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Abstract— This paper shows the viability of Solar-powered Road 

Side Units (SRSU), consisting of small cell base stations and 

Mobile Edge Computing (MEC) servers, and powered solely by 

solar panels with battery, to provide connected vehicles with a low-

latency, easy-to-deploy and energy-efficient communication and 

edge computing infrastructure. However, SRSU may entail a high 

risk of power deficiency, leading to severe Quality of Service (QoS) 

loss due to spatial and temporal fluctuation of solar power 

generation. Meanwhile, the data traffic demand also varies with 

space and time. The mismatch between solar power generation 

and SRSU power consumption makes optimal use of solar power 

challenging. In this paper, we model the above problem with three 

sub-problems, the SRSU power consumption minimization 

problem, the temporal energy balancing problem and spatial 

energy balancing problem. Three algorithms are proposed to solve 

the above sub-problems, and they together provide a complete 

joint battery charging and user association control algorithm to 

minimize the QoS loss under delay constraint of the computing 

tasks. Results with a simulated urban environment using actual 

solar irradiance and vehicular traffic data demonstrates that the 

proposed solution reduces the QoS loss significantly compared to 

greedy approaches. 

Keywords— Solar power generation, Road Side Units, User 

Association, Mobile Edge Computing, Quality of Service. 

I. INTRODUCTION  

Emerging connected vehicles will need to support different 

levels of assisted and autonomous driving, road safety, 

infotainment and collaboration services, with increasingly high 

throughput and low latency computing and communication 

needs. There is significant work in progress to ensure high 

throughput wireless connectivity between vehicles (V2V) as 

well as vehicle-to-infrastructure (V2I) using both traditional 

cellular licensed spectrum or ITS bands (e.g. ITS 5.9 GHz) [1]. 

Road-Side Units (RSU) are evolving to play an important role 

in providing infrastructure support to increase the range of 

communications as well as help provide various vehicular 

services. To satisfy the massive growth in communication 

demands, in particular in urban areas, dense deployment of small 

cell base stations (SBS) [2] is expected, which can also function 

as RSUs to satisfy the high throughput requirements of emerging 

vehicular applications. Furthermore, the small cell-based RSUs 

can be supplemented with Mobile Edge Computing (MEC), 

allowing opportunistic use of MEC resources for growing 

vehicular computing needs while still satisfying low latency 

requirements. While the use of RSUs consisting of SBS and 

MEC will make high throughput and low latency emerging 

vehicular applications viable, it is important to take into 

consideration the energy consumption and sustainability of the 

vehicular wireless infrastructure. From [3], it is estimated that 

the carbon dioxide equivalent (CO2e) and the total energy 

consumption of cellular networks globally will escalate to 235 

million tons and 120TWh per year by 2020.  Although the power 

consumption of SBS is 100x to 1000x less than the macro base 

station (BS) [4], the dense deployment of massive SBSs will still 

make the accumulated power consumption beyond that 

consumed by macro BSs. The past few years have seen growing 

research on cellular networks powered by renewable energy, in 

particular solar energy [3]. While the power generation rate of 

solar panels is not sufficient to be the sole source of power for 

macro BSs, in this paper we show that it is sufficient to power 

an SBS with a reasonably sized solar panel of a few square 

meters square. Hence, we propose the use of Solar-powered 

Road Side Units (SRSU), consisting of SBS, MEC, solar panel 

and battery. SRSUs will not only achieve reduced power 

consumption and provide clean wireless and edge computing 

infrastructure but enable quick and on-demand deployments as 

needed in urban areas. 

A critical challenge of adopting solar energy in a wireless 

network is their intermittent and fluctuating nature. From the 

solar irradiance measurement in [5], solar generation varies 

significantly on location and time. On the other hand, the 

vehicular data traffic profile also varies with different time and 

location, which together with the intermittency of solar 

generation, may lead to mismatches between solar generation 

and SRSU power demands. 

The mismatch between power generation and consumption 

may lead to severe Quality of Service (QoS) loss, leading to 

service disruptions for the vehicular applications. We expect 

each vehicle will continuously upload the information captured 

by its sensors, including images and video segments recorded by 

its cameras, to its connected SRSU. The MEC node in each 

SRSU need to process the received information and form 

contextual data. The contextual data should be computed and 

transmitted back to the vehicle with a delay constraint to ensure 

driving safety. To accomplish the whole process, the SRSU 

should allocate to each vehicle sufficient uplink, downlink, and 

computational resources. When the power demand of SRSU 

cannot be fulfilled by the solar generation or stored energy in the 

battery, it will need to rearrange its computing and 

communication resource allocation, so its power consumption 

can be reduced, consequently adversely affecting the QoS 

experienced by the served vehicles due to delay constraint 

violations. In the worst case, when there is no solar power 
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generated and the SRSU battery is fully discharged, the 

connected vehicles cannot be served at all, leading to service 

outage. 

 We model the above challenges as a QoS loss minimization 

problem by mitigating the temporal and spatial mismatch of the 

solar power generation profile and SRSU power consumption 

through battery charging/discharging management and vehicle 

association. We break down the problem into three sub-

problems: 1) Minimizing SRSU Power Consumption problem 

(MPC) given the data traffic demand, 2) Temporal Energy 

Balancing problem (TEB) as temporal allocation of solar energy 

to match the profile of solar generation and power consumption 

for individual SRSU, and 3) Spatial Energy Balancing (SEB) 

problem to balance solar energy among multiple SRSUs. Then, 

we propose the QoS Loss Minimization (QLM) algorithm, a 

joint solar energy storage and battery charging, user association 

and SRSU resource allocation mechanism comprising three 

algorithms solving the above three sub-problems respectively. 

A. Related Work 

Various relevant recent works that address the use of 
renewable energy to minimize grid energy in wireless cellular 
communications. In [6], the authors optimally adjust the cell size 
and schedule daily solar energy of BSs to minimize grid-power 
consumption in a solar-powered wireless networks. In [6], the 
traffic load is balanced by modifying the transmit power of BSs 
while our work manages user association without requiring to 
change cell size. In [7], the authors propose a Lyapunov 
optimization framework to adapt the BS resource allocation and 
battery operation to minimize grid power consumption. 
However, the objective in [7] is to minimize the grid-power 
consumption while our work is to minimize the QoS loss with 
RSUs powered solely by solar energy. 

The authors in [8] minimize the SBS power outage 
probability by proposing a power availability oriented user 
association strategy under transmission rate constraint. In [9], 
the authors proposed to minimize the overall network latency 
under limited solar availability by downlink power control and 
user association management. The above research considers 
only downlink transmission while we address the problem of 
both uplink and downlink transmissions and computing resource 
in order to facilitate vehicles offloading their computing to the 
SRSU.  

 In [10], the authors address the problem of minimizing the 
execution delay and workload failure in a single MEC-enabled 
BS-user link powered by solar energy. They make online task 
offloading and transmit power decision on the user side under 
delay and energy constraints. The authors in [11] focus on 
minimizing the long-term system cost, including execution 
delay, downlink transmission delay, battery depreciation and 
backup diesel power consumption, of a solar-powered MEC-
enabled single-BS. They propose a learning-based dynamic 
workload offloading and MEC server autoscaling strategy to 
solve the above problem. 

 The authors in [12] extends the work in [11] with a multi-
RSU cellular network. In the network, the workload can be 
offloaded between MEC servers located in different SBSs. 
Although the SBSs in the network is connected to grid power, 

they apply energy budget constraints to each SBS. Regulated by 
the energy budget, the problem is to minimize the overall system 
delay due to computation and downlink transmission.  

Unlike [10] and [11] which consider only a point-to-point 

MEC-enabled link, we propose a joint BS resource allocation 

and user association technique among multiple SBSs. Although 

[12] considers multiple SBSs, it only applies to the scenario that  

the workload can be divided into arbitrary portions, and 

allocated simultaneously to multiple SBSs. In our work, we 

consider a more practical scenario that the entire workload of the 

user can only be executed at the associated  SBS. Moreover, the 

long-term energy budget constraint used in [12] cannot 

efficiently capture the nature of high intermittency of solar 

power generation. 

