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ABSTRACT 
 

Facial expression recognition (FER) for monitoring a driver’s 
emotional state has become an increasing need for advanced 
driver assistant systems (ADAS). Though state-of-art results 
of recognition accuracy have been achieved in FER with the 
development of deep neural networks (DNNs) in recent 
years, FER in real-world is still challenging due to 
illumination and head pose variation. In this work, we 
propose a multi-modal fusion based FER model capable of 
recognizing facial expressions accurately regardless of the 
lighting conditions and head poses, using a structured-light 
imaging camera which provides three modalities of images - 
RGB, Near-infrared (NIR), and Depth Maps. The model is 
implemented in two phases, where the first phase extracts 
feature from single modalities separately using 3D ResNet 
while the second phase combines the multi-modal features 
and classifies expressions. The model is trained and tested 
with a novel facial expression dataset with the three image 
modalities, with varying lighting conditions and head poses. 
The experimental results show that combining different 
modalities improves the model performance and robustness. 
A recognition accuracy of over 90% has been obtained in the 
usage scenario of FER for drivers. 

Index Terms— Facial expression recognition, multi-modal 
fusion, deep neural networks, driver emotion monitoring 

1. INTRODUCTION 
 

Facial expression recognition (FER) has been widely studied 
in recent years. It can be applied to various usage scenarios 
such as human-computer interaction, medical treatment [1], 
and advanced driver assistant systems (ADAS) [2][3].  

FER can be critical for ADAS in improving road safety. 
Since facial expressions can reflect driver’s fatigue condition 
and emotional state, FER can be very useful for ADAS to 
recognize the driver’s state to provide timely alerts to the 
driver as well as to neighboring drivers. We also believe that 
FER can be useful for level 3-4 autonomous driving, since 
detecting driver’s state enables safe control switching 
between the driver and the vehicle.  

Recently, there have been many studies in computer 
vision for FER system. FER is a multi-class classification 
task, where typically seven basic emotional expressions 
defined by Ekman [4] (anger, disgust, fear, happiness, 
neutral, sadness, and surprise) are to be recognized. There are 
many publicly available datasets collected based on these 
basic expressions, such as the extended Cohn-Kanade (CK+) 
[5], the Oulu-CASIA dataset [6], JAFFE [7], and CMU 
Multi-PIE [8]. To our best knowledge, most of the datasets 
only contain data of a fixed head pose collected in a good 
illumination condition. However, in real-world in-vehicle 
driving conditions, the illumination condition is not always 

good and the driver’s head pose varies, which may affect the 
accuracy of facial features extraction and thus lead to an 
inferior performance of the FER model when applied to real-
world situations. Hence, to tackle these challenges, we 
develop a novel facial expression dataset with three 
modalities of images collected simultaneously, i.e., RGB 
images, Near-infrared (NIR) images, and Depth Maps, with 
different illumination conditions. Among these modalities, 
NIR images and Depth Maps are not affected by the ambient 
illumination conditions. The images are collected under three 
different head poses.  

It has been shown using widely evaluated benchmarks, 
such as CK+ and MMI [9], that training networks on image 
sequences can improve the performance. [10] In our work, we 
propose a video-based multi-modal fusion model, which gives 
better and more robust FER accuracy for different driving 
conditions. The model is implemented in two phases. In the 
first phase, networks based on 3D CNN are trained on RGB, 
NIR and Depth Map videos separately to extract features 
from each modality. In the second phase, features of different 
modalities are combined and input to a multilabel classifier 
to recognize expressions. 

In the remainder of this paper, Section 2 describes the 
related work. In Section 3, we give an overview of the dataset 
and describe the data collection and pre-processing steps. In 
Section 4, we explain our proposed multi-modal fusion based 
model. Experimental results are given in Section 5, and future 
work is described in Section 6. 

 

2. RELATED WORK 
 

Deep learning has been increasingly popular in computer 
vision research and has achieved state-of-the-art 
performances in FER using datasets such as CK+ and JAFFE. 
However, the above datasets are only collected in a laboratory 
environment with good illumination.  Models may fail when 
it comes to real-world driving conditions with bad 
illumination.  

