
EvoSh: Evolutionary Search with Shaving to Enable
Power-Latency Tradeoff in Deep Learning

Computing on Embedded Systems
Basar Kutukcu∗, Sabur Baidya†, Anand Raghunathan‡, Sujit Dey∗

∗Department of Electrical and Computer Engineering, University of California, San Diego, CA, USA
†Department of Computer Science and Engineering, University of Louisville, KY, USA

‡Department of Electrical and Computer Engineering, Purdue University, IN, USA
e-mail: bktkc@ucsd.edu, sabur.baidya@louisville.edu, raghunathan@purdue.edu, dey@ucsd.edu

Abstract—Deploying deep-learning applications on resource-
constrained embedded systems requires exploration of large
design spaces for mapping (to heterogeneous processing units)
and hardware configuration selection (voltage/frequency levels)
to balance power consumption and latency. Herein, we propose a
search algorithm called Evolution with shaving to find optimized
configurations in these search spaces. We evaluate our approach
using 3 state-of-the-art image classification DNNs on Nvidia
Jetson-TX2 platform, demonstrating the benefit of exploring the
proposed search spaces and the ability of the proposed algorithm
to successfully perform the search. We show that our approach
achieves optimized mapping and hardware configuration in
<0.1% of search-space exploration.

Index Terms—Neural networks, embedded systems, design
space exploration

I. INTRODUCTION

Deep learning algorithms have achieved remarkable success
in various machine learning tasks, driving great demand for
implementing them on mobile and embedded systems [1].
However, implementing deep learning models on constrained
embedded devices involves various challenges [2] in order to
perform efficiently, especially, in terms of power consump-
tion and latency of inference. The power consumption is an
important factor for portable systems since they usually run
on a battery with finite energy budget. The latency of the
inference, on the other hand, is important for various mission-
critical and real-time applications. As there can be different
power and latency requirements depending on the system and
the application being used, these two metrics usually create a
tradeoff. Hence, it is important to find a configuration search
space that provides a meaningful tradeoff to satisfy different
requirements from the system and the application. There could
be different mechanisms to achieve this tradeoff due to the
modular architecture of deep learning algorithms, and the
availability of heterogeneous computing units with different
hardware configurations in embedded systems. In this paper,
we propose to use two different search spaces and propose a
systematic search method to explore the power consumption
vs. latency tradeoff that they provide.

The first search space arises from dividing a deep learn-
ing application into blocks and mapping them to different
computation units that exist in the system. These blocks can

Fig. 1: The search space overview of 9-blocks EfficientNetB0

be as small as a layer of a neural network, or can be a
combination of several consecutive layers. Selecting smaller
blocks creates a finer precision in the power consumption –
latency tradeoff, while increasing the size of the search space
and therefore the time required for searching through it. The
different computation units can include CPUs, GPUs, deep
learning accelerators, or any other domain specific processing
units. The range of parameters that can be varied in these
computing units constitutes the second search space.

We illustrate the complexity of the search space using a
small example where an exhaustive search is possible. We
consider the EfficientNetB0 image classification model as our
deep learning application, and split it into 9 blocks as shown in
Fig. 1. We are using CPU and GPU on an Nvidia Jetson TX2
as our computation units. This creates a search space with 512
(= 29) different mapping configurations. We ran each of these
mappings permutations on the Jetson TX2 platform while
measuring power consumption and inference latency, and plot
the results in Fig. 1. In this plot, each color represents a fixed
number of blocks that are mapped to the same computation
unit. Each dot represents a unique mapping combination. For
example, when 1 block is mapped to CPU and 8 blocks



are mapped to GPU, there are 9 possible different mapping
configurations (represented by the 9 orange dots in Fig 1).
Similarly, the mapping configuration with 2 blocks mapped to
CPU and 7 blocks mapped to GPU has 36 possible different
mappings (green dots in Fig 1). This plot clearly shows that
different mapping configurations create a power consumption
– latency tradeoff. Even though there is a general trend in the
data, different mapping combinations are overlapped in the
power consumption – latency space. More importantly, the
specific blocks mapped to each computation unit matter, as
there are good and bad performing configurations in the same
color. So, finding the Pareto frontier (subset of solutions where
each solution is optimal in terms of latency for some power
threshold) is an important challenge in this problem.

