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ABSTRACT

As 360-degree videos and virtual reality (VR) applications become
popular for consumer and enterprise use cases, the desire to en-
able truly mobile experiences also increases. Delivering 360-degree
videos and cloud/edge-based VR applications require ultra-high
bandwidth and ultra-low latency [22], challenging to achieve with
mobile networks. A common approach to reduce bandwidth is
streaming only the �eld of view (FOV). However, extracting and
transmi�ing the FOV in response to user head motion can add
high latency, adversely a�ecting user experience. In this paper, we
propose a predictive view generation approach, where only the
predicted view is extracted (for 360-degree video) or rendered (in
case of VR) and transmi�ed in advance, leading to a simultaneous
reduction in bandwidth and latency. �e view generation method
is based on a deep-learning-based viewpoint prediction model we
develop, which uses past head motions to predict where a user
will be looking in the 360-degree view. Using a very large dataset
consisting of head motion traces from over 36,000 viewers for nine-
teen 360-degree/VR videos, we validate the ability of our viewpoint
prediction model and predictive view generation method to o�er
very high accuracy while simultaneously signi�cantly reducing
bandwidth.
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1 INTRODUCTION
Over the last few years, signi�cant interest has emerged in the adop-
tion of Virtual Reality (VR) and Augmented Reality (AR) in various
�elds, including entertainment, enterprise, education, manufac-
turing, transportation, etc. According to market research like [4],
VR and AR ecosystem is predicted to be an $80 billion market by
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Figure 1: FOV in a 360-degree view.

2025, roughly the size of the desktop PC market today. However,
several key hurdles need to be overcome for businesses and con-
sumers to get fully on board with VR and AR technology [40], like
cheaper price and compelling content, and most importantly a truly
mobile VR/AR experience, in line with the expectation and adop-
tion of mobile experiences in almost all consumer and enterprise
verticals today. Of particular interest is how to develop mobile
(wireless and lightweight) head-mounted displays (HMDs), and
how to enable VR/AR experience on the mobile HMDs using band-
width constrained mobile networks, while satisfying the ultra-low
latency requirements.

Current widely used HMDs approximately include three types
[1]: PC VR, console VR, mobile VR. Speci�cally, PC VR is teth-
ered with PC [24, 34]; console VR is tethered with a game console
[38]; mobile VR is untethered with PC/console but with a smart-
phone inside [18, 36]. Since all the above HMDs perform rendering
locally either on a smartphone tethered with the HMD, or on a com-
puter/console tethered to the HMD, today’s user experience lacks
portability (when using a heavy HMD tethered to a smartphone)
or mobility (when tethered to computer/console). To enable lighter
mobile VR experience, we propose a cloud/edge-based solution.
By performing the rendering on cloud/edge servers and streaming
videos to users, we can complete the heavy computational tasks on
the cloud/edge server and thus enable mobile VR with lightweight
VR glasses. �e most challenging part of this solution is ultra-high
bandwidth and ultra-low latency requirements, since streaming
360-degree video causes tremendous bandwidth consumption and
good user experiences require ultra-low latency (¡20ms) [22].

Motivated by this challenge, in this paper, we propose a novel
approach to enable mobile VR with prediction for head motions.
Our basic idea comes from the following observations: the �eld of
view (FOV) is 90°×90° for popular HMDs while the 360-degree view
is 360°×180° in size (as is shown in Fig. 1). A common approach to
reduce bandwidth is streaming only the FOV. However, extracting
and transmi�ing the FOV in response to user head motion can add
high latency, adversely a�ecting user experience. �is motivates
us to predict head motions. With prediction for head motion, our
approach can address both bandwidth and latency challenges. If
we can predict head motion of users in the near future, we can do
predictive rendering (in case of VR) or extracting FOV (in case of
360-degree video) on the edge device, and then stream predicted
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FOV to the HMD in advance. �us, latency needed will be sig-
ni�cantly reduced since the view is delivered and pre-bu�ered on
the HMD when the prediction is successful; latency remains the
same with the traditional streaming method when prediction is
inaccurate. Moreover, bandwidth consumption can be consider-
ably reduced since predicted FOV is streamed instead of the whole
360-degree view. Since viewpoint is de�ned as the center of FOV,
prediction for head motions is equivalent to viewpoint prediction in
this case. �e main contributions of this paper can be summarized
as follows:

• We propose a new approach to enable truly mobile VR
using wireless HMDs, where the rendering is performed on
edge devices, and the ultra-low latency and high bandwidth
requirements are addressed through a novel predictive
view generation approach involving viewpoint prediction.