The rest of the paper is organized as follows. Section II 

elaborates the system models used, including workload, MEC 

server, channel, power consumption and battery model.The 

problem we are addressing is formulated in Section III. Section 

IV describes the QLM algorithm, our proposed joint solar 

power-aware SBS energy storage and inter-SBS user association 

algorithm along with SBS power minimization. We present the 

simulation results in Section V, and conclude in Section VI. 

II. SYSTEM MODEL 

A. Network Model 

Consider a set of 𝑁 SRSUs ℬ = {1,2, … , 𝑁} along a road 

𝑅1  and a set of vehicular users (UEs) 𝐼 = {1,2, … , Ι} . Each 

SRSU 𝑏 has a SBS and a MEC, each of which we will also refer 

to as 𝑏𝑡ℎ SBS and MEC respectively. Each SRSU is powered 

solely by a solar panel and equipped with a battery. The 

maximum capacity of the MEC processor in SRSU 𝑏 is denoted 

as 𝑈𝑏  megabits per second (MIPS), and the maximum 

bandwidth offered by associated SBS 𝑏  for downlink and 

uplink transmission any time are 𝑊𝑏,𝐷 and 𝑊𝑏,𝑈, respectively. 

We divide the duration of time equally into 𝑇 time slots, each 

time slot has duration τ. 

B. Workload Model and SBS utilization 

At each time slot, we assume that a group of UE will pass 

through the endpoints of each roads 𝑅𝑟 , 𝑟 ∈ {1,2, … ,6}  with 

predetermined travel routes and speed, entering the network 

following a Poisson process with arrival rate 𝜆𝑟, while another 

group of UEs will pass through these endpoints and leave the 

network. The location and speed of the 𝑖𝑡ℎ UE at time slot 𝑡 is 

denoted by 𝑥𝑖
𝑡 and 𝑣𝑖

𝑡  respectively. 𝑥𝑖
𝑡 and 𝑣𝑖

𝑡  of each UE over 𝑇 

time slots are assumed to be known at the start of 1𝑠𝑡 . This 

assumption is valid given that the traffic load difference of a 

single base station between two consecutive days are limited 

[13] and by the approach in [14] [15], routine UE movements 

can be known in advance under negligible prediction error. 

Let 𝑎𝑏𝑖
𝑡 = {0,1}  be the UE association indicator, where 

𝑎𝑏𝑖
𝑡 = 1  if the 𝑖𝑡ℎ  UE is connected to 𝑏𝑡ℎ  SBS and 𝑎𝑏𝑖

𝑡 = 0 

otherwise. Without loss of generality, we assume UE will 

initially connect to the SBS that provides the highest Received 

Signal Strength Indication (RSSI) measurement. 
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The workload generated by the 𝑖𝑡ℎ  UE at each time slot 𝑡 

can be represented as 𝐾𝑖
𝑡 = { 𝑠𝑖

𝑡 , 𝑐𝑖
𝑡 , 𝛿𝑖

𝑡 , 𝜖𝑖
𝑡 , 𝑑𝑖

𝑡} , with the 

notations explained as the following.  𝑠𝑖
𝑡  is the size of video and 

contextual sensor data generated at this time slot, which is 

uploaded to the MEC server. The data is uploaded once it is 

generated. we assume the data generation rate is a constant, so 

the uploading rate is no less than 𝑠𝑖
𝑡/𝜏. The MEC server will wait 

for a duration 𝜐 before starting the data processing. The duration 

𝜐 is chosen as large as possible for the MEC server to collect as 

much data as possible for analysis. The computing resource 

required to process the data uploaded by the 𝑖𝑡ℎ UE is denoted 

as 𝑐𝑖
𝑡 . The SBS will then transmit the processed information, 

which has size 𝛿𝑖
𝑡, back to the 𝑖𝑡ℎ UE. The delay requirement of 

the analysis process and downlink transmission is denoted as 𝑑𝑖
𝑡 . 

Since the analysis results are critical to driving safety, 𝑑𝑖
𝑡 is very 

small compared to 𝜏 and we refer to this kind of data as delay 

sensitive downlink data. Note that this whole process needs to 

be finished in one time slot, therefore, the duration 𝜐 along with 

the computation and downlink delay should not be greater than 

𝜏.  
Furthermore, some of the UEs might concurrently download 

extra information from the MEC server or the Internet, for 

example, the map data or video frames captured from other UEs 

which are stored in the MEC server. The data size and delay 

constraint of these extra data are set to be 𝜖𝑖
𝑡 and 𝜏 respectively. 

Since 𝜏 is much longer than 𝑑𝑖
𝑡, we refer to these data as delay 

tolerant downlink data. The overall workload and MEC 

computing model is shown in Fig. 1. 

Each 𝐾𝑖
𝑡  will utilize a combination of computing and 

communication resources of the SRSU where it is offloaded. We 

assume that the MEC sever can concurrently serve multiple 

workloads from different UE using techniques such as Virtual 

Machine(VM) [16]. Let 𝑢𝑏𝑖
𝑡  be the CPU processor’s capacity 

allocated to the 𝑖𝑡ℎ  UE by the 𝑏𝑡ℎ  MEC server; 𝑤𝑏𝑖,𝑈
𝑡  be the 

uplink bandwidth allocated to the 𝑖𝑡ℎ  UE by the 𝑏𝑡ℎ  SBS 

respectively. For downlink transmission, we denote 

𝑤𝑏𝑖,𝐷𝑆
𝑡  and 𝑤𝑏𝑖,𝐷𝑇

𝑡  as the downlink bandwidth allocated to the 

𝑖𝑡ℎ  UE by the 𝑏𝑡ℎ  SBS for delay sensitive and delay tolerant 

data respectively. 

Since the resource of a SBS is limited, we have the following 

computing and communication resource constraints [17]:  

                           ∑ 𝑢𝑏𝑖
𝑡

𝑖𝜖𝜁𝑡(𝑏)

 ≤  𝑈𝑏 , 𝑏 ∈ 𝐵                              (1) 

                       ∑  𝑤𝑏𝑖,𝑈
𝑡

𝑖𝜖𝜁𝑡(𝑏)

 ≤  𝑊𝑏,𝑈, 𝑏 ∈ 𝐵                          (2) 

            ∑ ( 𝑤𝑏𝑖,𝐷𝑆
𝑡 + 𝑤𝑏𝑖,𝐷𝑇

𝑡 )

𝑖𝜖𝜁𝑡(𝑏)

  ≤  𝑊𝑏,𝐷 , 𝑏 ∈ 𝐵              (3) 

where 𝜁𝑡(𝑏) ⊂  𝐼 is the set of UEs which are associate to the 

𝑏𝑡ℎ SBS at time 𝑡. 

C. Channel and Delay Model 

We set both of the transmit power density of SBS and UE to 

be fixed and denoted them as 𝑝𝐵  and 𝑝𝐼  respectively. The 

downlink transmission rate from the 𝑏𝑡ℎ SBS to the 𝑖𝑡ℎ UE  per 

1 Hz is 

                                    𝑟𝑏𝑖,𝐷
𝑡 = 𝑙𝑜𝑔2(1 + 𝜂𝑏𝑖

𝑡 ) ,                               (4) 

where 𝜂𝑏𝑖
𝑡 = (𝑝𝐵𝑔𝑏𝑖

𝑡 /𝑁0) is the signal-to-noise ratio (SNR) with 

𝑔𝑏𝑖
𝑡  denotes the downlink channel gain and 𝑁0  is the noise 

power density. We assume the inter-cell interference (ICI) from 

other SBSs can be ignored since our approach requires 

information of UE location and association condition to be 

shared among SBSs, in the meantime, SBSs can obtain the 

channel estimation of each UE and eliminate ICI by 

implementing Coordinated Multipoint (CoMP) [18] Similarly, 

the uplink transmission rate from 𝑖𝑡ℎ UE to 𝑏𝑡ℎ SBS per 1 Hz is 

given by 

                                𝑟𝑏𝑖,𝑈
𝑡 = 𝑙𝑜𝑔2(1 +

𝑝𝐼𝑔𝑏𝑖
𝑡

𝑁0

) .                               (5) 

 For simplicity, we assume that there is no video buffer in UE 

sides, which means each video frame will be uploaded 

immediately after it is captured. The uploading transmission rate 

of the 𝑖𝑡ℎ UE should be greater than the video size per time slot. 