Similar to the mapping configurations, the hardware con-
figuration search space can be extremely large with respect to
the number of parameters, e.g., the frequencies of computation
units and memory controller, the number of CPU cores and
types of CPU cores.

In order to efficiently search through the exponentially large
search space mentioned above, several black box and white
box algorithms are developed in the literature. Black box
algorithms can be realized without any insight into the problem
at hand, whereas white box algorithms may perform better due
to their domain-specific techniques. Herein, we propose an
algorithm that is based on a traditional evolutionary algorithm
but enhanced with an intelligent heuristic that uses insights
into the nature of the search spaces explored. We call this
technique shaving, as it shaves some of the search space every
step without trying them. We apply the proposed algorithm to
the EfficientNet family of image classification models and the
Nvidia Jetson TX2 platform. We showcase the advantage of
our proposed approach to efficiently find the best mapping and
hardware configurations for a given application requirement.

The main contributions of this work are as follows:
• We define two complementary search spaces - block-to-

computation unit mapping, and hardware configuration
selection - to provide a beneficial tradeoff between power
consumption and inference latency for deep learning
applications running on embedded systems.

• We present EvoSh - an intelligent configuration search al-
gorithm that improves the traditional evolutionary search
by using a novel shaving technique that leverages insights
into the nature of the search space.

• The proposed configuration search spaces and the EvoSh
algorithm are evaluated on the Nvidia Jetson TX2 plat-
form, and the results demonstrate EvoSh outperforming
other algorithms in wide range of experiments.

II. RELATED WORK

Enabling deep learning inference on embedded devices has
been tackled in the literature from different angles including
quantization [3], pruning [4], adaptive models [5]–[7] or model
selection [8], [9]. These methods improve inference efficiency
by optimizing the model or using different models that perform

the same task. Our work is complementary, which means
we achieve a power consumption - latency tradeoff without
changing the application structure. In other words, we do not
trade off application accuracy for any gain.

Search algorithms have been instrumental to solutions of
many problems in different fields in computer science, includ-
ing computer systems and deep learning applications. Neural
architecture search [10] has been an active research field where
basic neural network blocks are defined, and a neural network
architecture is searched using those blocks. The aim is to find
a neural network architecture that achieves high accuracy on
the given dataset with reasonable computational cost. This
problem is different from ours as we do not change the neural
network architecture, and focus on execution-performance
related metrics.

There are other efforts focused on improving inference
efficiency for a given model. In [11], hardware features
of an in-house accelerator are searched to tradeoff latency
and hardware area. They do not consider power, and they
demonstrate their work on an in-house hardware which is
proprietary. Moreover, they don’t consider mapping of neural
networks to multiple computation units. Similarly, the work
in [12] searches through hardware features to design new
hardware. Unlike previous works, they did not use simulation
to evaluate their configurations. Instead, they used logged
simulation data. They did not consider mapping as well,
and hence, differ from our work. In [13], instead of neural
networks, simpler operations, such as dot product or GEMM,
are used. Various hardware and software features are searched
on an FPGA platform, considering logic utilization and cycles.
In [14], a general Pareto frontier identifier is proposed and
applied to searching hardware and software compiler features.
In [15], first execution times are estimated and then, layer to
computation unit mapping is proposed using these estimates
and a solver. This work does not consider hardware features of
the platform. Also, they do not have the fine-grained mapping
search space as ours, i.e. they limit the number of blocks to 3
in their experiments. Similarly, in [16], a deep learning model
is cut into multiple sections and these sections are pipelined
during execution. The cut points in the deep learning model are
searched while considering speed and energy of the resulting
pipelined model. Their search space is not fine-grained as ours
and also they do not consider hardware configuration search
space. In [17], the mapping of neural network layers onto
multiple processors is examined. Even though they consider
hardware features in their framework for profiling, they do not
search optimized hardware features as we considered here.