• We develop a viewpoint prediction method using deep
learning to predict where a user will be looking into in
the 360-degree view based on their past behavior. Using
a very large dataset of real head motion traces from VR
applications, we show the feasibility of our long short-term
memory (LSTM) model with high accuracy.

• Based on viewpoint prediction, we develop optimal FOV
generation method which ensures the desired tradeo� be-
tween bandwidth savings and prediction accuracy.

• We come up with this predictive view generation idea
and show good results on a large-scale real head motion
trace dataset from over 36,000 viewers for nineteen 360-
degree/VR videos. We demonstrate signi�cant bandwidth
savings while ensuring very high accuracy with FOV pre-
diction.

�e rest of the paper is organized as follows. In §2, we review
related work. §3 describes the system overview and problem de�-
nition. §4 describes our dataset and its characteristics. �e method-
ology for viewpoint prediction is described in §5. We present our
experimental results in §6, and conclude our work in §7.

2 RELATEDWORK
In this section, we focus our review of related work on the following
two �elds.

FOV-guided streaming: Current FOV-guided 360-degree video
streaming studies mainly consist of two types to address bandwidth
challenge: tiling and versioning [30]. As for tiling, 360-degree video
is spatially divided into tiles and only tiles within FOV are streamed
at high quality while remaining tiles are streamed at lower quali-
ties or not delivered at all [16, 25, 31]. In terms of versioning, the
360-degree video is encoded into multiple versions which have a
di�erent high-quality region, and viewers receive the appropriate
version based on their own viewing direction [13]. �e above meth-
ods are based on knowing the actual viewpoint of the user as it
happens. Hence, while they can reduce bandwidth requirement
of streaming 360-degree video, they cannot reduce the latency as
rendering and encoding still need to be done in real-time a�er user
FOV is determined. In contrast, our method aims to predict the user
viewpoint and deliver the predicted FOV in advance, thus elimi-
nating the need for rendering (in case of VR) or extracting FOV
(in case of 360-degree videos) and transmi�ing from servers over
mobile networks a�er the user has changed viewpoint, and hence
addressing the ultra-low latency requirement besides signi�cantly
reducing bandwidth.
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Figure 3: Proposed predictive view generation procedure.

Sequence prediction: Viewpoint prediction and related mobility
prediction (since viewpoint prediction is equivalent to prediction
for viewpoint mobility) both belong to the problem of sequence
prediction, which is de�ned as predicting the next value(s) given
a historical sequence [5]. We roughly summarize the approaches
for sequence prediction as two types: traditional machine learn-
ing and deep learning methods. On one hand, traditional machine
learning approaches such as randomized decision trees and for-
est [3, 7] have proven fast and e�ective performance for many
sequence prediction tasks [27, 41]. Bootstrap-aggregated decision
trees (BT) [7] is one of e�cient methods among them. On the
other hand, deep learning methods such as recurrent neural net-
works (RNN) and their variants including LSTM networks [20] and
gated recurrent units (GRU) [12] have proven to be successful for
sequence prediction tasks [2, 29]. Apart from RNN and their vari-
ants, there are also some studies [8, 28] using deep neural networks
including deep belief networks (DBN) [32] and stacked sparse au-
toencoders (SAE) [19] to achieve sequence prediction. However,
research e�orts [10, 17, 33, 42] for mobility prediction mostly focus
on pa�ern-based methods. �ese studies discover pre-de�ned mo-
bility pa�erns (e.g. sequential pa�erns, periodic pa�erns) from the
trajectory traces, give predictions based on these extracted pa�erns,
and thus su�er from the one-sided nature of pre-de�ned pa�erns
[15]. Compared with other methods, LSTM recurrent neural net-
works show a good potential to capture the transition regularities
of human movements since they have memory to learn the tem-
poral dependence between observations (i.e. training data) [2, 29].
Inspired by this advantage, we design an LSTM model which can
learn general head motion pa�ern and predict the future viewpoint
position based on the past traces. We propose this predictive view
generation idea to reduce both latency and bandwidth and show
good results on a large-scale real head motion trace dataset.