To address problems caused by illumination changes for 
the FER system, Jeong et. al [3] collected KMU-FED dataset 
for driver’s FER specifically, where NIR images of seven 
basic expressions are collected in a vehicle. Zhao et al. [6] 
collected the Oulu-CASIA dataset containing both NIR and 
RGB images and proved that more robust FER results against 
illumination variations can be obtained by using NIR images 
instead of using RGB images under poor illumination with 
illumination enhancement. However, the KMU-FED dataset 
only has NIR images, and the RGB and NIR images in the 
Oulu-CASIA dataset are not synchronized, which makes it 
unlikely to develop a model with better performance by 
fusing abundant information from different image modalities 
in these datasets. Besides, all the above datasets only have 
images captured from the frontal view, while in real-world a 
driver can have various head poses relative to the camera.  



 

Therefore, we construct a novel facial expression dataset 
with RGB images, NIR images, and Depth Maps collected 
simultaneously, consisting of data collected with three 
different head poses. We propose multi-modal fusion based 
model to recognize facial expressions accurately, robust to 
the illumination conditions and head poses.  
 

3. DATA COLLECTION 
 

We collect data of facial expressions from 20 subjects with 3 
head poses. Besides seven basic expressions, the data also 
includes the yawning expression, which is necessary for 
fatigue surveillance for drivers. Images of three modalities 
(RGB images, NIR images, and Depth Maps) are collected 
simultaneously. Data pre-processing and augmentation is 
performed before feeding the data into the model.  
  

3.1 Dataset summary 
 

 
Fig. 1. (a) Facial expression data collection set up and (b) an 

example of collected images 
 

The data collection is conducted in a laboratory setup 
shown in Fig. 1(a). A structured-light camera device is used 
to capture images of the subject’s upper body, including RGB 
images (1080x1920 pixels), NIR images (184x324 pixels) 
and Depth Maps (124x216 pixels), which are synchronized 
and collected simultaneously. The Depth Map reflects the 
distance between the subject to the camera. The camera is 
mounted around the rearview mirror position relative to the 
subject, with a distance of around 0.7 meter to the subject. 
During data collection, the subjects are asked to imitate and 
make facial expressions corresponding to certain emotions. 
Videos of eight types of facial expressions are recorded 
several times with the subject facing the front, the camera, 
and a random direction. Each facial expression sequence is 
manually annotated and extracted from the raw data. 
Examples of the collected images are shown in Fig.1.(b). 
Table 1 is a summary of the dataset. More example videos are 
included in the supplemental material. 
 

3.2. Data pre-processing 
 

We pre-process the raw data by (1) cleaning the dataset and 

(2) detecting and extracting the face image. We manually 

checked every clip to delete extreme samples where the 

participant’s expression is either too mild or ambiguous and 

also excluded contents without the target expression in each 

clip, especially at the beginning/end of the clip where the 

facial expression is not posed yet. 

To extract the most useful information from the raw data, 

face extraction is also required. For RGB images, we 

implement a face normalization algorithm [11] by detecting 

and aligning face landmarks to normalize the face shown as 

Fig.2.(a). Compared with extracting the face directly from the 

bounding box provided by a face detector, by face aligning 

and cropping, we can exclude the noise introduced by head 

movements. 

 
Fig. 2. (a)Face alignment and extraction for RGB images (b) Face 

extraction for NIR and Depth Map 
 

 Table 1. Dataset summary 
 

Subject Number 20 (8 female) 

Age 20-55 years 

Expression 

(number of 

sequences) 

Anger(268), Disgust(212), Fear(116), 

Happiness(299), Neutral(336), Sadness(346), 

Surprise(191), Yawning(251) 

Data 

Sequence 

Modality RGB/NIR/Depth 

Duration 4sec - 10sec 

Frame Rate RGB 30 fps 

NIR/Depth 15 fps 

Head Pose Front, Camera, A Random Direction 
 

However, for Depth Map, it is difficult to detect the 
landmarks accurately because of their low resolution. Instead, 
we detect and align faces from NIR images. Based on the 
cropping bounding box obtained from the NIR image, we can 
extract the face part from its corresponding Depth Map, 
shown in Fig.2.(b). All the cropped face images are resized to 
112x112. 
3.3. Data augmentation  
 

Since we propose to perform FER based on consecutive 
frames, the above collected images are augmented by 
window slicing subsequences of consecutive frames. We 
implemented a temporal data augmentation method shown in 
Fig.3.(a). For RGB data, we split a video into several 
windows of 30-frame clips continuously with 15 frames 
overlapping. Given the frame rate of NIR and Depth Map is 
around half of RGB’s frame rate, to make the input clips 
synchronized among different modalities, we extract 16-
frame clips continuously with 8 frames overlapping from NIR 
and Depth Map videos. There are around 1900 data samples 
for each modality after the temporal augmentation. 
 

