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Abstract—The effectiveness of traditional physical therapy
may be limited by the sparsity of time a patient can spend with
the physical therapist (PT) and the inherent difficulty of self-
training given the paper/figure/video instructions provided to the
patient with no way to monitor and ensure compliance with the
instructions. In this paper, we propose a cloud-based physical
therapy monitoring and guidance system. It is able to record the
actions of the PT as he/she demonstrates a task to the patient in
an offline session, and render the PT as an avatar. The patient can
later train himself by following the PT avatar and getting real-
time guidance on his/her device. Since the PT and user (patient)
motion sequences may be misaligned due to human reaction and
network delays, we propose a Gesture-Based Dynamic Time
Warping algorithm that can segment the user motion sequence
into gestures, and align and evaluate the gesture sub-sequences,
all in real time. We develop an evaluation model to quantify user
performance based on different criteria provided by the PT for a
task, trained with offline subjective test data consisting of user
performance and physical therapist scores. Moreover, we design
three types of guidance which can be provided after each gesture
based on user score, and conduct subjective tests to validate their
effectiveness. Experiments with multiple subjects show that the
proposed system can effectively train patients, give accurate
evaluation scores, and provide real-time guidance which helps the
patients learn the tasks and reach the satisfactory score with less
time.

Index Terms— dynamic time warping, gesture segmentation,
motion data alignment, physical therapy, real-time guidance

|. INTRODUCTION

In recent years, the emergence of various medical sensors
and monitoring devices has led to the widespread development
of smart healthcare which can provide cheaper, faster, and
more effective monitoring and treatment for patients [1]-[5].
As a widely used type of rehabilitation in the treatment of
many diseases, physical therapy is a promising field in smart
healthcare applications. Traditional physical therapy involving
training in professional therapy sessions can be expensive and
even unaffordable for many patients. Even if patients are
instructed in therapy sessions, they need to practice at home
by following paper or figure instructions, which cannot
provide effective feedback and track patient performance. To
address this problem, virtual training systems based on
rendering technologies and motion capture sensors such as
Microsoft Kinect [6] are being developed [7], [8]. In the

meantime, the use of mobile devices has become pervasive —
for example, in June 2016, mobile applications and browsers
accounted for 67% of digital media time spent in the United
States [9]. In addition, cloud computing has started being used
as an alternative approach for mobile health applications [10],
computer games [11], etc., to make up the inherent hardware
constraint of mobile devices in memory, graphics processing
and power supply when running heavy multimedia and
security algorithms. In cloud-based mobile applications, all
the data and videos are processed and rendered on the cloud,
which makes it superior to local processing on desktop
computers for its portability across multiple platforms. Thus,
this solution can enable users to use the system at home or
away, e.g. at hotels while traveling, making it more flexible
and usable. In this paper, we combine 1) rendering technology,
2) motion capture based on Microsoft Kinect and 3) cloud
computing for mobile devices to propose a cloud-based real-
time physical therapy instruction, monitoring and guidance
system. The proposed system enables a user to be trained by
following a pre-recorded avatar instructor, monitors and
quantifiably measures user performance, and provides real-
time textual and visual guidance on his/her mobile device as
needed to improve the user’s performance. Note that in this
paper, we use the terms “user” and “patient” interchangeably.

The architecture of the proposed cloud-based physical
therapy monitoring and guidance system is shown in Fig. 1.
Note that the physical therapy tasks discussed in this paper are
movement based tasks. Fig. 1(a) shows the offline session, in
which a physical therapist (PT) defines the criteria and
satisfactory score for a task, and also demonstrates the task,
with his/her motion data captured by the Kinect sensor and
his/her avatar recorded and trained on a game development
platform Unity [12]. (To avoid confusion, we use the
abbreviation “PT” to refer to the PT avatar showing on the user
device, and use “physical therapist” to refer to the real physical
therapist colleague in this project team.) For each task, an
evaluation model is trained from a subjective test, which is
used to evaluate the user’s performance on this task. Fig. 1(b)
shows the online home session. A training video is transmitted
through a wireless network to the user device. The user
watches the training video and tries to follow the task.
Simultaneously, his/her movements are captured by Kinect



and uploaded to the cloud. On the cloud, the proposed Gesture-
Based Dynamic Time Warping algorithm segments the user’s
motion sequence into gestures and aligns the motion data of
the PT and user in real time. User’s accuracy is determined by
transforming the user’s errors into an overall score using the
evaluation model obtained from the offline session. The
alignment results are processed by a guidance logic. The user
can progress to the next task if and when his/her accuracy
reaches a satisfactory score, otherwise a guidance video is
rendered and transmitted to the user device to help the user
calibrate his/her movements.
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Fig. 1. Architecture of cloud-based physical therapy monitoring and
guidance system. (a) Offline session. (b) User home session.