3 SYSTEM OVERVIEW
In this section, we describe our system overview. Note that our
predictive view generation approach works for both 360-degree
videos and cloud/edge-based VR applications, since it refers to (i)
extracting tiles (in case of 360-degree videos), and (ii) rendering
the view (in case of cloud/edge-based VR). User’s head motion as
well as other controlling commands will be sent to the edge device,
which performs viewpoint prediction and predictive rendering. �e
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Table 1: VR Dataset statistics.

Categories #Video Video Instances
Movie Trailer 6 Kong VR, Batman Movie
Documentary 6 Fashion Show, Life on Mars
Scenery 4 Whale Encounter, Floating Markets
Entertainment 3 Roller Coaster, Bungee Jump
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Figure 4: Statistics of dataset.

edge device can be either a Mobile Edge Computing node (MEC) in
the mobile radio access or core network (Fig. 2(a)), or a Local Edge
Computing node (LEC) located in the user premises or even his/her
mobile device (Fig. 2(b)). Note that each of the above choices has
tradeo�s. Use of MEC will allow for greater mobility of the VR
user as compared to LEC, unless LEC is the user’s mobile device,
in which case the additional challenge of having to do predictive
view generation in the mobile device will need to be addressed. On
the other hand, use of MEC will add to more transmission delay of
the rendered video than the use of LEC. Use of cloud servers can
also be considered to perform predictive view generation; this will
allow complete mobility of VR users but will be more challenging
in decreasing latency than the use of either MEC or LEC.�is paper
will not speci�cally address the above tradeo�s and select either
MEC or LEC. Instead, the predictive view generation techniques
we propose will apply to either of the edge device options.

Based on past few seconds of head motion and control data re-
ceived from the user and using the viewpoint prediction model
developed, the edge device will perform predictive view generation,
and stream the predicted FOV to the user HMD in advance. Later, if
the actual FOV is within predicted FOV, the prediction is successful
and the predicted FOV can be displayed on HMD immediately;
otherwise, the actual FOV will be computed and transmi�ed from
the edge device. For the former case, latency needed will be signi�-
cantly reduced since the view is delivered and pre-bu�ered on the
HMD before it is needed; for the la�er, latency remains the same
with the conventional method of streaming from the edge server.
�e key to achieving e�cient predictive view generation is solving
the problem of viewpoint prediction stated below.

Problem Statement: A viewpoint can occur in up to N di�erent
tiles in each time point (e.g. every 200ms). We decompose the whole
predictive view generation procedure into two subtasks: viewpoint
prediction and FOV generation, shown in Fig. 3. In viewpoint pre-
diction, given previous and current viewpoint locations, our goal
is to predict one or multiple tiles that the viewpoint will be in for
the next time point. FOV generation involves taking a list of most
possible tiles predicted during viewpoint prediction and mapping
each of the predicted tiles to a FOV. A�er determining the video
content or rendering pixels based on predicted FOV, frames can be
further encoded to a video and delivered to users.

4 DATASET AND ITS CHARACTERISTICS
In this section, we �rst describe the dataset we use, and then show
characteristics of the dataset using certain metrics we de�ne.

To investigate viewpoint prediction in 360-degree videos, we
conduct our study on a real head motion trace dataset that was
collected by Samsung Electronics Company. �e trace consists of
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Figure 5: Head motion speed versus time in Kong VR.

head motion data from over 36,000 viewers during the week of
November 2 – November 8, 2017, for 19 VR videos. Speci�cally, the
frequency of head pose data was every 200ms on each HMD. �e
information reported includes the content ID, session timestamp,
content timestamp, user ID and euler angles of HMD. �e session
timestamp and content timestamp refer to the time counted since
application launches and the location in the video being played
respectively, in milliseconds. Basic statistics of our head motion
trace data are shown in Table 1. �is dataset contains head pose data
for 19 online VR videos, which are available on the Samsung VR
website [37] and watched by a large number of viewers worldwide
using their own HMD. We aggregate these videos by categories, i.e.
movie trailer, documentary, scenery and entertainment. In Fig. 4,
we plot the cumulative distribution function (CDF) of video duration
and the number of viewers for each video. We can observe that
over 80% of videos have more than 100s for duration and around
85% of videos have more than 1000 viewers. �e large diversity
and number of VR videos in the data set, and the large number
of viewers for each video, makes the data set very suitable for
developing and validating our viewpoint prediction method.

