at time t is obtained by 

 1( ) ,t t tv d d FR−= − ⋅  (7) 

where FR is the frame rate (30 fps). Table IV shows the typical 
values of d and v in each state/sub-action. (Note that there may 
be noise added to the typical values.) For example, d and v 
fluctuate around zero in S1 when the patient is standing. In S3, the 
patient is maintaining the balance control at the target position so 
d is at the max value and v fluctuate around zero. 

TABLE IV.  DISPLACEMENT AND VELOCITY IN EACH SUB-ACTION 

Feature S1 S2 S3 S4 S5 

d 0 0 ~ max max 0 ~ max 0 

v 0 > 0 0 < 0 0 

Although either d or v has different emission probability 
distributions in different states/sub-actions, using the 
combination of them is superior than using any single one of them 
as the HMM feature. The reason is as follows.  

If we use only v as the HMM feature, noise in S1 (or S3, S5) 
may have similar velocity as S2 and S4, thus be detected as a 
complete repetition (i.e., extra repetition). (Note that noise in v 
results from noise in d according to (7)). Fig. 5 shows an example 
of patient’s motion data d and v when performing FL, with the x-
axis showing the frame number and the y-axis showing the value 
of d (top) or v (bottom). If only v is used as the HMM feature, the 
hidden states of noise in S1 may be detected as a complete 
repetition on FL (i.e., including all the states) using the HMM-M 
model. This problem can be solved by also considering d in the 
HMM feature since the displacement of such kind of noise is too 
small for a complete repetition.  

If we use only d as the HMM feature, some complete 
repetitions may be included in S2 of the next repetition or S4 of 
the previous repetition (i.e., missing repetitions), especially when 
the time length of this repetition (i.e., number of frames) is short 
and the amplitude of displacement is relatively small. Fig. 6 
shows an example. If only d is used as the HMM feature, the 
emission probability of frame t∗  that is actually in S3 of the first 

repetition may have 3 2( ) ( )
t t

b d b d∗ ∗< . Thus, the first repetition 
will be detected as part of S2 of the second repetition. If v is also 
included in the HMM feature, such kind of error can be avoided 
since the velocity of frame t∗  is around zero and  

3 2( ) ( )
t t

b v b v∗ ∗ . 

 
Fig. 5. Patient’s motion data (d and v) when performing FL. Left: noise in S1. 

Right: motion data for a complete repetition. 

 
Fig. 6. Patient’s motion data (d and v) when performing FL, including two 

repetitions. 

Therefore, we propose to use the combination of d and v as 
the feature of the HMM model. Comparison of results using 
different features will be shown in Section VI-B-(1). 

C. Two-Phase Human Action Understanding Algorithm 
 Based on the selected features (d, v) and the Viterbi algorithm 

[23] that is used to infer the optimal hidden state sequence from 
the observation, we propose the two-phase human action 
understanding (TPHAU) algorithm. It detects patient’s 
repetitions in performing the task in the first phase, and segments 
sub-actions in each repetition in the second phase. 

In the first phase, we use the HMM-M model to detect the 
patient’s repetitions on the task. First, the HMM-M model is 
trained from the training samples (see Section IV-A-(1)). 
Considering the difference of displacement amplitude in different 
patients and in different repetitions, the displacement data d in 
each repetition are normalized into [0, 1]. For the test sample, the 
displacement data are normalized globally (i.e., for the entire 
performance including multiple repetitions) instead of being 
normalized in each repetition since the time interval for each 
repetition is unkown. Then based on the trained HMM-M model, 
the hidden states of the test sample can be estimated by applying 
the Viterbi algorithm. Patient’s repetitions can be further inferred 
based on the state sequence. Since S1 is the boundary between two 
repetitions, the starting point of each repetition (except the first 
one) can be estimated as the midpoint of each consecutive S1 
sequence. Fig. 7 shows an example. Four repetitions 1 2 3 4, , ,R R R R  
are detected from the state sequence. 
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Fig. 7. State sequence obtained from the Viterbi algorithm [23]. Patient has four repetitions: R1, R2, R3, R4. 