Consequently, for each UE, the allocated uplink bandwidth 

should satisfy the constraint:  

                       ∑ 𝑎𝑏𝑖
𝑡 𝑟𝑏𝑖,𝑈

𝑡 𝑤𝑏𝑖,𝑈
𝑡 𝜏

𝑏∈𝐵

≥ ∑ 𝑎𝑏𝑖
𝑡 𝑠𝑖

𝑡

𝑏∈𝐵

,    iϵ𝐼 .                 (6) 

while the constraint of the allocated downlink bandwidth for 

delay tolerant transmission is: 

                      ∑ 𝑎𝑏𝑖
𝑡 𝑟𝑏𝑖,𝐷

𝑡 𝑤𝑏𝑖,𝐷𝑇
𝑡 𝜏

𝑏∈𝐵

≥ ∑ 𝑎𝑏𝑖
𝑡 𝜖𝑖

𝑡

𝑏∈𝐵

,    iϵ𝐼.                 (7) 

The overall delay of the delay sensitive downlink data can be 

expressed as the computation delay of offloaded application task 

processing plus the downlink transmission delay. To the 𝑖𝑡ℎ UE, 

the constraint on the allocated processing speed and downlink 

bandwidth for delay sensitive data can be expressed as: 

               ∑ 𝑎𝑏𝑖
𝑡 (

𝑐𝑖
𝑡

𝑢𝑏𝑖
𝑡 +

𝛿𝑖
𝑡

𝑟𝑏𝑖,𝐷
𝑡 𝑤𝑏𝑖,𝐷𝑆

𝑡 )

𝑏∈𝐵

≤ ∑ 𝑎𝑏𝑖
𝑡 𝑑𝑖

𝑡

𝑏∈𝐵

,  iϵ𝐼.           (8) 

 
Figure 1. the workload and MEC server model 
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D. Power Consumption Model 

Since our work focuses on the solar power allocation 

strategies of SRSU, we will omit the energy consumption of UE 

in our model. The power consumption of the 𝑏𝑡ℎ MEC server 

can be calculated by [16] 

            𝐸𝑏,𝑆
𝑡 =  𝐸𝑆,𝐼𝐷𝐿𝐸  + (𝐸𝑆,𝑀𝐴𝑋 − 𝐸𝑆,𝐼𝐷𝐿𝐸)

∑ 𝑢𝑏𝑖
𝑡

𝑖𝜖𝜁(𝑏)

𝑈𝑏

,       (9) 

where  𝐸𝑚𝑎𝑥 is the power consumption when the server is fully-

utilized and 𝐸𝑆,𝐼𝐷𝐿𝐸 as the power consumption when the server 

is idle.  

 Transmission power is the major factor for SRSU power 

consumption. The downlink power consumption of the 𝑏𝑡ℎ SBS 

can be modeled as 

𝐸𝑏,𝐷
𝑡 = 𝑝𝑑 ( ∑ 𝑤𝑏𝑖,𝐷𝑆

𝑡
𝛿𝑖

𝑡

𝑟𝑏𝑖,𝐷
𝑡 𝑤𝑏𝑖,𝐷𝑆

𝑡

𝑖𝜖𝜁𝑡(𝑏)

+ 𝜏 ∑  𝑤𝑏𝑖,𝐷𝑇
𝑡

𝑖𝜖𝜁𝑡(𝑏)

 )     (10) 

        =  𝑝𝑑 ( ∑
𝛿𝑖

𝑡

𝑟𝑏𝑖,𝐷
𝑡

𝑖𝜖𝜁𝑡(𝑏)

+ 𝜏 ∑  𝑤𝑏𝑖,𝐷𝑇
𝑡

𝑖𝜖𝜁𝑡(𝑏)

 )  ,                         (11) 

where 𝑝𝑑  is the overall downlink transmission power density: 

𝑝𝑑 =  (𝑝𝐵 + 𝑝𝑐,𝐷) with 𝑝𝑐,𝐷 is the circuit power density needed 

to realize a downlink transmission, for example, it can be the 

power consumption of modulation as well as channel encoding 

[19] [20]. Similarly, the power consumed for receiving uplink 

data from all the associated UEs will be 

                                𝐸𝑏,𝑈
𝑡 = 𝑝𝑐,𝑈𝜏 ∑  𝑤𝑏𝑖,𝑈

𝑡

𝑖𝜖𝜁𝑡(𝑏)

.                           (12) 

Denoting 𝐸𝑏,𝐼𝐷𝐿𝐸
𝑡  as the idle power of the SBS, the total 

power consumption of SRSU b at time slot t is therefore 

                       𝐸𝑏
𝑡 = 𝐸𝑏,𝑆

𝑡 + 𝐸𝑏,𝐷
𝑡 + 𝐸𝑏,𝑈

𝑡 + 𝐸𝑏,𝐼𝐷𝐿𝐸.                    (13) 

E. Solar Energy and Battery Model 

Each SRSU is accompanied with a solar panel as energy 

harvesting module and a battery as energy storage module. At 

each time slot, the solar panel of the 𝑏𝑡ℎ SRSU will generate 𝐽𝑏
𝑡  

joules of energy. Let 𝐵𝐴𝑇𝑏
𝑡 be the 𝑏𝑡ℎ SRSU battery level at slot 

𝑡. 𝐵𝐴𝑇𝑏
𝑡 is controlled by a battery charging strategy under zero 

loss on charging, discharging and depletion with the following 

constraint: 

                               0 ≤  𝐵𝐴𝑇𝑏
𝑡′

= ∑ 𝐽𝑏
𝑡

𝑡′

𝑡=1

− ∑ 𝐸𝑏
𝑡

𝑡′

𝑡=1

                    (14) 

where 1 ≤ 𝑡′ ≤ 𝑇, which ensures that the battery cannot be 

discharged after the stored energy has been exhausted.  

Although the solar power generation fluctuates with time 

and location, our previous work has shown that it can be 

predicted several hours in advance with very high accuracy [21]. 

Therefore, we assume advanced knowledge of the solar power 

generated at SRSUs: {𝐽𝑏
1, 𝐽𝑏

2, … , 𝐽𝑏
𝑇} ∀𝑏 ∈ ℬ.  

III. PROBLEM FORMULATION  

Note that since the solar power is limited and changes 

temporally, SRSU might suffer power deficiency in some time 

slots. For the 𝑏𝑡ℎ SRSU, the power deficiency happens at time 

slot 𝑡 when the energy drained from battery 𝐵𝐴𝑇𝑏
𝑡 − 𝐵𝐴𝑇𝑏

𝑡−1 

plus the generated solar energy 𝐽𝑏
𝑡  is less than the SRSU power 

consumption 𝐸𝑏
𝑡 . Under this condition, the SRSU must reduce 

𝐸𝑏
𝑡  by either re-associating the UEs in 𝜁𝑡(𝑏) to other SRSUs or 

dropping their service. If there exists any UE that cannot be re-

associated to any SRSU at time slot t, the offloaded application 

of this UE in this time slot will be dropped, leading to a QoS loss 

since UE cannot offload its data processing application to 

SRSU. Such QoS loss is denoted by 𝐶𝑑𝑟𝑜𝑝
𝑡 , which is defined to 

be equal to the total number of UEs experiencing this type of 

QoS loss at time slot t. 