To depict key characteristics of the head motion and viewpoint
changes in the dataset quantitatively, we o�er the following de�ni-
tions.

De�nition 1— Head Motion Vector: Consider a viewer watching
a video in certain time-points t1 and t2, where t1 < t2. We have
corresponding head poses, which are denoted by (x(t1),y(t1)) and
(x(t2),y(t2)) respectively. �en the head motion vector (△x ,△y)
can be represented as (x(t2) − x(t1),y(t2) − y(t1)).

De�nition 2— Head Motion Speed: �e head motion speed v is
de�ned as the distance the head moved divided by time.

v =

√

△x2 + △y2

t2 − t1

For Kong VR video in our dataset, we draw a boxplot in Fig.
5 to analyze head motion speed versus time. Fig. 5 shows head
motion speed distribution for over 1500 viewers during 60s with
this boxplot. Every dark blue strip represents the head motion
speed distribution with an x-axis width of 1 (i.e. a width 1s in video
time), whereas the height of a blue strip in the y-axis indicates
the interquartile range of the head motion speed, re�ecting the
variability of the head motion speed. Additionally, each light blue
line represents the corresponding maximum and minimum values
and red symbols indicate the median head motion speed. From
this boxplot, we observe that the distribution exhibits di�erent
properties when time changes. For instance, at the time point of
3s, the median head motion speed is as high as 35°/s, while 25
percent of viewers have a head motion speed larger than 75°/s and
75 percent of viewers have a head motion speed larger than 10°/s
approximately. At another time point as 45s, median head motion
is around 10°/s, while 25 percent of viewers have a head motion
speed larger than 47°/s. �e whole boxplot presents the challenging
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situation of predicting head motion since viewers may change
viewing direction fast as well as frequently. Moreover, we can see
interquartile range of head motion speed during 30-40s is around
5°/s-40°/s while during 50-60s interquartile range of head motion
speed is 10°/s-50°/s approximately. �us, we take the sequence of 30-
40s as an example of medium motion sequence and the sequence of
50-60s as an instance of high motion sequence. As results presented
in Section 6 show, viewpoint prediction and FOV generation for
high motion sequences are relatively more challenging than for
medium motion sequences, resulting in either less FOV prediction
accuracy, or larger FOV and hence less bandwidth savings.

De�nition 3— A�ention Map: For n viewers, content timestamps
cts1, cts2 (cts1 < cts2) denote the video clip the viewers are watch-
ing. A�ention map is de�ned as a series of probability that a view-
point is within a tile for n viewers during time-period from cts1
to cts2. When we have N tiles in one 360-degree view, we have N
elements (i.e. probabilities) in the a�ention map and the total sum
of these probabilities is 1. When there are more tiles with relatively
high probabilities, viewpoint prediction will be more challenging
since di�erent users may have multiple points of interest and re-
quire various FOVs.

Probability that

a viewpoint is

within a tile

(°)

(°
)

Figure 6: Example of attention map.

Fig. 6 shows an example of a�ention map, demonstrating users’
a�ention distribution (for over 1500 viewers) during 1s within the
high motion sequence in Kong VR video [35] mentioned above.
�e value in legend represents the probability that a viewpoint is
within a tile for n viewers during the given time-period. According
to the legend, we can observe that the yellow tiles a�ract most
a�ention and viewers are more likely to look at these areas. �e
yellow and red colors indicate that the probability that a viewpoint
is within the corresponding tile is around 0.1 and 0.05 respectively
for all n viewers during the given time-period, meaning this tile
is of high interest for users. �e a�ention map in Fig. 6 points to
the feasibility of performing viewpoint prediction, since there are
always areas a�racting more a�ention than remaining areas within
a 360-degree view. On the other hand, the a�ention map in Fig. 6
shows multiple tiles (as high as 11 tiles) have relatively high proba-
bilities (0.05-0.1), indicating the di�culty of predicting viewpoint
accurately. By visualizing a series of consecutive a�ention maps
in a given sequence, we can observe the changes of viewpoint (as
well as user a�ention) continuously. With proposed metrics such
as head motion speed and a�ention map, we can characterize the
viewpoint as well as user a�ention from both temporal and spatial
perspectives.