There are some papers that focus on improving the training
time of neural networks through searching various parameters.
In [18], network architectures and hyperparameters for training
are searched, considering accuracy of the network and the en-
ergy consumption on a custom accelerator. In [19], the network
architectures, operating system and hardware configurations
are searched considering accuracy and energy. These works
differ from our work since we focus on inference of neural
networks but not on training.



III. OPTIMIZATION PROBLEM FOR THE BEST MAPPING
AND HARDWARE CONFIGURATION SEARCH

In this paper, we intend to find a configuration that is
fast (low latency) while satisfying the given power threshold.
These two metrics - latency and power, are usually in direct
conflict. More importantly, since there is a direct relationship
between them, they are affected together by any configuration
change. That means, if we increase the computation capability
by changing a configuration, latency decreases and power
consumption increases at the same time. However, if we
increase computation capability more than our workload’s
requirement, latency and power consumption may remain the
same. Therefore, we can say that this problem has a monotonic
nature.

In both of our proposed search spaces, changing a configura-
tion is affecting the computation power, as shown in Fig. 1. In
the first search space of mapping blocks to computation units,
when we map a block to GPU, computation power generally
increases. This usually translates to smaller inference delay
and larger power consumption. In the second search space of
hardware configurations, we modify some hardware features.
When we increase the frequency of any unit or number of
cores of any CPU, it usually translates to larger computation
capability, and therefore, smaller inference delay and larger
power consumption. We use this monotonic behavior as a
priori knowledge in our algorithm.

1) Optimized Mapping Configuration:
Here, we consider a problem where we find the optimized

mapping of layers of N -block neural network to a GPU or
CPU with a constraint on the power consumption, where N ∈
N. We define binary variable xi as

xi =

{
1, if ith layer is executed on GPU
0, otherwise

Where i ∈ [1, ..., N ]. Let p : {0, 1}N → R+ denote
the power consumption and t : {0, 1}N → R+ denote the
execution time of the corresponding mapping. We have a
constraint in the form of p(x) ≤ P̄ , where P̄ denotes the
power threshold. We aim to find the mapping of layers to the
computation units with minimum execution time, and thus we
are interested in solving the following optimization problem:

min
x∈{0,1}N

t(x) (1)

s.t. p(x) ≤ P̄

2) Optimized Hardware Configuration:
In the second search space, we consider a problem where

we find the optimized combination of N different hardware
configurations with a constraint on the power consumption,
where N ∈ N. We define integer variable xi as

xi ∈ [1, ...,mi]

where mi is the maximum possible value for xi, and
i ∈ [1, ..., N ]. Let p : {xi ∈ [1, ...,mi]}N → R+ denote
the power consumption and t : {xi ∈ [1, ...,mi]}N → R+

Fig. 2: Two dimensional shaving technique illustration

denote the execution time of the corresponding hardware
configuration combination. We have a constraint in the form
of p(x) ≤ P̄ , where P̄ denotes the power threshold. We aim to
find the hardware configuration combinations with minimum
execution time, and thus we are interested in solving the
following optimization problem:

min
xi∈[1,...,mi]

N
t(x) (2)

s.t. p(x) ≤ P̄

IV. SOLUTION METHODOLOGY

1) Shaving Technique Insights:
We use the monotonic nature of our problem described