The proposed system has the ability to more effectively and
efficiently train people for different types of tasks, like knee
rehabilitation, shoulder stretches, etc. Although other avatar-
based training systems exist, our system provides real-time
guidance rather than just providing scores. This feature allows
the system to cater to the abilities of the user and to react to
the user’s performance by demonstrating the necessary
adjustments to establish optimal conditions. In essence, our
system is dynamic, allowing every user experience to be
distinct. Moreover, together with the offline step of capturing
and training an avatar for the PT tasks customized to a
particular user, the proposed system enables personalized
physical therapy training.

Although the platform has the advantages as mentioned
above, human reaction delay (delay by user to follow
instructions) and wireless network delay (which may delay
when the cloud rendered avatar video reaches the user device)
may cause challenges for correctly calculating the accuracy of
the user’s movements compared to the PT’s movements. In
particular, the delay may cause the two motion sequences to
be misaligned with each other and make it difficult to judge
whether the user is following the PT correctly. Therefore, we
apply Dynamic Time Warping (DTW) algorithm to address the

problem of motion data misalignment. Considering the fact
that DTW can only be applied after the user finishes the whole
task, we further propose the Gesture-Based Dynamic Time
Warping algorithm to segment the whole user motion
sequence into gestures to enable real-time evaluation and
guidance for the user. To evaluate the user’s performance
correctly, an evaluation model is trained by collecting data
from subjective test and based on the professional advice of
the physical therapist in our team. To help the user improve
accuracy, we design visual/textual/combined guidance and
conduct subjective test to validate their effectiveness. We have
implemented the proposed algorithms in a prototype avatar
based real-time guidance system and conducted experiments
using wireless network profiles and on a real cloud
environment. Experimental results show the performance
advantage of our proposed method over other alignment
methods, as well as the feasibility and effectiveness of our
proposed cloud-based physical therapy monitoring and
guidance system.

A preliminary version of this work has been reported in [13].
Compared with [13], we have developed a new real-time
monitoring and guidance system in this paper using Unity [12],
which enables more effective avatar modeling, user
performance tracking, and guidance design and delivery. The
motion data are extended from one dimension to multi
dimensions. In user performance evaluation, we present a new
Gesture-Based Dynamic Time Warping algorithm which
significantly enhances the accuracy of gesture segmentation
and reduces segmentation delay, compared to the algorithm we
presented in [13]. (In the rest of this paper, we use GB-DTW0
to refer to the algorithm proposed in [13] and GB-DTW-A to
refer to the new algorithm proposed in this paper where “A”
means more accurate segmentation.) Experimental results are
provided to demonstrate the superior performance of the new
GB-DTW-A algorithm. Furthermore, the user performance
evaluation model is completely redesigned based on a
procedure involving subjective testing. A new guidance
system is designed which can provide more intuitive and
detailed guidance. Effectiveness of the proposed real-time
guidance, not discussed in [13], is validated with a new
subjective study. The main overlap of this paper with [13] is in
the introduction of the classical DTW algorithm (Section I'V-
A) and part of the experimental results in Section V-A.

The rest of the paper is organized as follows: Section 11
reviews related work about automatic training systems for
physical therapy and their related user performance evaluation
techniques and guidance system. In Section III, we introduce
the construction of motion data and the data misalignment
problem. Section I'V proposes the data alignment approach and
the evaluation model for the user’s performance, as well as the
guidance design in the proposed system. Section V presents
the experimental results of motion data alignment and
performance evaluation using real network profiles and on a
real cloud environment, and also validates the effectiveness of
guidance. Section VI concludes the paper and discusses future
work.