5 PREDICTIVE LSTM MODEL
In this section, we describe our methodology including viewpoint
prediction and FOV generation. In viewpoint prediction, given previ-
ous and current viewpoint locations, our goal is to predict one or
multiple tiles that the viewpoint will be in for the next time point.
FOV generation will map each of predicted tiles to a FOV based on
the results of viewpoint prediction.
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°

° °
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Figure 7: �e viewpoint representation, projected into coordinates

in equirectangular map.
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Figure 8: LSTM model used for viewpoint prediction.

5.1 Viewpoint Prediction
Head motion �les include user information, timestamp (time in
video content), euler angles (pitch, yaw, roll), etc. Euler angles
are shown in Fig. 7(a)) and timestamps appear each 200ms . We
transform euler angles into the variables x ,y in the equirectangu-
lar map [39] for 360-degree view, which is presented in Fig. 7(b).
Variables x and y are within (−180, 180] and [−90, 90] degrees re-
spectively.

We use tile-based format for viewpoint feature representation.
With each grid size as 30°×30°, the 360-degree view can be divided
into 72 tiles. We select 2s as the prediction time window (i.e. pre-
dict viewpoint according to viewpoint traces in past 2s), since it
achieves be�er performance than 3s, 4s and 5s based on our experi-
ments. Note our selection of 2s is in line with the observation made
by [13]. For training the model, we design a one-hot encoding
representation [9, 11] for viewpoint as a 72×10 matrix V . Each
element of V is 0 or 1. �e dimensions of V correspond to the 72
tiles in a 360-degree view for possible viewpoint positions, and 10
timestamps corresponding to 2s. �us, the element vi, j of matrix
V equals to 1 when the viewpoint is within the i-th tile at the j-th
timestamp, and equals to 0 when viewpoint is not within the cor-
responding tile. Another simple representation for viewpoint is a
1x10 vector, where each element equals to i when viewpoint is in
the i-th tile. With the two representations above, we can obtain
viewpoint features from previous and current viewpoint locations.

Inspired by the good performance of LSTM to capture transition
regularities of human movements since they have memory to learn
the temporal dependence between observations [2, 29], we design
a multi-layer LSTM model which can learn general head motion
pa�erns and predict the future viewpoint position based on the past
traces. Fig. 8 shows the LSTM model we designed and used in our
training, where �rst and second LSTM layers both consist of 128
LSTM units, and the fully connected layer contains 72 nodes. Our
LSTM model predicts the next tile within which the viewpoint will
be, given the previous sequence of viewpoint tiles. �e outputs are
the predicted probabilities over the 72 possible tiles. �e proposed
model learns parameters by minimizing cross-entropy and we train
with mini-batches of size 30. Note that the se�ings including 128
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Figure 9: FOV generation.

LSTM units, 72 nodes and 30 as mini-batch size are selected during
experiments and proved to be good by empirical results.

5.2 FOV Generation

�e objective of FOV generation is maximizing the probability that
the actual user view will be within the predicted FOV while at
the same time minimizing bandwidth consumption of the FOV
transmi�ed (minimizing pixels/bitrate of FOV). We de�ne FOV
prediction accuracy as the probability that actual user view will be
within the predicted FOV (generated from one or multiple tiles).
Note that the FOV prediction accuracy depends on the LSTMmodel
accuracy and FOV generation method, and thus re�ects both the
performance of our LSTM model and FOV generation method.

�ere is a tradeo� between FOV size (hence bandwidth con-
sumed) and FOV prediction accuracy. FOV prediction accuracy is
100% (meaning that the user view has a 100% guarantee of being
within predicted FOV) if predicted FOV is the whole 360-degree
view (all tiles) but it will have very high bandwidth consumption.
By selecting more tiles with high viewpoint probability, we can
achieve higher FOV prediction accuracy but also higher bandwidth
consumption. In this paper, we propose the following FOV genera-
tion method:

- Selectm tiles with highest probabilities predicted by the
LSTM model, compose the predicted FOV as the combi-
nation of FOVs for each selected tile, and transmit the
predicted FOV with high quality while leaving the rest of
tiles blank.