Although using both d and v as the HMM feature avoids some 
extra repetitions that may result from using only v as the HMM 
feature (see Fig. 5), it is still inevitable that noise may cause the 
detection of extra repetitions. There are mainly two types of extra 
repetitions. 

1)  Noise being detected as complete repetitions 
Noise in S1 may be detected as complete repetitions, as shown 

in Fig. 5. However, such kind of false repetition is always short 
in time length and the amplitude of displacement is small. 
Therefore, we analyze the Time Length (TL) and Amplitude of 
Displacement (AoD) (i.e., maximum of d) of all the repetitions in 
the training data. The mean value ,TL AoDμ μ  and standard 
deviation ,TL AoDσ σ  are calculated. According to the three-sigma 
rule [24], a detected repetition is an outlier if 

 3  or 3 .TL TL AoD AoDTL AoDμ σ μ σ− > − >  (8) 

2) Recognizing one repetition as two or more 

Noise in S2/S3/S4 may cause a complete repetition to be 
detected as two or more repetitions. Fig. 8 shows an example. The 
patient has performed two repetitions. However, the second 
repetition is detected as two repetitions due to noise in S3. Such 
kind of extra repetitions can be eliminated by checking the value 
of d at the end of each repetition. In the example in Fig. 8, d at 
the end of the detected second repetition is too large, which means 
that the patient has not returned to the initial position and this 
repetition is not complete. Therefore, we analyze the 
Displacement of Endpoint (DoE) (i.e., d at the endpoint of each 
repetition) of all the training data. A repetition detected in the 
test sample is decided as extra repetition if 

 3 .DoE DoEDoE μ σ− >  (9) 

 
Fig. 8. Patient’s motion data (d and v) with two repetitions. Three repetitions are 

detected.  

When a detected repetition is decided as extra, it is eliminated 
by merging into its previous or next repetition, whichever is 
closer to it (i.e., the one with fewer frames of S1 between them). 
After removing extra repetitions, we use a second phase to 
segment sub-actions in each repetition. Although the state 

sequence obtained from the first phase also includes information 
about sub-actions in each repetition, the sub-action information is 
not accurate due to the following reason. In the first phase, global 
normalization is used thus the range of d in some repetitions may 
be smaller than [0, 1]. Different normalization methods for the 
training and test data will cause the inaccuracy in state/sub-action 
detection. For example, in training data, d will always reach 1 in 
S3 because of the repetition-based normalization. For a test 
sample where d < 1 in S3, some frames at the beginning of S3 may 
be detected as S2. Therefore, we propose to use a second phase to 
enhance the accuracy in sub-action detection. First, we normalize 
each repetition that is detected from the first phase. Second, the 
HMM-S model is applied on each repetition separately. Since the 
HMM-S model is a left-to-right model for single repetition, it is 
guaranteed that no extra repetitions will be detected. The pseudo-
code for the proposed TPHAU algorithm is shown in Fig. 9.  

Algorithm Two-Phase Human Action Understanding (TPHAU) 
Input: Two HMM models (HMM-M and HMM-S) trained 

from training samples 
Patient’s displacement sequence 1 2{ , , }TD d d d=  

Output: Segmentation of sub-actions 
1. Normalize D into [0, 1] 
2. Calculate the velocity sequence V using (7) 
3. Apply Viterbi algorithm [23] on the observation sequence 

{ ; }O D V=  using HMM-M, get the hidden state 
sequence Q 

4. for each consecutive S1 sequence in Q 
5.      Starting point of a repetition = midpoint of the 

consecutive S1 sequence 
6. end for 
7. for each detected repetition 
8. Calculate TL, AoD, DoE 
9. if 3  or 3TL TL AoD AoDTL AoDμ σ μ σ− > − >  or 

3DoE DoEDoE μ σ− >  
10. Merge this repetition into the pervious or next 

repetition, whichever is closer to it 
11. end if 
12. end for 
13. for each remaining repetition 
14. Normalize the displacement sequence of this repetition 

Drep into [0, 1], calculate the velocity sequence Vrep 
15. Apply Viterbi algorithm on { ; }rep rep repO D V= using 

HMM-S, get the hidden state sequence Qrep 

16. Segment sub-actions in this repetition based on Qrep 

17. end for 
Fig. 9. Psuedo-code of the proposed TPHAU algorithm.  