earlier to accelerate the evolutionary search. At every step, the
evolutionary search proposes a new configuration. After this
proposition, we shave a part of the search space, i.e. mark
that part as unsearchable for future steps. For this example,
consider Fig. 2. Let us suppose we are searching the space of
CPU and GPU frequencies and each of these has 10 different
frequencies. The square blocks show the current state of the
search space, x and y shows the CPU and GPU frequencies,
and the overall figure shows the 4 iterations of shaving in
Fig. 2. In our notation, 0 denotes the smallest frequency and 9
denotes the highest one. So, if the evolutionary search proposes
the configuration (5,7) at iteration i1, that means CPU and
GPU are using the frequencies that are indexed at 5 and 7.
So, if this configuration uses more power than the power
threshold, we remove (6,7), (7,7), (5,8), (5,9) and so on. In
other words, we remove every combination that is bigger than
(5,7) that corresponds to the gray region at iteration i1. We
remove those since they should consume more power than
(5,7) which already exceeds the power threshold. Note that,
in the removed configurations, every parameter needs to be
greater than or equal to their corresponding parameter in the
proposed configuration. Similarly, consider iteration i3 where
the algorithm proposes (3,8). However, this time, let’s assume
this configuration has power consumption less than power
threshold. Therefore, we remove permutations that are smaller
than (3,8), such as (2,8), (1,8), (3,7), (3,6), (2,5) and so on.
These permutations correspond to the gray area at iteration
i3. Those are removed since they should be slower than (3,8).
The other steps have similar shavings in Fig. 2. As a result,
we decrease the search space from blue region at iteration i0
to blue region at iteration i5 using just 4 steps. All the orange
area is shaved from search space without being benchmarked
on the board. The same algorithm works for mapping search
space as well, where variables can be 0 (CPU) or 1 (GPU) for
each layer that we are mapping.



Fig. 3: Overview of EvoSh-based config-search framework

2) Evolutionary Algorithm with Shaving (EvoSh):
In Algorithm 1, we describe our general algorithm, EvoSh.

Lines 1-8 explain the inputs and the data structures used in
the algorithm. Lines 9-12 are for generating the initial popu-
lation of the evolutionary algorithm. Lines 13-25 describe the
iteration steps where the evolution and shaving occur. At line
14, a subpopulation is sampled from the main population to
prevent the overfitting. At line 15, the best two configurations
that satisfy the power threshold in subpopulation are found.
At line 17, a new configuration is created from the two best
configurations. Crossover rate defines the probability of pick-
ing a parameter from each parent configuration. The mutation
rate defines the probability of changing the newly created
parameter of the new configuration. Lines 17-20 describes
the necessary code for creating a valid new configuration.
At line 17, we check if the new configuration is already in
the population or in the shaved part of the search space. As
long as the condition at line 17 is true, we keep creating a
new configuration while increasing the mutation rate. Once
we find a valid new configuration, we add it to the population
(line 21) and run it on the board to measure performance
(line 22). Then, we shave the search space based on the
new configuration results (line 23) and remove the oldest
configuration from the population (line 24). We run this loop
for a predefined number of steps. Increasing the number of
steps increases the search time, but also leads to relatively
better results.
3) EvoSh-based Optimized Config-search Framework:

Fig. 3 shows our general framework, including the algorithm
side and measurement side. In the measurement side, we
have our target board which receives the configurations from
algorithm side, runs the configuration on the board while
measuring power and speed, and sends the results back to
the algorithm side. The algorithm side is running on the
host computer. It receives the results from measurement side,
shaves the search space, and runs the EvoSh, and proposes a
new configuration to measurement side. This loop is run for
a predefined number of steps.

V. EXPERIMENTS

We use Nvidia Jetson TX2 and TensorFlow to implement
the deep learning models and heterogeneous mapping to the
hardware. We use the EfficientNet [20] family of image clas-
sification models for the experiments. However, our methodol-
ogy is not tied to EfficientNet architecture and can be used for

Algorithm 1: EvoSh

1: pop size← population size
2: n← number of parameters
3: pop← population – a list to hold pop size of configurations
4: perfs ← a dictionary, keys are configurations, values are tuples of power and

latency
5: num steps← number of steps to run the algorithm
6: pw th← power threshold to satisfy
7: co rate,mu rate← crossover, mutation rates for evolution algorithm
8: shaved← a list to hold shaved configurations from search space
9: for iteration = 1, 2, . . . , pop size do

10: configuration = random vector(size = n)
11: perfs[configuration] = run on board(configuration)
12: end for
13: for iteration = 1, 2, . . . , num steps do
14: sub pop = sample(pop, sub pop size)
15: w1, w2 = find best two(sub pop, perfs, pw th) ▷ returns the fastest

two configurations that satisfy the power threshold
16: c = create child(w1, w2, co rate,mu rate)
17: while c in pop or c in shaved do
18: c = create child(w1, w2, co rate,mu rate)
19: mu rate+ = 0.05
20: end while
21: pop.add(c)
22: perfs[c] = run on board(c)
23: shave(c, perfs, pw th, shaved)
24: pop.remove oldest()
25: end for
26: procedure SHAVE(indiv, perfs, pw th, shaved) ▷ indiv is taken as a pivot

and all possible combinations either above or below of it are shaved depending on
power consumption of it.