                         𝐶𝑑𝑟𝑜𝑝
𝑡  =  ∑ (1 − ∑ 𝑎𝑏𝑖

𝑡

𝐵

𝑏=1

)

𝐼

𝑖=1

.                            (15) 

Moreover, SRSU might hand over its UE to other SRSUs 

after the end of current time slot, making this UE fail to receive 

the processed information corresponding to the data that is 

uploaded after duration 𝜐. We refer to this information loss as a 

QoS loss from handover, 𝐶ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟
𝑡 , which is defined as the total 

number of UEs suffering such QoS loss at time slot t multiplied 

by a scaling factor 𝜅 = 1 − 𝜐/𝜏. We set 𝐶ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟
1 = 0, and for 

𝑡 ≥ 2,  

                𝐶ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟
𝑡 = 𝜅 ∑ 𝑎𝑏𝑖

𝑡 (1 − ∑ 𝑎𝑏𝑖
𝑡 𝑎𝑏𝑖

𝑡−1

𝐵

𝑏=1

)

𝐼

𝑖=1

              (16) 

Given the solar power generated 𝐽𝑏
𝑡  at each time slot over the 

whole day for each SRSU b and the data traffic demand profile 

{𝐾𝑖
𝑡, 𝑥𝑖

𝑡 , 𝑣𝑖
𝑡  } for each UE, we focus on minimizing the QoS loss 

specified by (15) and (16). Our objective is to optimally 

determine the user association 𝐴𝑖
𝑡 = {𝑎1𝑖

𝑡 , 𝑎2𝑖
𝑡 , … , 𝑎B𝑖

𝑡 }, 𝑖𝜖𝐼  and 

allocate solar energy to each time slot to minimize the overall 

average QoS loss during timeslots T, while satisfying the 

workload computation and transmission delay, communication 

resource, computing resource and solar generation constraints. 

The overall average QoS loss is defined as the overall QoS loss 

divided by the accumulated total number of UE in the network 

at each time slots. The problem can be formulated as: 

               𝑚𝑖𝑛
𝐴𝑖

𝑡,𝑖𝜖𝐼,1≤𝑡≤𝑇

∑ (𝐶𝑑𝑟𝑜𝑝
𝑡 +  𝐶ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟

𝑡 )𝑇
𝑡=1

∑ |𝐼|𝑡𝑇
𝑡=1

.              (17) 

             s.t. (1) - (3), (6) - (8), (14).  

where |𝐼|𝑡 is the number of UEs in the network at time slot t.  

 Problem (17) is difficult to solve since SRSU can generate 

different solar power and experience distinct data traffic demand 

at different time slot. Moreover, different SRSU will have 

diverse solar power generation and data traffic at the same time 

slot. Therefore, we propose to heuristically break down (17) into 

3 sub-problems: 1) Minimizing SRSU Power Consumption 

(MPC) problem aims to minimize single SRSU power 
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consumption given the workload and provides a feasible SRSU 

computing and communication resource allocation, 2) Temporal 

Energy Balancing (TEB) problem addresses the problem of 

mitigating the mismatch between energy generation and power 

consumption over time for individual SRSU, and 3) Spatial 

Energy Balancing (SEB) problem is formulated to balance the 

workload traffic and solar power among all the N SRSUs. In the 

following paragraphs, we will explain these three sub-problems 

in detail. 

1) MPC Problem: Subject to the limited power supply of 

solar panel, SRSU should minimize its power consumption 𝐸𝑏
𝑡  

given its associated UE set 𝜁𝑡(𝑏)  at each time slot t by 

optimally allocating the communication and computing 

resources.  

Therefore, we formulate MPC as 

             min
{𝑤𝑏𝑖,𝐷𝑆

𝑡 ,𝑤𝑏𝑖,𝐷𝑇
𝑡 ,𝑢𝑏𝑖

𝑡 ,𝑤𝑏𝑖,𝑈
𝑡 },𝑖𝜖 𝜁𝑡(𝑏)

𝐸𝑏
𝑡                                 (18) 

                       s.t.  (1) - (3), (6) - (8). 

 The allocation of processing power and channel bandwidth 

should satisfy constraints (1) - (3) to ensure the allocated SRSU 

resource will not exceed the resource limitation of the SBS. 

Meanwhile, the allocation of SRSU communication and 

computing resources satisfy constraints (6) - (8) to avoid 

violating the both the data traffic transmission and UE 

application task computation delay requirements.  

2) TEB Problem: Let { 𝑀𝑏
1, 𝑀𝑏

2, … , 𝑀𝑏
𝑇}  be the solar 

energy allocated to the 𝑏𝑡ℎ SRSU over the T timeslots. Since 

SRSU allocates solar energy to any time slot through battery 

charging and dischargin strategies, the allocation strategy 

should satisfy battery constraint, in other words, 𝑀𝑏
𝑡 =

 𝐵𝐴𝑇𝑏
𝑡−1 − 𝐵𝐴𝑇𝑏

𝑡 + 𝐽𝑏
𝑡 . The objective of TEB is to minimize the 

mismatch between allocated solarenergy 𝑀𝑏
𝑡  and power 

consumption 𝐸𝑏
𝑡  for all time slots. Defining the allocate-usage-

power-ratio (AUPR) to be 𝜋𝑏
𝑡 = 𝑀𝑏

𝑡 /𝐸𝑏
𝑡
 , the problem can be 

expressed as  

 max
{ 𝑀𝑏

1,𝑀𝑏
2,… ,𝑀𝑏

𝑇} 
min

1≤𝑡≤𝑇
πb

t                                                          (19)          

   s.t.  𝑀𝑏
𝑡 ≥ 𝐸𝑠,𝐼𝐷𝐿𝐸 + 𝐸𝑏,𝐼𝐷𝐿𝐸, 1 ≤ 𝑡 ≤ 𝑇               (20) 

                   (14). 

The constraint on 𝑀𝑏
𝑡  in (20) guarantees that SRSU will 

never be shut down because of the lack of generated solar power 

and fully discharged battery. 

3) SEB Problem: Due to the spatial diversity of data traffic 

profile, some SRSUs might experience high workload traffic 

when its allocated solar power is low. Conversely, due to the 

spatial diversity of solar power generation, some SRSUs may 

have more solar power generation than its need, resulting in 

solar power surplus.  Note that if SRSU is under power 

deficiency, namely 𝜋𝑏
𝑡 ≤ 1, it forces SRSU to reduce its power 

consumption 𝐸𝑏
𝑡  by dropping or re-associating its connected UE 

to the feasible SRSU satisfyiny constraints (14) (20). When UE 

is offloaded to a new SRSU by changing the user association, 

the workload is re-directed to this new host. This provides us 

the oppurtunity to reduce the QoS loss. Therefore, SEB is 

formulated as a problem in (21), which is to achieve the 

minimum QoS loss by maximizing the possible workload 

balancing across the SRSUs for each time slot.  

                       min
{ 𝐴1

𝑡 ,𝐴2
𝑡 ,… ,𝐴𝐼

𝑡} 
𝐶𝑑𝑟𝑜𝑝

𝑡 +  𝜅𝐶ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟
𝑡                         (21) 

                 s.t. πb
t ≥ 1, 𝑏 ∈ ℬ                                        (22) 

                                            ∑ 𝑎𝑏𝑖
𝑡 𝜂𝑏𝑖

𝑡
𝑏∈ℬ ≥ ∑ 𝑎𝑏𝑖

𝑡
𝑏∈ℬ 𝜂𝑡ℎ.               (23) 

      (1)~ (3), (6)~ (8). 

The first constraint (22) requires every SRSU has its 

allocated solar power higher than its power consumption. 