Il. RELATED WORK

A.  Automatic Training System for Physical Therapy

Physical therapy is a widely used type of rehabilitation in
the treatment of many diseases. Normally, patients are
instructed by specialists in physical therapy sessions and then
expected to practice the activities at home, in most cases
following paper/figure instructions they are given in the
sessions. However, they cannot get useful feedback about their
performance and have no idea how to improve their training
without the supervision of the professional physical therapists.
To address this problem, some automatic training systems
have been created to train people at home. In [8], the authors
use the marker-based optical motion capture system Vicon and
prove its effectiveness in gait analysis on subjects with
hemiparesis caused by stroke. A wearable electronic device
called Pt Viz is developed for knee rehabilitation [14].
Furthermore, Microsoft Kinect sensor is proved of high
accuracy and more convenient in detecting the human skeleton
compared with wearable devices [15]. Authors in [16] develop
a game-based rehabilitation system using Kinect for balance
training. In [17], Kinect is used to track arm movements to
help young adults with motor disabilities. In our proposed
system, Kinect is used to track physical therapy tasks for its
efficiency in full-body and limb tracking, as well as being
readily available, easy to setup, and low-cost. Besides, our
proposed system is superior to the above Kinect-based systems
for its high accuracy and reliability in user performance
evaluation and guidance design. In [16] and [17], Kinect is
used primarily to motivate the users, without accurate
feedback on the user’s performance. Our proposed evaluation
method addresses two kinds of delay problem in the user
motion sequence, which will be discussed in the following
sections.

B. User Performance Evaluation

In physical therapy, patients’ movements need to be
carefully controlled due to their reduced mobility and the
potential for re-injury. Therefore, user performance evaluation
is an important part in these automatic training systems to
remind patients of any incorrect motion. To evaluate the user’s
performance, authors in [18] propose to compare the skeletons
of the trainee and the trainer tracked by Kinect sensor. First,
skeleton of the trainee is scaled by resizing each bone to match
the size of the corresponding bone of the trainer. Then the two
skeletons are aligned by aligning the hips which are
considered to be the hierarchical center of the skeleton. Finally,
the trainee’s performance can be evaluated by calculating the
Euclidean distance between the trainee’s and trainer’s joints.

However, the assumption of this approach is that the trainee
follows the trainer timely since they use a window of 0.5s for
any target frame to search for the best matching posture. For
some challenging tasks, it might be difficulty for the user,
especially for patients with injuries, to catch up with the
trainer’s movements. In this case, motion data of the trainer

and the trainee are mismatched and the best matching posture
cannot be found within the 0.5s window.

To address the misalignment problem, authors in [19]
propose to use Maximum Cross Correlation (MCC) to
calculate the time shift between the standard/expected motion
sequence and the user’s motion sequence. Then by shifting the
user’s motion sequence by the estimated time shift, the two
sequences are aligned and their similarity can be calculated.
However, this approach assumes uniform delay during the
user’s movements and cannot address the problem of motion
data distortion, which will be discussed in Section I11-B.

In [20], a training system based on wearable sensor use
DTW to detect and identify correct and incorrect executions in
an exercise. It is aimed at finding the best match of the user’s
execution among some correct and incorrect templates to
judge the user’s performance and give the error type if any.
However, error templates can hardly cover all the mistakes
patients may make, and computation increases with more
templates. Besides, it can only be applied offline when the
entire user motion sequence is obtained. In comparison, the
proposed system does not need any pre-recorded error
template. Besides, the proposed GB-DTW-A algorithm
enables real-time evaluation and guidance for the user.

C. Guidance Design

To help the user improve performance, many types of
guidance system have been designed. OctoPocus [21] and
ShadowGuides [22] teach user gestures and movements on
touch screens. LightGuide [23] projects guidance hints
directly on a user’s body to guide the user in completing the
desired motion. In [14], wearable sensor made of lighted fabric
visualizes the correct knee angle for knee rehabilitation
exercises. BASE [24] based on kinematic sensor designed for
older adults displays colored markers overlaid on the body to
show the user’s position and target position. In [18], an
augmented reality mirror and colored circles/lines overlaid on
the user’s body are used to instruct the user and label incorrect
movements. In [25], an on-screen “Wedge” visualization
overlaid on top of the user’s body shows the plane and range
of movement, joint positions and angles, and extent of
movement.

Most of the above guidance systems instruct the user on how
to perform the task correctly by specifying the target body
position and telling the user whether he/she has reached the
target or not. However, we would like to develop a guidance
system that is more adaptive and personalized for each task
and also for each user. In the proposed system, guidance is
provided based on criteria specially designed for each task by
the physical therapist, instead of simply comparing the
complete skeletons of the PT and user and showing the
mismatched joints. Moreover, the proposed system can also
decide whether the user needs to be guided according to the
user’s performance and a satisfactory score set by the physical
therapist, which avoids overwhelming instructions in training.