Note that there is no need to train HMM-S again in the second 
phase. Its state transition matrix As can be directly derived from 
the state transition matrix of HMM-M used in the first phase by 
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where M
ija  is the (i, j) element of the state transition matrix of the 

HMM-M model. The emission probability distribution of 
S1/S2/S3/S4 in HMM-S is the same as that in HMM-M. The 
emission probability distribution of S5 can directly use the 
distribution of S1 since they represent the same human action. 

V. PATIENT ERROR IDENTIFICATION 
In the previous section, we propose the HMM models for 

patient’s movements on the physical therapy tasks and the 
TPHAU algorithm that can detect patient’s repetitions and sub-
actions in each repetition. In this section, we will introduce how 
to identify patient’s error in performing the task based on the 
results of sub-action detection. 

For any task, the criteria used for evaluating the patient’s 
performance have been defined by our PT co-author (see Table 
III). Criteria are independent of each other (i.e., whether the 
patient is performing correctly on one criterion is independent of 
his/her performance on the other criteria). Based on the human 
action understanding result (including the repetition detection 
and sub-action detection), patient’s error can be identified by 
checking the value of the corresponding KCQs in the applied 
sub-actions of each criterion. For example, the criterion “keep 
the back knee straight” of FL applies to S2 and S3 (see Table III), 
so we just need to check the knee angle (KA) of the back leg for 
frames in S2 and S3. Patient’s error in one frame framee  is 
calculated as the difference between the patient’s knee angle 
(KA) in this frame and the required 180 degrees. Patient’s error 
in a repetition repe  is the average of framee  among all the applied 
frames (i.e., frames of the applied sub-actions) in this repetition. 
Patient’s overall error on this criterion is calculated as the mean 
and maximum of repe  for all the repetitions. 

However, patient’s movements may not be strictly the same 
as the PT-defined criteria. For example, the patient’s knee angle 
cannot be perfectly 180 degrees even when he/she is keeping the 
knee straight. Thus, an error threshold is needed for each 
criterion. When evaluating the patient’s performance, the PT 
gives qualitative instead of quantitative conclusions. For 
example, the patient’s performance is either ‘good or ‘not good’ 
on the criterion “keep the back knee straight”. Therefore, we only 
need to classify the patient’s error into one of the two cases. To 
obtain the classification model, we train a SVM model [25] from 
the training samples. For each training sample, the overall error 
on a criterion is calculated. The label y of the sample is given by 
the PT during the data collection process, with 0y =  
representing negative samples (i.e., performance is not good on 
this criterion) and 1y =  representing positive samples (i.e., 
performance is good on this criterion). A linear SVM 
classification model is trained from the training data to find out 
the optimal decision boundary between the positive and negative 

samples. For any new sample, this model can be applied to 
decide whether the patient’s performance is good or not on this 
criterion. Since criteria are independent of each other, a unique 
classification model is trained for each criterion. 