Constraint (23) states that the SNR between 𝑖^𝑡ℎ  UE and the 

SRSU it is re-associated to should be greater than a threshold 

𝜂𝑡ℎ  to satisfy the minimum RSSI requirement of the SBS 

network. Constraints (1) to (3) ensure that SRSU’s 

communication and computing resource allocation after the 

change of UE association still satisfies its resource limit. 

Moreover, for the associated UE, the delay constraints of the 

workload should never be violated, as stated in constraints (6) 

to (8). 

Since problem (17) is divided into three sub-problems, in 

the next section, we will first present our proposed solution to 

these three sub-problems and then introduce an optimal joint 

solar energy storage and user association technique by adopting 

these three solutions. 

IV. ALGORITHM DESIGN 

In this section we introduce the QoS Loss Minimization 

(QLM) algorithm to solve (17). As shown in Fig. 2, QLM 

leverages the solution of MPC, TEB and SEB problems.  At the 

beginning of every time slot t, each UE is associated with the 

SBS which provides the best SNR 𝜂𝑏𝑖
𝑡 . Each SRSU will first 

minimize its power consumption and find the resulting feasible 

user set 𝜁𝑡(𝑏). The solution of MPC will optimally allocate the 

computation and communication resource to the associated UE 

for each SRSU to minimize the power consumption. Under 

constraints (1) to (3) SRSU will need to drop some UEs if there 

is no available communication or computing resources. 

After the energy consumption of each SRSU at each time 

slot t has been estimated by MPCA, the Temporal Energy 

Balancing Algorithm (TEBA) is proposed to solve TEB problem, 

which decides how to schedule the generated solar over T time 

slots for each SRSU. Based on the result of the TEBA, the 

 
Figure 2.  Breakdown of the QLM algorithm 
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Spatial Energy Balancing Algorithm (SEBA) will balance the 

offloaded UE application among all SRSUs considering the ratio 

of allocated green energy and power consumption by UE 

offloading technique to minimize number of UEs experiencing 

offloaded application QoS loss by dropping or hand over. Since 

the result of SEBA will change SRSU’s estimated power 

consumption, and hence affects the result of TEBA, the TEBA 

and SEBA will be iteratively executed until the optimum is 

achieved. 

A. The MPCA algorithm 

 Note that 𝐸𝑏
𝑡  in (13) is a linear combination of resource 

allocation indicators 𝑤𝑏𝑖,𝐷𝑆
𝑡 , 𝑤𝑏𝑖,𝐷𝑇

𝑡 , 𝑢𝑏𝑖
𝑡 ,  𝑤𝑏𝑖,𝑈

𝑡 , 𝑖𝜖 𝜁𝑡(𝑏) . Since 

the constraints on 𝑤𝑏𝑖,𝐷𝑇
𝑡  and 𝑤𝑏𝑖,𝑈

𝑡  are independent of other 

variables and 𝐸𝑏
𝑡  is strictly increasing with 𝑤𝑏𝑖,𝐷𝑇

𝑡  and 𝑤𝑏𝑖,𝑈
𝑡 , by 

(6) and (7), the optimal value of 𝑤𝑏𝑖,𝐷𝑇
𝑡  and 𝑤𝑏𝑖,𝑈

𝑡  should be 

                 𝑤𝑏𝑖,𝑈
𝑡 =

𝑠𝑖
𝑡

𝑟𝑏𝑖,𝑈
𝑡 𝜏

, 𝑤𝑏𝑖,𝐷𝑇
𝑡 =

 𝜖𝑖
𝑡

𝑟𝑏𝑖,𝐷
𝑡 𝜏

, 𝑖𝜖 𝜁𝑡(𝑏).              (24) 

On the other hand, since 𝐸𝑏
𝑡  is independent of the value of 

𝑤𝑏𝑖,𝐷𝑆
𝑡 , the resource allocation problem in (18) is equivalent to 

minimizing the MEC server power consumption (9) subject to 

the processor speed constraint (1), downlink bandwidth 

limitation (3) and workload delay requirement (8). Note that 

since (1), (3), (8), (9) are convex functions when 𝑢𝑏𝑖
𝑡 > 0 and 

𝑤𝑏𝑖,𝐷𝐿
𝑡 > 0, the optimal solution can be achieved by analyzing 

its Karush–Kuhn–Tucker (KKT) conditions. The proof is 

similar to Boyd in [22], which is omitted for brevity. 

To show the optimal result in (26), we define the following 

terms for all ith UE in 𝜁𝑡(𝑏),  

𝛾𝑖
𝑡 =

𝛿𝑖
𝑡

𝑟𝑏𝑖,𝐷
𝑡 𝑑𝑖

𝑡 ,   𝜎𝑖
𝑡 =

𝛾𝑖
𝑡𝑐𝑖

𝑡

𝑑𝑖
𝑡 ,   𝜛𝑏

𝑡 = ∑ 𝑤𝑏𝑖,𝐷𝑇
𝑡

𝑖𝜖𝜁𝑡(𝑏)

,  

𝑄𝑏
𝑡 =

∑ √𝜎𝑖
𝑡

𝑖𝜖𝜁𝑡(𝑏)

𝑊𝑏,𝐷 − 𝜛𝑖
𝑡 − ∑ 𝛾𝑖

𝑡
𝑖𝜖𝜁𝑡(𝑏)

,   𝑦𝑖
𝑡 =

√𝑐𝑖
𝑡

𝑑𝑖
𝑡 +

√𝛾𝑖
𝑡𝑑𝑖

𝑡 

𝑑𝑖
𝑡 𝑄𝑏

𝑡 .   (25) 

Then the optimal resource allocation for 𝑢𝑏𝑖
𝑡  and 𝑤𝑏𝑖,𝐷𝐿

𝑡  is  

               𝑢𝑏𝑖
𝑡 = 𝑦𝑖

𝑡√𝑐𝑖
𝑡 ,   𝑤𝑏𝑖,𝐷𝑆

𝑡 =
𝑦𝑖

𝑡√𝛾𝑖
𝑡𝑑𝑖

𝑡  

𝑄𝑏
𝑡 , 𝑖𝜖 𝜁𝑡(𝑏).          (26) 

However, the above analysis is under the condition 

that 𝜁𝑡(𝑏) is a feasible set for the 𝑏𝑡ℎ SRSU. When 𝜁𝑡(𝑏) is not 

feasible, MPCA will drop the UE which consumes the most 

communication and computing resource until constraints of (18) 

are satisfied.  

B. The TEBA algorithm 

Given the minimized power consumption of each SRSU at 

each time slot t from MPCA, solar energy generation and power 

consumption of a single SRSU are matched by solving the TEB 

problem. The solution is provided by TEBA, as shown in Fig. 4. 

To make the smallest AUPR πb
t  among all time slots as large as 

possible, the idea of TEBA is to allocate the current generated 

solar energy Jb
t  to future time slots 𝑡 + 1 to 𝑇. In the beginning 

of TEBA, the allocated solar energy 𝑀𝑏
𝑡  for each time slot is 

initialized to be equal to Jb
t . To satisfy constraint (14), TEBA 

will start the allocation process from the last slot to the first slot. 

Since all SRSU has to remain on at all time, the algorithm will 

first check if there exists any time slot 𝑡′  between 𝑡 + 1 to 𝑇 

which has 𝑀𝑏
𝑡′

< 𝐸𝑠,𝐼𝐷𝐿𝐸 + 𝐸𝑏,𝐼𝐷𝐿𝐸 .  If yes, TEBA will allocate 

part of 𝑀𝑏
𝑡  to 𝑡′ until no such 𝑡′exists or 𝑀𝑏

𝑡  itself reaches the 

lower limit, namely 𝐸𝑠,𝐼𝐷𝐿𝐸 + 𝐸𝑏,𝐼𝐷𝐿𝐸 . πb
t  is recalculated by the 

residual 𝑀𝑏
𝑡 , if the updated πb

t  is greater than the average AUPR 

𝜌𝑏
𝑡̅̅ ̅ after time slots t , where 𝜌𝑏

𝑡̅̅ ̅ is calculated as: 

                                             𝜌𝑏
𝑡̅̅ ̅ =

∑ 𝑀𝑏
𝑖𝑇

𝑖=𝑡

∑ 𝐸𝑏
𝑖𝑇

𝑖=𝑡

,                                     (27)      

TEBA will let πb
t  equal 𝜌𝑏

𝑡̅̅ ̅ by reducing 𝑀𝑏
𝑡 . The redundant 

𝑀𝑏
𝑡  will be allocated to time slots 𝑡′, 𝑡′ > 𝑡, with πb

t′
< 𝜌𝑏

𝑡̅̅ ̅  by a 

value proportional to the solar energy required to make 𝜋𝑏
𝑡′

= 

𝜌𝑏
𝑡̅̅ ̅. TEBA will repeat the above process until all of the time slots 

are processed. 