27: maxes← a vector (elements are maximum possible parameters)
28: mins← a vector (elements are minimum possible parameters)
29: pw indiv = perfs[indiv][0]
30: if pw indiv ≥ pw th then
31: starts, ends = indiv,maxes
32: else
33: starts, ends = mins, indiv
34: end if
35: to remove = find combinations(starts, ends)
36: shaved.add(to remove)
37: end procedure

any deep learning model. In addition to proposed EvoSh, we
evaluate random search as a baseline to demonstrate that our
algorithm shows intelligence in its search. We also compare
with conventional evolutionary search to show the benefits of
shaving.

The real-time search is an expensive process in terms of
time. Although, the search algorithms do not incur much time,
the benchmarking of a proposed mapping or hardware config-
uration on the system requires much longer time considering
it needs to be done for every iteration during the search. The
reason is that we need to reload the required libraries and the
model at every iteration to make the measuring process fair
and consistent between runs. Then, we run the model for some
warmup iterations and then start actual benchmarking, which
needs to be long enough to measure the power accurately. This
fact makes Shaving a valuable technique, as it removes many
of the mappings or hardware configurations without actually
running them on the target board. It is also important to note
that our methodology is used during design time. Our method’s
aim is to find the optimized configuration that is going to be
used in runtime.

A. Mapping Search Space

Nvidia Jetson TX2 has two computation units that are
visible to TensorFlow - CPU and GPU. We can map Ten-
sorFlow layers to these computation units. In this section



(a) EfficientNetB0 - 5000mW (b) EfficientNetB2 - 6000mW (c) EfficientNetB4 - 6800mW

(d) EfficientNetB0 - 5200mW (e) EfficientNetB2 - 6500mW (f) EfficientNetB4 - 7000mW
Fig. 4: Performance of search algorithms for different deep learning models with different power thresholds

of experiments, we used EfficientNetB0, EfficientNetB2 and
EfficientNetB4 as our applications. These three networks have
similar architectures, but their architecture sizes and input sizes
are different. EfficientNetB4 is the largest and using 380x380
images as input, EfficientNetB2 is the medium and using
260x260 images as input and EfficientNetB0 is the smallest
and using 224x224 images as input.

We divide EfficientNetB0, EfficientNetB2, and Efficient-
NetB4 into 18, 20, and 34 blocks, respectively, where each
of these blocks can be mapped to CPU or GPU. These create
a search space of size of 218, 220, and 234, respectively. We
show the performance of EvoSh and other algorithms on these
search spaces in Fig. 4, using 2 power thresholds for each
search space. Each of the algorithms is run 5 times to minimize
the impact of random seeds. The solid line shows the mean
of the 5 runs, and the shaded area shows the 95% confidence
interval. Our algorithm consistently outperforms other ones,
showing that shaving is a useful technique. Moreover, it
shows improvement and convergence behavior in just 200
steps where there are 218, 220, 234 permutations of mapping
in total in the search spaces. This means we only explored
0.076% (=(200/(218)) ∗ 100), 0.019% (=(200/(220)) ∗ 100),
0.00000116% (=(200/(234)) ∗ 100) and of the search space.
This is because EvoSh removes many of the redundant con-
figurations from the exploration.

Since our original mapping search spaces (18, 20, 34
blocks) are too large, it is impossible to run an exhaustive
search to find the optimal values. Therefore, we give a simple
motivational example to show convergence characteristics of
our algorithm in Fig. 5. We have the exhaustively collected
data for this search space because of the reasonable size (29

configurations). We set the power threshold to 5000mW and
run each algorithm 20 times. The results are shown in Fig. 5
which shows that EvoSh can converge to the optimal config-
uration while the other algorithms converge to a suboptimal
solution. Since the figure shows the mean of 20 runs, we can
say that the results are consistent over multiple runs.