VI. EXPERIMENTAL RESULTS 

A. Experimental Setup 
In collaboration with the UC San Diego Health – La Jolla, 

we conducted comprehensive patient data collection at the 
Neurological Rehabilitation Clinic. We collected motion data 
from 26 PD patients (age 56~89, 15 males, 11 females) of all 
severity, from only mildly impaired to severe balance and 
mobility impairments. Each patient participated in the data 
collection for multiple times. In one physical therapy session, the 
patient performed one variation of each task (i.e., SQ, FL, BL) 
and his/her motion data were recorded by the Kinect sensor. The 
variation of each task (i.e., the difficulty level) that the patient 
should perform in each session was decided by the PT according 
to the patient’s health condition. The corresponding PT 
evaluations (i.e., the patient’s performance was good or not on 
each criterion) were also recorded. For each task, the movements 
of one patient in one session is a sample. Note that sometimes 
some patients were not able to perform some tasks (e.g., BL was 
too difficult for some patients), thus the numbers of collected 
samples for each task were different. We collected 57 samples 
for SQ, 56 samples for FL, and 45 samples for BL. Typically, 
patient’s movements on a task includes 4 repetitions, with about 
10 seconds on each repetition. The Kinect sensor captures the (x, 
y, z) coordinates of 25 joints per frame. With frame rate of 30 
frames/second, that amounts to about 90,000 data points for each 
task performed by a patient in one session.  

B. Human Action Understanding Results 
1) Comparison of Features 

As discussed in Section IV-B, using only d as the HMM 
feature may cause missing repetitions and using only v may lead 
to the detection of extra repetitions. To show the superiority of 
using (d, v) as the HMM feature, we use FL as an example to 
show the repetition detection results of using d, v, and (d, v) as 
the HMM feature. All the collected samples are randomly 
divided into a training set (including 51 samples) and a test set 
(including 5 samples). Three HMM-M models are trained using 
the training set, each with a different feature. The first phase of 
the proposed TPHAU algorithm is applied to each test sample. 
The accuracy of the repetition detection result is evaluated as 
follows. We check whether the starting point of each repetition 
is detected correctly. (Since the endpoint of each repetition is the 
starting point of the next repetition or the end of the entire 
movements, there is no need to check the endpoint). In the 
hidden state sequence obtained from the Viterbi algorithm (see 
Fig. 7 as an example), each consecutive S1 sequence represents 
the start of a repetition and it is considered correct if the 
manually-labelled starting point of this repetition lies in this 
consecutive S1 sequence. Otherwise, this detected repetition is 
either wrong or extra, depending on the total number of detected 
repetitions. When the number of detected repetitions is smaller 
than the number of manually-labelled repetitions, their 
difference represents the number of missing repetitions. 
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To obtain more comprehensive validation results, we repeat 
the training/test split process for 10 times. There are 313 
repetitions in total from the 50 test samples. Table V shows the 
number of correct repetitions, wrong repetitions, missing 
repetitions and extra repetitions by using the three types of 
features. We can see that if only d is used as the HMM feature, 
there are 9 missing repetitions which is hard to recover. If we use 
only v, 163 extra repetitions are detected, which validates our 
discussion in Section IV-B. Among the three types of features, 
(d, v) shows the best repetition detection result as there are only 
5 wrong repetitions and 8 extra repetitions. It is also 
demonstrated that using (d, v) as the HMM feature ensures high 
accuracy (97.7%) in the repetition detection. 

TABLE V.   NUMBER OF CORRECT, WRONG, MISSING, AND EXTRA 
REPETITIONS USING DIFFERENT FEATURES FOR FL 

Feature 
Number of repetitions 

Correct Wrong Missing Extra 

d 194 
(91.1%) 

10 
(4.7%) 

9 
(4.2%) 0 

v 197 
(92.5%) 

16 
(7.5%) 

0 
(0%) 163 

(d, v) 208 
(97.7%) 

5 
(2.3%) 

0 
(0%) 8 

2) Results of the Two-Phase Human Action Understanding 
Algorithm 

To validate the proposed TPHAU algorithm, experiments are 
conducted on SQ, FL, BL separately. (d, v) is used as the HMM 
feature. 85% of all the samples are randomly chosen as training 
set and 15% as test set. The training/test split process is repeated 
for 10 times. First, we want to show the effects of the proposed 
outlier removal method in repetition detection. Table VI shows 
the number of correct, wrong, missing, and extra repetitions of 
applying only the first phase of TPHAU (i.e., the one-phase 
Viterbi algorithm before the outlier removal) and the complete 
TPHAU algorithm (i.e., including the outlier removal method). 
We can see that the accuracy of repetition detection is improved, 
with more correct repetitions and less extra repetitions, 
especially for BL. Second, the results of sub-action detection 
within each repetition using the proposed TPHAU algorithm are 
shown in Fig. 10. Results using one-phase Viterbi are also shown 
in Fig. 10 for comparison. The accuracy evaluation metrics we 
use in Fig. 10 are as follows. 