C. The SEBA algorithm 

Based on the result of TEBA, we propose the algorithm 

SEBA shown in Fig. 5 to balance the solar energy among 

different SRSUs.  SEBA has three steps: 1) choose the SRSU 

which has the smallest AUPR with its value less than 1, namely 

the allocated solar power is less than its estimated power 

consumption; 2) drop or offload associated UEs of the above 

SBS until its AUPR is at least 1. 3) iteratively apply above steps 

to other SRSUs until all SRSUs have AUPR greater than 1. 

At each time slot t, SEBA will first sort all SRSUs by their 

AUPR in an ascending order. Following the sorted list, SEBA 

Temporal Energy Balancing Algorithm (TEBA) 

Input: {𝐸𝑏
𝑡 , 𝐽𝑏

𝑡  ห1 ≤ 𝑡 ≤ 𝑇, 𝑏 ∈ ℬ} 

Output: {𝑀𝑏
𝑡  ห1 ≤ 𝑡 ≤ 𝑇, 𝑏 ∈ ℬ} 

Initialize 𝑀𝑏
𝑡 ← 𝐽𝑏

𝑡  ∀𝑡, ∀𝑏, 𝐸 ← 𝐸𝑠,𝐼𝐷𝐿𝐸 + 𝐸𝑏,𝐼𝐷𝐿𝐸; 

for 𝑏 = 1 𝑡𝑜 𝑁 do 

      for t = 𝑇 − 1 𝑡𝑜 1 do 

            for t′ = 𝑡 + 1 𝑡𝑜 𝑇 do  

                  𝛾𝑏
𝑡′

= max(𝜌ҧ𝐸𝑏
𝑡′

− 𝑀𝑏
𝑡′

, 0) ; 

                  𝜃𝑏
𝑡′

= max(𝐸 − 𝑀𝑏
𝑡′

, 0); 

            end for 

            calculate 𝛾𝑠𝑢𝑚 = ∑ 𝛾𝑏
𝑡′𝑇

𝑖=𝑡 , 𝜃𝑠𝑢𝑚 = ∑ 𝜃𝑏
𝑡′𝑇

𝑖=𝑡 ; 

            calculate 𝜌𝑏
𝑡̅̅ ̅, πb

t ;  

            If 𝜃𝑠𝑢𝑚 > 𝑀𝑏
𝑡 − 𝐸 

                calculate 𝜃𝑠𝑝𝑎𝑟𝑒 = max(𝑀𝑏
𝑡 − E, 0) ; 

                calculate  𝛾𝑠𝑝𝑎𝑟𝑒 = 0; 

            else 

                calculate 𝜃𝑠𝑝𝑎𝑟𝑒 = 𝜃𝑠𝑢𝑚; 

                calculate 𝛾𝑠𝑝𝑎𝑟𝑒 = max(𝑀𝑏
𝑡 − 𝜃𝑠𝑝𝑎𝑟𝑒 − 𝜌ҧ𝐸𝑏

𝑡 , 0) ;  

            endif 

            for t′ = 𝑡 + 1 𝑡𝑜 𝑇 do  

                 If 𝛾𝑠𝑢𝑚 ≠ 0: 𝑀𝑏
𝑡′

= 𝑀𝑏
𝑡′

+ 𝛾𝑠𝑝𝑎𝑟𝑒
𝛾𝑏

𝑡′

𝛾𝑠𝑢𝑚
; endif 

                 If 𝜃𝑠𝑢𝑚 ≠ 0: 𝑀𝑏
𝑡′

= 𝑀𝑏
𝑡′

+ 𝜃𝑠𝑝𝑎𝑟𝑒
𝜃𝑏

𝑡′

𝜃𝑠𝑢𝑚
; endif 

            end for  

            𝑀𝑏
𝑡 =  𝑀𝑏

𝑡 − 𝜀𝑠𝑝𝑎𝑟𝑒;  

      end for  

end for 

 
Figure 4. TEBA algorithm 
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will check if the every SRSU’s AUPR is less than 1. For such 

SRSU, SEBA separates UEs in 𝜁𝑡(𝑏)  into three subsets: 

𝑆1, 𝑆2, and 𝑆3. 𝑆1 includes the UEs that are handed over to the 

𝑏𝑡ℎ SRSU from other SRSUs at current time slot; 𝑆2 includes 

the UEs that previously have no connection to any SRSUs and 

the UEs that are previously associated to the 𝑏𝑡ℎ  SRSU is 

included in 𝑆3. The rationale of the grouping is that changing the 

association of UEs in  𝑆1 will not increase the value of 𝐶ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟
𝑡  

since these UEs already suffer the QoS loss from handover. On 

the other hand, although dropping the UEs in 𝑆2 and 𝑆3 will both 

increase 𝐶𝑑𝑟𝑜𝑝
𝑡 , re-associating the UEs in 𝑆2  will not increase 

𝐶ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟
𝑡 .  Therefore, SEBA will start to change the association 

status of UEs in  𝑆1 ,followed by UEs in 𝑆2  and  𝑆3 . In each 

subset, the UE that accounts for the highest power consumption, 

which is calculated by  the computing and communication 

resource allocated to UE will be first chosen by SEBA.  

 Whenever SEBA is going to change the association status of 

a UE, it will check if the two neighbor SRSUs can accommodate 

this UE without violating constraints (1) - (3) and keep their own 

πb
t < 1. If not, SEBA will drop this UE. 

Since Eb
t  for each SRSU will be modified after the UE 

offloading process, TEBA needs to be applied to find the new 

optimal solar energy allocation. The system will iteratively run 

TEBA and  SEBA until the cost cannot be further decreased. We 

use a threshold shown in Fig. 2 to terminate the iterations. 

V. EXPERIMENTAL RESULT 

 In this section, we first introduce our MATLAB-based 

simulation framework and simulation parameters. We further 

present the effects of MCPA, TEBA and SEBA algorithms on 

the final power consumption and UE association result to 

SRSUs.  In the end, we compare the performance of our overall 

QLM algorithm with two Greedy SRSU Energy Management 

(GSEM) strategies. 

A. Simulation Framework 

 The objective of our simulation framework is to observe the 

effects of different solar energy management and UE association 

strategies on QoS loss of the offloaded application with real-

world environment. Therefore, our simulation environment 

consists of the solar photovoltaic (PV) model, the SRSU power 

consumption model, the channel model, the user location and 

traffic model, the vehicular applications workload model and the 

MEC server model. The system parameters are summarized in 

Table I.  

 We choose to study the streets in a neighborhood in 

Brooklyn, New York City, shown in Fig. 6(a), so that we can 

utilize historical traffic data for the streets collected by New 

York State Department of Transportation and available in [23].  

In our simulation environment, we implement the topology of 

the streets with the placement of SRSUs as shown in Fig. 6(b). 

The topology comprises of a bidirectional long road 𝑅1, crossed 

by 5 short bidirectional streets {𝑅2, 𝑅3, … , 𝑅5}, dividing R1 into 

6 bidirectional segments {𝑆1, 𝑆2, … , 𝑆6}.  
 The SRSUs are set along 𝑅1, each separated by 400 meters. 