Fig. 9 shows an example of FOV generation when we select the
top two highest probability tiles (i.e.m = 2) provided by the LSTM
model, where yellow area illustrates the predicted FOV consisting
of 26 tiles (i.e. the combination of FOVs for two selected tiles). In
our current method, we build 120°×120° FOV around the center
of the selected tile. By doing this, we can guarantee that when
the viewpoint is within the predicted tile, the actual FOV is larger
than 90°×90° in size (i.e. 90°×90° when the viewpoint is at the
corner of predicted tile and 120°×120° when the viewpoint is in the
center of predicted tile). We can use choice of m to achieve the
desired tradeo� between FOV prediction accuracy and bandwidth
consumed in transmi�ing the predicted FOV. Choice of largerm
leads to higher bandwidth but be�er FOV prediction accuracy,
while smallerm causes lower bandwidth but higher risk in FOV
prediction accuracy. Note that an alternative strategy, in which
we also transmit the remaining tiles but in lower quality, maybe
used to mitigate the risk of prediction accuracy, and e�ectuating
a di�erent tradeo� with bandwidth needed. We plan to study the
alternative approach in our subsequent work.

6 EXPERIMENTAL RESULTS

We use 90% of the dataset for training the LSTM viewpoint pre-
diction model, and 10% for testing, ensuring the test data is from
viewers which are di�erent than those in training data. Speci�cally,
we have 32400 samples as training data and 3600 samples as test
data for both medium motion and high motion sequences in Fig. 10

and Table 2, while we take 45000 samples as training data and 5000
samples as test data for each of three sequences in Table 3. As for
the experimental setup, we use an Intel Core i7 �ad-Core proces-
sor with 32GB RAM and implement our approach in Python using
Keras [26]. We compare the performance of our LSTM model with
state-of-the-art methods as follows:

• Stacked sparse autoencoders (SAE):We use SAE [6, 19] with
tile information during 10 timestamps as input to predict
the tile where the viewpoint is within for next timestamp.
�e SAE model contains two fully-connected layers with
100 and 80 nodes respectively for training.

• Bootstrap-aggregated decision trees (BT): Following thework
of [7], we also compare against BT using 10-timestamp tile
information as input. �e BT model ensembles with 30
bagged decision trees, which reduces the e�ects of over�t-
ting and improves generalization.

• Weighted k-nearest neighbors (kNN): We implement a kNN
[14] using 10-timestamp tile information as input and set
100 as the number of nearest neighbors in our training.

Note that while the training time for BT and kNN are less than 20
minutes for the above training set for a 10-second sequence, the
training time for the deep learning models including LSTM and
SAE are up to one hour.

A�er training the various models with both two representations,
we decide on using the one-hot encoding representation to train
SAE and LSTM models, while using the simple representation for
BT and kNN, since the simple representation works be�er for the
la�er two approaches in our experiments. Note in Fig. 10, Table 2
and Table 3, FOV accuracy refers to FOV prediction accuracy. We
�rst show results of experiments with the medium and high motion
sequences of Kong VR in Fig. 10 and Table 2. We show the FOV
prediction accuracy and pixel savings obtained when selecting
di�erent number of tiles (i.e. the choice ofm) to generate FOV. �e
blue plots show the FOV prediction accuracy achieved by each of
the models for speci�c number of tiles (i.e. the choice ofm) selected
to generate the FOV, while the green plots show the corresponding
pixel saving of the generated FOV compared to the whole 360-
degree view. Lines with blue triangle markers, blue square markers,
blue crossmarkers and blue pointmarkers represent FOV prediction
accuracy for SAE, LSTM, BT and kNN models respectively while
lines with green triangle markers, green square markers, gre-en
cross markers and green point markers represent corresponding
pixel saving for these models.

From Fig. 10, we observe the following. As number of tilesm
increases, the FOV prediction accuracy continuously increases and
pixel saving simultaneously decreases. �is shows the tradeo� be-
tween FOV prediction accuracy and pixel saving. Furthermore, we
can see that our proposed LSTMmodel outperforms the other three
methods. For instance, in both Fig. 10(a) and (b), the line with blue
square markers (denoting FOV prediction accuracy achieved by
LSTM) is signi�cantly higher than the other three blue lines when
the number of selected tiles (i.e. the choice ofm) is larger than 5. We
also observe that high FOV prediction accuracy can be achieved by
LSTM (and other models) with smaller FOV and hence higher pixel
savings for medium motion sequences compared to high motion
sequences. For example, in Fig. 10(a), LSTM achieves a high FOV
prediction accuracy of 95.5% when selects 8 tiles (i.e. m = 8) to
generate FOV, leading to pixel savings of 55.7%, while in Fig. 10(b)
to achieve a comparable FOV prediction accuracy of 95.0%, LSTM
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Figure 10: (a)(b) show FOV prediction accuracy and pixel saving versus number of tiles selected for FOV (for two sequences in
Kong VR).