Fig. 5: Convergence characteristic of algorithms

(a) Power Threshold 4000 - B0 (b) Power Threshold 5000 - B4
Fig. 6: Performance comparisons of search algorithms on hardware
configuration search space

(a) B0 (b) B4
Fig. 7: The power threshold sweep and the average performance of
the algorithms compared to optimal results

B. Hardware Configurations

Nvidia Jetson TX2 allows users to modify some hardware
configurations. The modifiable hardware features, the number
and the range of possible values for each feature are given
in Table I. We use EfficientNetB0 and EfficientNetB4 as our
applications. We also did an exhaustive search for each of



Feature name # of possible values (range)
# of A57 CPU cores 5 (0-4)

# of Denver CPU Cores 3 (0-2)
A57 CPU Frequency 12 (345MHz - 2GHz)

Denver CPU Frequency 12 (345MHz - 2GHz)
GPU Frequency 13 (114MHz - 1.3GHz)
EMC Frequency 11 (40MHz - 1.9GHz)

TABLE I: Nvidia Jetson TX2 Modifiable Hardware Features

the applications to show the performance of our algorithm.
Note that exhaustive search takes a very long time and is not
feasible to run for every network. The performances of EvoSh
and the other algorithms can be seen in Fig. 6. The figures
show the best FPS reached while satisfying power threshold
until the corresponding iteration. Since we already had the data
from the exhaustive search, we ran algorithms 100 times and
plotted results with 95% confidence interval. The results show
that EvoSh outperforms other algorithms. Moreover, we can
reach a configuration that is very close to optimal in just 200
steps. Since we have exhaustively collected the data, we ran
the algorithms many times by sweeping the power threshold
for each of the neural networks. The results are shown in Fig.
7 which shows that EvoSh algorithm consistently outperforms
the other algorithms for every power threshold and neural
network combinations. Moreover, it can get very close to the
optimal results for every power threshold in just 200 steps.
C. Discussion and Future Directions

In our experiments, EvoSh consistently outperforms the
other algorithms and is shown to be capable of finding the
optimal configuration where the search space is small enough
for us to know which configuration is the optimal one. The im-
provement over other algorithms might seem marginal in terms
of absolute values, i.e., 1-2 FPS, in the plots. However, these
improvements are significant percentage wise(10%-30%).

The search space of our mapping problem is defined by
the block sizes. The block size creates a tradeoff between
granularity of the search space and the search time. Moreover,
some splitting points for blocks might be invalid considering
some architectural properties such as residual connections.
Currently, our method takes the number of blocks and block
size as input. In the future, we are planning to automate the
block size definition process so that a good tradeoff point can
be achieved without invalid split points.

VI. CONCLUSION

In this paper, we proposed two search spaces that provide
beneficial tradeoffs between power consumption and inference
latency of neural networks on embedded systems. Then, we
proposed a novel search technique called EvoSh which uses
the monotonic nature of our search spaces to improve upon
evolutionary search. We evaluated our method on the Nvidia
Jetson TX2 using a wide range of experiments. Our experi-
ments show that our method consistently outperforms random
and evolutionary search, which demonstrates the usefulness
of the proposed shaving technique. EvoSh can quickly and
successfully find configurations that satisfy various power
thresholds. Our methodology can find near-optimal configura-
tions by exploring a small fraction of the whole search space.

ACKNOWLEDGMENT

This work is partially supported by DARPA under grant
number 304259-00001.

REFERENCES

[1] T. S. Ajani, A. L. Imoize, and A. A. Atayero, “An overview of
machine learning within embedded and mobile devices–optimizations
and applications,” Sensors, vol. 21, no. 13, 2021.