Accuracy Evaluation Metrics We evaluate the accuracy of 
each sub-action S2/S3/S4 separately. (S1 is not evaluated since it is 
not important for the patient’s performance.) For any frame, the 
proposed TPHAU algorithm segments it into the sub-action RS 
and the manually-labelled sub-action for this frame is MS. For 

any sub-action ( 2,3, 4)iS i = , all the frames are checked and each 
frame is classified into one of the following four categories: 

• True Positive (TP):  and i iRS S MS S= = . 
• True Negative (TN):  and i iRS S MS S≠ ≠ . 
• False Positive (FP):  and i iRS S MS S= ≠ . 
• False Negative (FN):  and i iRS S MS S≠ = . 

Then the sensitivity ( / ( )TP TP FN+ ) and specificity (
/ ( )TN TN FP+ ) of S2/S3/S4 is calculated for each test sample.  

The average and 95% confidence interval are calculated among 
all the test samples. Fig. 10 shows the results, with the 95% 
confidence interval shown as black vertical lines. The 
quantitative results are in Table VII. We can see that specificity 
is always high (above 90%) for both one-phase Viterbi and the 
proposed TPHAU algorithm. For sensitivity, TPHAU enhances 
the sensitivity for S3 dramatically with higher average and smaller 
confidence interval. For S2 and S4, although the average 
sensitivity of TPHAU is slightly lower than one-phase Viterbi 
(e.g., SQ), the small difference is not critical since the manual 
segmentation we use as the ground truth is subjective. Besides, 
since patients typically spend less time in S2 and S4, the number 
of true positive samples (TP FN+ ) is smaller for S2 and S4 than 
for S3. Thus, the false negative rate ( 

/ ( ) 1 sensitivityFN TP FN+ = − ) of S2 and S4 is higher and 
sensitivity is lower for the same number of FN frames. Therefore, 
the average sensitivities that TPHAU achieves in S2 and S4 (above 
85%) are acceptable. 

C. Patient Error Identification Results 
To validate the SVM-based patient error identification 

method, we use the same training and test set as Section VI-B. 
For a test sample, the classification into positive (i.e., 
performance is good) or negative (i.e., performance is not good) 
is independent for each criterion. For example, in FL, four SVM 
models are trained independently from the training set for its four 
criteria (see Table III). Then the four models are applied on each 
test sample to decide whether the patient’s performance is good 
in each criterion. The accuracy of the proposed SVM-based 
method is discussed both criterion-wise and patient-wise. 

1) Criterion-wise Evaluation 
For each criterion, the accuracy is calculated as the ratio of 

the correctly classified samples to the total number of test 
samples. Table VIII shows the accuracy of each criterion for the 
three tasks. We can see that all the accuracy values are above 
85%. For some criteria, the accuracy of the SVM model is not 
too high because the labels (i.e., positive or negative) we use for 
training and testing may be subject to the PT’s subjective bias. 

TABLE VI.  NUMBER OF CORRECT, WRONG, MISSING, AND EXTRA REPETITIONS USING DIFFERENT METHODS FOR SQ, FL, BL 

Method 
SQ FL BL 

Correct Wrong Missing Extra Correct Wrong Missing Extra Correct Wrong Missing Extra 
One-phase 

Viterbi 
188 

(90.4%) 
20 

(9.6%) 
0 

(0%) 2 208 
(97.7%) 

5 
 (2.3%) 

0  
(0%) 8 196 

(96.6%) 
7 

(3.4%) 
0 

(0%) 37 

TPHAU 202 
(97.1%) 

6 
(2.9%) 

0 
(0%) 0 209 

(98.1%) 
4 

(1.9%) 
0 

(0%) 0 202 
(99.5%) 

1 
(0.5%) 

0 
(0%) 2 
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Fig. 10. Sub-action segmentation results (sensitivity and specificity of S2/S3/S4) using different methods for SQ, FL, BL. 