The total bandwidth of each SBS of each direction in our 

Spatial Energy Balancing Algorithm (SEBA) 

Input:  𝑇𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 𝑡, {𝐸𝑏
𝑡 , 𝑀𝑏

𝑡 , 𝜁𝑡(𝑏) ห 𝑏 ∈ ℬ},  

{𝐾𝑖
𝑡 , 𝐴𝑖

𝑡ห𝑖 ∈ 𝐼}, ൛𝑢𝑏𝑖
𝑡 , 𝑤𝑏𝑖,𝑈

𝑡 , 𝑤𝑏𝑖,𝐷𝑆
𝑡 , 𝑤𝑏𝑖,𝐷𝑇

𝑡 ห 𝑖 ∈ 𝐼, 𝑏 ∈ ℬൟ, 

𝑈𝑏, 𝐸𝑆,𝑀𝐴𝑋, 𝛼, 𝑝𝑑, 𝑝𝑐,𝑈, 𝜏 

Output: {𝐴𝑖
𝑡 ห𝑖 ∈ 𝐼}, {𝐸𝑏

𝑡 , 𝜁𝑡(𝑏) ห 𝑏 ∈ ℬ}, 

൛𝑢𝑏𝑖
𝑡 , 𝑤𝑏𝑖,𝑈

𝑡 , 𝑤𝑏𝑖,𝐷𝑆
𝑡 , 𝑤𝑏𝑖,𝐷𝑇

𝑡 ห 𝑖 ∈ 𝐼, 𝑏 ∈ ℬൟ.  

Initialize Ω𝑏𝑖
t ← {𝑢𝑏𝑖

𝑡 , 𝑤𝑏𝑖,𝑈
𝑡 , 𝑤𝑏𝑖,𝐷𝑆

𝑡 , 𝑤𝑏𝑖,𝐷𝑇
𝑡 }; 

Sort SRSU by π𝑏
t  in an ascending order, store the index in D. 

while D is not empty do 

    𝑏′ ← D(1). 

    Λ𝑏′ ← { max(𝑏′ − 1,1) , min(𝑏′ + 1, 𝑁)};   
    Step 1: Divide 𝜁𝑡(𝑏′) into subsets 𝑆1, 𝑆2, 𝑆3 

Sort UE in each group 𝑆𝑖  by the corresponding power 

consumption in a descending order, let the sorted index be 

𝐻1, 𝐻2, 𝐻3 respectively. 

𝐻 ←{𝐻1, 𝐻2, 𝐻3}; 

Step 2:  change association status of UEs 

while π𝑏′
t ≥ 1 do 

𝑖𝑀 ← 𝐻(1).  

sort all SRSUs 𝑏′′ ∈ Λb′\{𝑏′} by 𝜂𝑏′′𝑖𝑀

𝑡  in descend order, 

let the sorted index be 𝑍; 

𝑓𝑑𝑟𝑜𝑝 ← 𝑡𝑟𝑢𝑒; 

for 𝑏′′ = 1 𝑡𝑜 |Λb′\{𝑏′}| do 

𝑏𝑚 ← 𝑍(𝑏′′),  𝜁𝑡(𝑏𝑚)𝑣 ← 𝜁𝑡(𝑏𝑚) ∪ { 𝑖𝑀}  

calculate (Ω𝑏𝑚𝑖𝑀

t )
𝑣
 by (23), (25) use 𝜁𝑡(𝑏𝑚)𝑣    

if 𝜁𝑡(𝑏𝑚)𝑣 and (Ω𝑏𝑚𝑖𝑀

t )
𝑣

 satisfy (1) - (3), (6) - (8),  

and (𝐸𝑏𝑚

𝑡 )
𝑣

≤ 𝑀𝑏𝑚

𝑡  do 

𝜁𝑡(𝑏𝑚) ← 𝜁𝑡(𝑏𝑚)𝑣, 𝜁𝑡(𝑏′) ← 𝜁𝑡(𝑏′)\{ 𝑖𝑀}  

𝑎𝑏′𝑖𝑀

𝑡 ← 0, 𝑎𝑏𝑚𝑖𝑀

𝑡 ← 1, Ω𝑏𝑚𝑖𝑀

t ← (Ω𝑏𝑚𝑖𝑀

t )
𝑣
  

update Ω𝑏′𝑖
t , 𝑖 ∈ 𝜁𝑡(𝑏′) by (24), (26) use 𝜁𝑡(𝑏′) 

update 𝐸𝑏𝑚

𝑡 , 𝐸𝑏′
𝑡  by (13), update π𝑏𝑚

t , π𝑏′
t ; 

𝐻 ← 𝐻\{𝐻(1)}; 𝑓𝑑𝑟𝑜𝑝 ← 𝑓𝑎𝑙𝑠𝑒; 

break; 

end if 

end for 

if 𝑓𝑑𝑟𝑜𝑝 == 𝑡𝑟𝑢𝑒 do 

𝜁𝑡(𝑏′) ← 𝜁𝑡(𝑏′)\{ 𝑖𝑀}, 𝑎𝑏′𝑖𝑀

𝑡 ← 0,   

update Ω𝑏′𝑖
t , 𝑖 ∈ 𝜁𝑡(𝑏′) by (24), (26) use 𝜁𝑡(𝑏′) 

update 𝐸𝑏′
𝑡 , update π𝑏′

t ; 

𝐻 ← 𝐻\{𝐻(1)};  

end if 

end while 

D ← 𝐷\{D(1)};  
  end while 

Figure 5. SEBA algorithm 

 
Figure 6. (a) above, a neighborhood around Flatbush Avenue in 

Brooklyn. (b) below, network topology showing deployment of roads and 
SBSs. 
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simulation is 5MHz, which is further divided into 25 resource 

blocks. Note that the minimum bandwidth available to a UE is 

equal to the bandwidth of a resource block, namely 0.18 MHz. 

We model the power consumption and computing resource 

profile of the MEC server as Raspberry Pi 2 Model B, which has 

been shown to be a feasible solution for low-power cloud servers 

[24]. The power consumed for the MEC server at idle and fully 

utilized mode is 4.8W and 6.25W respectively. For solar 

generation profile, we use the solar irradiance data in [5], which 

provides temporal variation at each SRSU as well as spatial 

variation across the SRSUs. We choose to simulate for 24 hours 

from 9AM to 9AM, so that SRSUs can leverage the solar energy 

generated during the day time to power itself at night, when there 

is no solar energy generation. 

 As mentioned in Section II, the number of UE entering the 

network at each time slot follows a Poisson distribution with rate 

parameter λr . Each UE is entering the network with 

predetermined travel routes and speed. The travel routes 

decision, speed and λr   are set in a manner that the average 

traffic volume of each road segments and cross streets  𝑆 ∪ 𝑅 

will satisfy the historical data in [23]. Furthermore, the 

transmission channel model is specified by the Vehicular to 

Evolved Node B (eNB) type RSU channel model in [25] with 

path loss model listed in Table 1 and the transmitted power of 

SBS and UE are specified as a typical small cell network [26].  

To model the offloading of the vehicle tasks and the 

uplink/downlink data, we assume that each UE will upload a 

1080p 30fps H.264 encoded video file to its associated SRSU at 

each time slot, which requires approximately 10 Million 

instructions per second (MIPS) for video processing including 

decoding and object detection by the MEC [27] [28]. We set the 

uploaded data size to be uniformly distributed between 11 to 

13.5 MB. Since the delay sensitive downlink data size depends 

on the information in the uplink data, we assume the data size is 

uniformly distributed between 0.1 to 0.3 MB. In the meantime, 

half of the vehicles will request to download a 720p or 1080p 

30fps H.264 encoded video with duration τ , each with 0.5 

probability and delay constraint equals τ. 