[2] Y. Chen, B. Zheng, Z. Zhang, Q. Wang, C. Shen, and Q. Zhang, “Deep
learning on mobile and embedded devices: State-of-the-art, challenges,
and future directions,” ACM Comput. Surv., vol. 53, no. 4, 2020.

[3] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” CoRR, vol. abs/2103.13630, 2021.

[4] D. W. Blalock, J. J. G. Ortiz, J. Frankle, and J. V. Guttag, “What is the
state of neural network pruning?” in Proceedings of Machine Learning
and Systems, MLSys, 2020.

[5] J. Yu, L. Yang, N. Xu, J. Yang, and T. S. Huang, “Slimmable neural
networks,” in 7th International Conference on Learning Representations,
ICLR, 2019.

[6] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in 23rd Inter-
national Conference on Pattern Recognition, ICPR. IEEE, 2016.

[7] R. Xu, J. Koo, R. Kumar, P. Bai, S. Mitra, G. Maghanath, and S. Bagchi,
“Approxnet: Content and contention aware video analytics system for
the edge,” CoRR, vol. abs/1909.02068, 2019.

[8] B. Kutukcu, S. Baidya, A. Raghunathan, and S. Dey, “Contention
grading and adaptive model selection for machine vision in embedded
systems,” ACM Transactions on Embedded Computing Systems (TECS),
2022.

[9] B. Taylor, V. S. Marco, W. Wolff, Y. Elkhatib, and Z. Wang, “Adaptive
deep learning model selection on embedded systems,” in Proceedings
of the 19th ACM SIGPLAN/SIGBED International Conference on Lan-
guages, Compilers, and Tools for Embedded Systems, LCTES 2018.

[10] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” J. Mach. Learn. Res., vol. 20, pp. 55:1–55:21, 2019.

[11] A. Yazdanbakhsh, C. Angermüller, B. Akin, Y. Zhou, A. Jones,
M. Hashemi, K. Swersky, S. Chatterjee, R. Narayanaswami, and
J. Laudon, “Apollo: Transferable architecture exploration,” CoRR, 2021.

[12] A. Kumar, A. Yazdanbakhsh, M. Hashemi, K. Swersky, and S. Levine,
“Data-driven offline optimization for architecting hardware accelerators,”
in The Tenth International Conference on Learning Representations,
ICLR, 2022.

[13] L. Nardi, D. Koeplinger, and K. Olukotun, “Practical design space
exploration,” in 27th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems,
MASCOTS 2019. IEEE Computer Society, 2019.

[14] M. Zuluaga, G. Sergent, A. Krause, and M. Püschel, “Active learning for
multi-objective optimization,” in Proceedings of the 30th International
Conference on Machine Learning, ICML 2013.

[15] I. Dagli, A. Cieslewicz, J. McClurg, and M. E. Belviranli, “Axonn:
energy-aware execution of neural network inference on multi-accelerator
heterogeneous socs,” in DAC ’22: 59th ACM/IEEE Design Automation
Conference.

[16] E. Jeong, J. Kim, and S. Ha, “Tensorrt-based framework and optimiza-
tion methodology for deep learning inference on jetson boards,” ACM
Trans. Embed. Comput. Syst., vol. 21, no. 5, oct 2022.

[17] D. Kang, J. Oh, J. Choi, Y. Yi, and S. Ha, “Scheduling of deep learning
applications onto heterogeneous processors in an embedded device,”
IEEE Access, vol. 8, pp. 43 980–43 991, 2020.

[18] M. Parsa, J. P. Mitchell, C. D. Schuman, R. M. Patton, T. E. Potok,
and K. Roy, “Bayesian multi-objective hyperparameter optimization for
accurate, fast, and efficient neural network accelerator design,” Frontiers
in Neuroscience, vol. 14, 2020.

[19] M. S. Iqbal, J. Su, L. Kotthoff, and P. Jamshidi, “Flexibo: Cost-
aware multi-objective optimization of deep neural networks,” CoRR, vol.
abs/2001.06588, 2020.

[20] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” in Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, ser. Proceedings of
Machine Learning Research, vol. 97. PMLR, 2019, pp. 6105–6114.