TABLE VII.  AVERAGE SENSITIVITY AND SPECIFICITY OF S2/S3/S4 USING DIFFERENT METHODS 

 Method 
SQ FL BL 

S2 S3 S4 S2 S3 S4 S2 S3 S4 

Sensitivity One-phase Viterbi 93.4% 77.5% 93.7% 92.8% 85.3% 91.3% 92.8% 83.2% 88.3% 

TPHAU 88.1% 93.2% 90.3% 92.9% 96.5% 92.3% 91.2% 97.1% 89.0% 

Specificity One-phase Viterbi 93.3% 98.4% 96.8% 97.7% 98.6% 93.2% 91.5% 97.7% 97.7% 

TPHAU 97.9% 97.2% 98.6% 98.3% 98.8% 98.7% 98.5% 97.2% 99.0% 

TABLE VIII.  ACCURACY OF PATIENT ERROR IDENTIFICATION MODELS FOR 
SQ, FL, BL 

Task Criterion Accuracy 

SQ 
Sit hips back towards a chair 95.6% 

Lean forward 87.8% 

FL 

Keep the back knee straight 85.6% 

Keep the posture tall 97.8% 

Length of step 94.4% 

Keep the front shank vertical 91.1% 

BL 

Keep the back knee straight 94.3% 

Keep the trunk parallel with the back leg 88.6% 

Length of step 97.1% 

Keep the front shank vertical 87.1% 

2) Patient-wise Evaluation 
For each test sample, the patient-wise evaluation is 

represented by the number of the correctly classified criteria. 
Table IX shows the percentage of test samples with different 
numbers of correctly classified criteria. We can see that the 
proposed SVM-based models can predict patient’s error 
correctly in all the criteria of the task (2 criteria for SQ, 4 criteria 
for FL/BL) for over 70% of the test samples. For over 95% of 
the test samples, the models can identify patient’s error correctly 
except for at most one criterion (i.e., number of incorrectly 
classified criteria  1). 

From the results of criterion-wise evaluation and patient-
wise evaluation, it can be concluded that the proposed error 
identification models identify patient’s movement error as the 
PT would have subjectively done with high accuracy. Therefore, 
the proposed models can be used to automatically evaluate 
patient’s performance remotely, without the patient having to be 

physically inspected at-location by the PT, which enables 
effective self-training and evaluation at home. 

TABLE IX.  PERCENTAGE OF TEST SAMPLES WITH DIFFERENT NUMBERS 
OF CORRECTLY CLASSIFIED CRITERIA 

Task 
Number of correctly classified criteria 

0 1 2 3 4 

SQ 0% 16.7% 83.3%   

FL 0% 0% 2.2% 26.7% 71.1% 

BL 0% 0% 2.9% 27.1% 70.0% 

VII. CONCLUSIONS AND FUTURE WORK 
In this paper, we propose a learning-based personalized 

treatment system to enable home-based training for PD patients. 
It captures the patient’s movements at home using the Kinect 
sensor. Patient’s movements can be understood by the proposed 
TPHAU algorithm. To evaluate patient’s performance, we 
propose an SVM-based method to identify patient’s error in 
performing the task, which emulates PT evaluation. The 
proposed treatment system enables low-cost and remote care for 
PD patients. Experiments on real patient data collected in the 
clinic show that the proposed methods can accurately understand 
patient’s actions and identify patient’s error. In the future, we 
will design a learning-based task recommendation model to 
enable automatic task update recommendation for PD patients. 
In addition, we plan to apply and enhance our approach to enable 
remote therapy for other kinds of disease.  
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