 
Fig. 3.  (a) Temporal data augmentation (b) Lighting emulation  

 
 

The original data was collected in a laboratory 
environment with good illumination. Considering our goal is 
detecting driver’s facial expressions in real-world 
environments with different lighting and shadow conditions, 
due to the difficulties to collect more data with different 
illuminations either in a laboratory or real-world environment 
during the pandemic, we emulate different lighting conditions 
in the current dataset (collected before the pandemic related 
restrictions) before developing models. As shown in Fig.3.(b), 
for each clip, we randomly emulate one of the three lighting 
conditions by generating a dark mask and applying the mask 
to the image with a transparency rate. Note that since the NIR 
and Depth Map are not influenced by ambient lighting 
conditions, the lighting emulation is only done on RGB 
images. We train our proposed model using the pre-processed 
and augmented data. 



 

4. PROPOSED MODEL 
In this section, we introduce a robust multi-modal fusion 
model. With the pre-processed and augmented data, we fine-
tune a pre-trained 3D CNN as a feature extractor using 
consecutive frames as input for each modality. Based on the 
features extracted from different image modalities by the 
backbone network, a multilabel classifier is trained to classify 
facial expressions. 
 

4.1. Backbone network training 
 

In this subsection, we describe the backbone network 
structure, together with details of the training process. As we 
stated in Section 2, taking a temporal window of consecutive 
frames as input to train the network has been shown to give 
better performance in the context of FER [10]. For this work, 
3D ResNet is used as the backbone network to extract 
features from image sequences, which consists of four 3D 
residual layers followed by an average pooling layer and a 
fully-connect layer [12].  

To better represent features using 3D ResNet, we utilize 
a transfer learning technique, i.e., fine-tuning, which is an 
efficient method widely applied to training tasks on small 
datasets. In this work, the 3D ResNet is pre-trained on the 
UCF-101 dataset [13] for action recognition in videos. We 
fine-tune the network by freezing the first three layers during 
training. The data is divided into 4 folds for person-
independent cross-validation experiments, that is, validate 
data of three randomly selected subjects and train on the rest 
of the data. We set up two kinds of training tasks to 
investigate model performance in general use case and 
driving-related use case. In the general case, data of all 8 
expressions is used for training and validation. For the 
driving-related use case, considering the most relevant 
emotions/expressions for a driver that need to be detected, 
only data of “Neutral”, “Anger”, “Happiness” and “Yawning” 
is used. For each case, we train three backbone networks 
called 3D ResNet-RGB, 3D ResNet-NIR and 3D ResNet-
Depth using the three image modalities respectively, which 
enable effective feature extraction from each modality. 

 

 
 

Fig. 4. Multi-modal fusion model structure 
 

  
 

Fig. 5. Concatenation of multi-modal features 
 

4.2. Multi-modal fusion model 
 

In this subsection, we introduce the overall structure of the 
multi-modal fusion model, where features from different 
modalities are combined to increase the robustness of the 
model under various illumination conditions. In this work, we 
propose an ensemble approach based on feature-level multi-
modal fusion. The overall model is shown in Fig. 4. Features 
are extracted separately by the finetuned backbone networks 

(3D ResNet-RGB, 3D ResNet-NIR and 3D ResNet-Depth) 
from three modalities and fused. The features are then 
concatenated and fed to a multilabel classifier. We 
experiment with two ways of concatenating features, namely, 
sequential concatenation and parallel concatenation as shown 
in Fig. 5, i.e., adding one feature vector after another or 
parallelly. The backbone networks and the classifier are 
trained separately. 
For this work, we use four kinds of multilabel classifiers: 
Random Forest (RF) [14], Multi-Layer Perceptron (MLP) 
[15], Long Short-Term Memory (LSTM) network [16], and 
CNN classifier. Specifically, we first extract the features of 
each modality from its corresponding backbone network, 
then we train the concatenated features on four kinds of 
classifiers to classify facial expressions.  

5. EXPERIMENTAL RESULTS 
 

In this section, we first provide results of the backbone 
networks trained on each single modality. Then we present an 
overview of results of our multi-modal fusion model where 
features from different modalities are combined and trained. 