Table 2: Experimental results for two sequences in Kong VR.

Model
Medium Motion Sequence High Motion Sequence

FOV Accuracy(%) Pixel Saving(%) FOV Accuracy(%) Pixel Saving(%)
SAE 95.0 34.0 95.0 3.9
LSTM 95.5 55.7 95.0 43.7
BT 95.0 14.8 95.2 14.4
kNN 94.8 12.0 95.3 12.0

Table 3: Experimental results for three video sequences.

Model
Fashion Show Whale Encounter Roller Coaster

FOV Accuracy(%) Pixel Saving(%) FOV Accuracy(%) Pixel Saving(%) FOV Accuracy(%) Pixel Saving(%)
SAE 95.4 52.7 95.1 46.8 95.3 29.9
LSTM 95.2 69.7 95.5 66.8 95.2 71.0
BT 95.3 19.1 95.0 18.6 95.2 48.9
kNN 94.9 12.0 95.2 10.3 95.1 21.2

needs a larger FOV generated by 13 tiles (i.e.m = 13) with lower
pixel savings of 43.7%. Table 2 summarizes the experimental results
shown in Fig. 10. When we set FOV prediction accuracy as around
95%, we can observe that our LSTM model achieves signi�cantly
larger pixel savings than the other three models, achieving 55.7%
and 43.7% pixel savings for medium and high motion sequences re-
spectively. In our experiments, the inference time for all the models
including LSTM is less than 2ms. We further perform more exper-
iments on three relatively low motion video sequences including
Fashion Show, Whale Encounter and Roller Coaster in our dataset
to evaluate our LSTM model. It corresponds to the fact that for
instance in Fashion Show sequence, viewers have similar area of in-
terest (e.g. the stage) and seldom change viewpoint out of this area
to other tiles. Similarly, in Roller Coaster sequence, viewers tend
to look towards front more time than other directions when roller
coaster keeps up high speed. Moreover, note that we select 10s-
duration for each sequence to keep consistency with experiments
done with Kong VR. �e inference time for all the models including
LSTM is still less than 2ms. Table 3 exhibits the experimental re-
sults for the three video sequences. Our LSTM model can achieve
a very high FOV prediction accuracy of approximately 95% with
selecting 4 tiles (i.e. m = 4) to generate FOV and corresponding
pixel savings of around 70% for Fashion Show and Roller Coaster,
and choosing 5 tiles (i.e.m = 5) to generate FOV and corresponding
pixel savings of 66.8% for Whale Encounter. Note that the above
savings are signi�cantly higher than achieved by the other three
models. �erefore, our experimental results above demonstrate that
our LSTM model and FOV generation approach can achieve very

high FOV prediction accuracy while signi�cantly reducing pixels
needed. In a separate work involving di�erent VR applications, we
have shown empirically that there is a high correlation between
pixel and bitrate savings [21, 23]. �us, our experimental results
also illustrate the tradeo� between FOV prediction accuracy and
bandwidth savings.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a predictive view generation approach
in order to reduce the latency and bandwidth needed to deliver
360-degree videos and cloud/edge-based VR applications, leading
to be�er mobile VR experiences. We present a multi-layer LSTM
model which can learn general head motion pa�ern and predict the
future viewpoint based on past traces. Our method outperforms
state-of-the-art methods on a real head motion trace dataset and
shows great potential to reduce bandwidth.

Our planned future work includes further development and eval-
uation of strategies for FOV generation, considering interpolated
viewpoint positions within the interval between time point (i.e.
200ms) to generate view and encode videos in advance, evaluation
of the proposed predictive approach from bandwidth and latency
perspectives, and performing subjective studies to understand and
quantify user experience using our proposed predictive approach.
We also plan to study and develop predictive models for body mo-
tion, and joint head and body motion, for six Degrees of Freedom
(6DoF) immersive experiences.
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