 In the next subsection, we first present the effects of MPCA, 

TEBA and SEBA by showing the change of individual SRSU’s 

power consumption and user association. Then, we compare the 

performance of QLM in terms of its weighted QoS loss of the 

offloaded task processing by using two Greedy SRSU Energy 

Management (GEM) strategies for temporal solar power 

allocation. The first GEM, the Ordinary GEM (OGEM), allows 

each SRSU to utilize any available solar and battery energy to 

satisfy its power demand at time slot t and store the remaining 

solar power to the battery. Consequently, OGEM will make each 

SRSU’s AUPR equal to 1 at every time slot, which restraints UE 

from being re-associated between different SRSUs since SRSUs 

have no redundant energy to serve extra workload. The second 

GEM strategy sets the allocated solar energy at each time slot to 

the value that is 1.2 times higher than its estimated power 

consumption when the battery level is higher than a threshold 

50 Whr . We denote this strategy as the Reserved GEM 

   
Figure 8. Solar generation, power consumption and vehicle associations for two SRSUs. (a) left, solar generation profile; (b) middle, initial power consumption 

and after QLM algorithm; (c) right, initial vehicle association and after QLM. 

 

Table I. Simulation Parameters 

Parameter Description Value 

N Number of SRSUs 8 

τ Duration of a time slot 1 (s) 

𝑈𝑏 Computing resource limit 4744 (MIPS) 

𝑊𝑏,𝑈 UL bandwidth limit 129.6 (MHz) 

𝑊𝑏,𝐷 DL bandwidth limit 129.6 (MHz) 

𝑝𝐵 SBS antenna power density 20 (dBm/MHz) 

𝑝𝐼 UE antenna power density 17 (dBm/MHz) 

𝑝𝑐,𝑈 ULa SBS circuit power density 15.6 (mW/MHz) 

𝑝𝑐,𝐷 DLb SBS circuit power density 15.6 (mW/MHz) 

𝑁0 Noise power density -184 (dBm/MHz) 

𝐸𝑏,𝐼𝐷𝐿𝐸 SBS power consumption in idle 6 (W) 

Channel model 

𝑔𝑏𝑖
𝑡  

Path loss Shadowing 

128.1 + 37.6log10(R), R in 

kilometers, R is the distance between 

SBS and UE 

8 (dB) 

aUL: Uplink, bDL: Downlink 

 
Figure 7. Initial power consumption for two SRSUs and after MPCA 



 

To appear in Proc. of IEEE International Conference on Computer Communications and Networks (ICCCN’18) 

 

(RGEM). If the battery level is less than 50 Whr , RGEM 

operates in the same way as OGEM. We assume RGEM 

performs the same UE association strategy as SEBA since 

RGEM allows SRSU’s AUPR be greater than 1.  

  

B. Simulation Result 

We first observe the effect of MPCA by comparing its result 

with SRSU’s power consumption without MPCA. We assume 

that without MPCA, SRSU communication and computing 

resources are allocated by the following rules: 𝑤𝑏𝑖,𝑈
𝑡  and 𝑤𝑏𝑖,𝐷𝑇

𝑡  

are allocated by (24); 𝑢𝑏𝑖
𝑡  and  𝑤𝑏𝑖,𝐷𝑆

𝑡  are calculated so that both 

of the computation delay and downlink transmission delay are 

equal to 0.5 𝑑𝑖
𝑡 .  The results in Fig. 7 shows that the power 

consumption of SRSU1 and SRSU2 decreases after MCPA 

under the same offloaded task profiles.  

 Fig, 8 shows the effects of TEBA and SEBA. Fig 8 (a) 
depicts the solar power generation profiles of two SRSUs during 

the 24-hour simulation period. Fig. 8 (b) shows the initial power 

consumption and final power consumption of SRSU 1 and 

SRSU 2 after applying QLM algorithm. As mentioned in 

Section III, at time slot t, UEs in the network will initially 

connect to SRSU which provides the highest RSSI. Based on the 

communication and computing constraints, SRSU then finds its 

feasible association set 𝜁𝑡(𝑏) , which leads to the initial 

estimation of SRSU power consumption at time slot t. The effect 

of TEBA can be observed from final SRSU power consumption 

result shown in Fig. 8(b), as the solar generation profiles in Fig. 

8(a) are arranged by TEMA to match the initial power 

consumption estimation. Since solar generated by SRSU 1 is not 

sufficient to serve all the workload from UEs in the initial 

feasible association set 𝜁𝑡(1) , during SEBA, SRSU 1 will 

associate some of the UEs in 𝜁𝑡(1) to SRSU 2, reducing its 

power consumption and preventing these UEs from 

experiencing QoS loss. Consequently, the number of associated 

UEs decreases in SRSU 1 while SRSU 2 shows the opposite 

trend, as shown in Fig. 8(c). 

 Table II shows the performance comparison of OGEM, 

RGEM and QLM, where Drop and Handover in Table II 

represents the QoS loss of offloaded UE application from UE 

drop and UE handover introduced by (15) (16) divided by the 

number of UEs in the network respectively. On the other hands, 

Overall in Table II represents the overall average QoS loss 

introduced in (17). QLM can reduce the weighted QoS loss by 

31% compared to OGEM and 52% compared to RGEM. As 

mentioned in previous subsection, OGEM cannot balance the 

offloaded task profile among different SRSUs. If a SRSU is 

running out of solar energy and its battery is fully discharged, it 

will drop the served UEs instead of trying to offload them, 

leading to higher drop rate compared to QLM. In comparison, 

although RGEM allows UEs to be re-associated between 

SRSUs, its power consumption unaware battery charging 

strategy makes SRSUs either have surplus allocated solar power 

or suffer power deficiency simultaneously most of the time. 

Therefore, RGEM fails to take the advantage of UE 

reassociation to reduce the QoS loss. 

Fig. 9(a) elaborates the QoS loss performance of OGEM, 

RGEM and QLM at each time slots. Before 5 AM, all of the 

algorithms have similar performance. This is because the energy 

stored in the battery is enough to satisfy the SRSU’s initial 

power consumption estimation during this period. After 5 PM, 

the overall average QoS loss of OGEM and RGEM escalates due 

to insufficient solar generation and fully discharged battery. The 

same phenomenon can be observed in Fig. 9(b), where the 

SRSU is forced to shut down during 5 to 9 AM by RGEM and 

7 to 9 AM by OGEM under the absence of solar power and an 

empty battery. On the contrary, QLM keeps the QoS loss 

average during the whole simulation period low by optimally 

allocating the solar energy to each time slots through scheduled 

charging and discharging of the battery and balance the 

offloaded task among SRSUs.  

The result indicates that our algorithm not only can balance 

the mismatch of SRSU solar energy generation and power 

consumption over different time slots but can also optimally 

compensate the power deficiency of a single SRSU by utilizing 

resources from its neighboring SRSUs. 

VI. CONCLUSION 

 In this paper, we show the feasibility of a green road 

infrastructure of solar-powered RSUs, consisting of small cell 

bases station and edge computing, to support the computing and 

communications needs of vehicles. We propose the QLM 

algorithm, which is a joint solar power conservation and user 

association algorithm which minimizes the average QoS loss 

due to service outage and handover loss possible when a SRSU 

runs out of solar or battery power. We break down the problem 

into three sub-problems and propose algorithms for each sub-

problem including combinations of SRSU’s communication and 

computing resource allocation, solar power conservation and 

UE association techniques. Our simulation results shows that 

QLM significantly reduces the average QoS loss caused by 

power deficiency compared to greedy algorithms. 

 

  

Figure 9. (a) left, overall QoS loss of three algorithms for each time slot; (b) 
right, power consumption of a SRSU for three algorithms: QLM, OGEM and 

RGEM. 

 
Table II. QoS Loss Performance 

QoS Lossa Algorithms 

QLM OGEM RGEM 

Drop 0.041 0.982 2.284 

Handover  19.45 19.29 18.60 

Overall 1.985 2.911 4.144 
a
Unit: % 
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