The results are presented in the form of facial expression 
recognition accuracy, when considering all the eight 
expressions (General Case) and the driving related 
expressions, “Neutral”, “Anger”, “Happiness” and “Yawning” 
(Driving Case). 
5.1. Single modality analysis 
 

In this subsection, we analyze the recognition results of the 
backbone networks, which are trained on data of a single 
modality. We train the network on the RGB data with/without 
lighting emulation in both training tasks; the results are 
shown in Table 2. The overall recognition accuracy achieved 
in the original RGB data proves that the 3D ResNet can well 
represent facial expression features. However, the 
performance is worse on more realistic data which is 
emulated with different illumination conditions.  

We also finetune the 3D ResNet on the NIR and Depth 
data. The results of the 3D ResNet-NIR and 3D ResNet-
Depth are shown in Table 2. The recognition accuracy in NIR 
and Depth Map data is lower than that in RGB data without 
lighting emulation since they do not have as much 
information due to lower image resolution and frame rate. 
However, the 3D ResNet-NIR achieves 86.8% accuracy in 
the driving case, which is higher than that of 3D ResNet-RGB 
(82.6%) when considering different illumination conditions.  
 

5.2. Multi-modal fusion 
Next, we will present results of the fusion of different 
modalities. As stated in Section 4, the concatenated features 
are fed into four kinds of classifiers, among which, the RF 
model and the MLP model only accept 1-D input vectors, thus 
only sequential concatenation is experimented on them. The 
LSTM network consists of two LSTM layers with 128 cells 
each. The CNN classifier consists of one 1-d convolutional 
layer followed by a ReLU activation layer, a 1-d max-pooling 
layer and a fully-connect layer. Both concatenation methods 
are experimented on the LSTM network and the CNN 
classifier. The metrics for the individual modalities and 
comparison of different classifiers with the fusion of 
modalities are presented in Table 2. 

As can be seen in Table 2, by fusing different modalities, 
we can get much higher recognition accuracy than just using 
RGB-only or any one single modality. For example, while 
58.9% and 82.6/86.8% accuracy can be achieved using RGB-
only and RGB/NIR-only modality in the general and driving 
cases respectively, using all 3 modalities and the CNN 



 

Table 2. Results of single-modal backbone network and multi-modal fusion classifiers.  
LE: Lighting Emulation, (s): sequential concatenated features input, (p) parallel concatenated features input 

 

General case (RGB(w/o LE) only: 65.3%, RGB(w/LE) only: 58.9%, NIR only: 58.2%, Depth only: 35.0%) 
                     Classifier 
Modality 

RF MLP LSTM (s) LSTM (p) CNN (s) CNN (p) 

RGB+NIR 66.4% 64.6% 49.5% 61.2% 64.7% 65.0% 
RGB+NIR+Depth 66.4% 68.1% 40.4% 61.9% 67.4% 68.9% 

Driving case (RGB(w/o LE) only: 91.3%, RGB(w/LE) only: 82.6%, NIR only: 86.8%, Depth only: 53.1%) 
                    Classifier 
Modality 

RF MLP LSTM (s) LSTM (p) CNN (s) CNN (p) 

RGB+NIR 89.1% 87.9% 87.8% 90.4% 89.3% 91.0% 
RGB+NIR+Depth 89.3% 89.3% 60.1% 89.3% 89.1% 90.7% 

 
 

Fig. 6. Example images of driving test data 
 

classifier trained on parallel concatenated features, CNN(p), 
improves accuracy to 68.9% and 90.7% for the general and 
driving cases respectively. 

While the experimental results show that our proposed 
multi-modal fusion model can achieve a high accuracy of 
over 90% in detecting driver’s facial expressions, we need to 
ensure the model is also robust to driver’s head pose variation. 
We achieved 91.7%, 90.5% and 89.1% accuracy under facing 
camera, front and random directions using the CNN classifier 
trained on parallel concatenated features of three modalities. 
The results show that good model performance is maintained 
across different head poses, even when the driver face has 
random directions.  
Test with Driving Data: To further demonstrate the 
effectiveness of our proposed multi-modal fusion model in 
real-world driving conditions, we also collected data of 
driving related expressions from two subjects inside a vehicle 
with different realistic lighting and shadow conditions and 
head poses. The real-world test data contains 72 data samples. 
Fig. 6 shows a few example driving scenarios, with more 
images and videos included in the supplemental material. 
While our single modality 3D ResNet-RGB model could 
obtain an FER accuracy of 80.6%, our multi-modal fusion 
model improves FER accuracy to 90.3% on the real-world 
test data. The results show that good model performance is 
maintained even in real-world test cases. 
 

6. CONCLUSIONS AND FUTURE WORK 
 

This work proposed a novel multi-modal fusion model for 
facial expression recognition based on image sequences of 
RGB, NIR and Depth Map. The ensemble of the 3D ResNet 
and a multilabel classifier is implemented in the framework. 
A novel facial expression dataset consisting of images of 
RGB, NIR and Depth Map is created and augmented with 
realistic lighting conditions and head poses reflecting driving 
scenarios. The results demonstrate that significant advantages 
in both recognition accuracy as well as robustness with 
regards to lighting conditions and head poses can be achieved 
using multiple modalities compared to a single modality.  

In the future, we plan to augment our dataset by 
collecting more real-world driver data with our V2X enabled 
vehicle, following our recently approved IRB protocol, and 
make it publicly available for research use. We also plan to 
extend the proposed model to derive driver’s state of mind 
(SoM), where other contributors of SoM (e.g., distraction, 
fatigue, anxiety) will also be detected. 

 
 

7. ACKNOWLEDGMENTS 
This work is funded by Qualcomm. The authors extend their 
appreciation to Chienchung Chang and Zhen Wang at 
Qualcomm, and Professor Truong Nguyen at UCSD, for 
valuable discussions and feedback. 
 

8. REFERENCES 
 

[1] M. I. U. Haque and D. Valles, "A Facial Expression Recognition 
Approach Using DCNN for Autistic Children to Identify 
Emotions," 2018 IEMCON, Vancouver, BC, 2018, pp. 546-551. 

[2] M. A. Assari and M. Rahmati, "Driver drowsiness detection 
using face expression recognition," 2011 ICSIPA, Kuala 
Lumpur, 2011, pp. 337-341. 

[3] M. Jeong and B. C. Ko, “Driver’s Facial Expression 
Recognition in Real-Time for Safe Driving,” Sensors, vol. 18, 
no. 12, p. 4270, 2018. 

[4] P. Ekman and W. V. Friesen, “Constants across cultures in the 
face and emotion.” Journal of personality and social 
psychology, vol. 17, no. 2, pp. 124–129, 1971. 

[5] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar and I. 
Matthews, "The Extended Cohn-Kanade Dataset (CK+): A 
complete dataset for action unit and emotion-specified 
expression," 2010 CVPR - Workshops, San Francisco, CA, 
2010, pp. 94-101. 

[6] G. Zhao, X. Huang, M. Taini, S. Z. Li, and  M.PietikäInen,  
“Facial expression recognition from near-infrared videos”.  
Image and Vision Computing, August 2011, vol. 29, pp. 607-619. 

[7] M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, “Coding 
facial expressions with gabor wavelets,” in Automatic Face and 
Gesture Recognition, 1998. Proceedings. Third IEEE 
International Conference on. IEEE, 1998, pp. 200–205. 

[8] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, 
“Multi-pie,” Image and Vision Computing, vol. 28, no. 5, pp. 
807–813, 2010. 

[9] M. Valstar and M. Pantic, “Induced disgust, happiness and 
surprise: an addition to the mmi facial expression database,” in 
Proc. 3rd Intern. Workshop on EMOTION (satellite of LREC): 
Corpora for Research on Emotion and Affect, 2010, p. 65. 

[10] S. Li and W. Deng, "Deep Facial Expression Recognition: A 
Survey," in IEEE Transactions on Affective Computing. 

[11] D. L. Baggio, Mastering OpenCV with Practical Computer 
Vision Projects. Birmingham, U.K.: Packt Publishing, 2012. 

[12] K. Hara, H. Kataoka and Y. Satoh, “Can Spatiotemporal 3D 
CNNs Retrace the History of 2D CNNs and ImageNet?,” in 
CVPR 2018, Proceedings, IEEE conference, 2018, pp. 6546-
6555. 

[13] K. Soomro, A. R. Zamir, and M.Shah. “UCF101: A dataset of 
101 human actions classes from videos in the wild,” arXiv 
preprint arXiv:1212.0402, December 2012. 

[14] M. Pal, “Random forest classifier for remote sensing 
classification,” Int. J. Remote Sens., vol. 26, no. 1, pp. 217–222, 
2005. 

[15] M. W. Garner and S. R. Dorling, “Artificial neural networks 
(the multilayer perceptron)—A review of applications in the 
atmospheric sciences,” Atmosph. Environ., vol. 32, no. 14/15, 
pp. 2627–2636, Aug. 1998. 

[16] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to 
forget: Continual prediction with LSTM,” in Proc. 9th Int. Conf. 
Artificial Neural Networks, pp. 850–855, 1999. 