I11. MOTION DATA CONSTRUCTION AND DATA MISALIGNMENT
PROBLEM

In the proposed system, Kinect captures 25 joints with 3-D
coordinates for each joint [26]. However, only some parts of
these joints are deemed important for a specific task. In this
section, we will introduce how to construct the motion data for

a task and the motion data misalignment problem in the system.

A. Motion Data Construction

For a given task, the physical therapist defines several
criteria and the tolerable error threshold for each criterion,
which need to be translated into motion features. Motion
features are quantities that are derived from the joint
coordinates captured by Kinect, such as joint positions, joint
angles, joint velocity, etc. For example, in the shoulder
abduction task, arm height or shoulder angle (i.e., angle
between the arm and the vertical direction) can be a motion
feature which indicates whether the user raises the arm highly
enough. Considering the difference in body size, we use
normalized features, like angles, to build the motion data. The
first three columns in Table I show the examples of some
criteria defined by the physical therapist, the corresponding
motion features, and the tolerable error threshold for a leg lift
task.

TABLE |
EXAMPLES OF TASK CRITERIA AND MOTION FEATURES o Lec Lirt Task

Error Feature

Criterion Motion Features Threshold Type
“Lift right leg to Angle between right leg Time-
the required and vertical direction: +5° arvin
height” 60° varymg
« . Angle between right
Keep r%ght’}mee thigh and right shank: +10° Constraint
straight )
180
« . . Angle between right leg
Keep right leg in and the patient’s right +10° Constraint

front of the body” direction: 90°

Moreover, there are two types of features: time-varying
features and constraint features. In a task, the patient is
instructed to move some parts of his/her body, and keep some
other parts stationary in the meantime. Time-varying features

are features which represent the body’s movements in this task.

Constraint features represent the other body parts which
should be kept stationary during the task. The fourth column
in Table I shows the corresponding feature type of each
criterion in the leg lift task.

For a given task, the physical therapist defines &, time-
varying features and N, constraint features. Time-varying
motion data F” for this task can be obtained by combining all
the time-varying motion features of each frame.

f1?/1 fltIZ L leNV

FY— f2\{1 fz\fz L fz\va i (1)
M M O M
fTV,1 fTV,Z L fTV, N,

where T is the number of frames, f;’; is the i-th time-varying
feature in frame ¢. Similarly, constraint motion data F* is

fl,cl fl,cz L fl,cNE

(= fzc,l fzc,z L fzc,NC )
M MO M/
ch,l fTC,Z L fTC, N¢

where f5; is the j-th constraint feature in frame ¢

B. Motion Data Misalignment Problem

Given the motion data of the PT and the user, we calculate
the similarity of the two sequences to evaluate the
performance of the user. However, comparing the two
sequences directly is unreliable due to the potential data
misalignment caused by delay. There are mainly two kinds of
delay in the system: 1) human reaction delay, which means that
it may take the user some time to react to the demonstration
task before following it, 2) network delay, which results from
the wireless network when transmitting the training video
from the cloud to the user device.

Human reaction delay and network delay cause two types
of motion data misalignment problem: time shift and data
distortion. In the rest of this section, we will discuss these two
types of data misalignment problem, and discuss the problems
the existing technique MCC [19] has in addressing the
misalignment between the two sequences.

1) Time Shift Delay

When human reaction delay and network delay are uniform
in a training task, there is only time shift between the PT’s and
the user’s motion data. In this case MCC can be used to
estimate the time shift and align the two sequences. For two
discrete-time signals f'and g, their cross correlation Ry4(n) is
defined by

Rip = 3 F'(mg(m+n). G

and the time shift 7 of the two sequences is estimated as the
position of maximum cross correlation

r=argmax{R, , (N} “4)

For those tasks including multiple separate gestures, the
time shift might be different for these gestures and need to be
calculated separately. Here we define a gesture as a
subsequence that represents an independent subtask, e.g., one-
time shoulder abduction and adduction. Gestures in a training
task are segmented manually by the physical therapist. Fig. 2
shows a simple example of the PT and user’s motion data in a
task of three gestures. For each gesture, the user follows the



PT avatar to perform shoulder abduction and adduction. Fig.
2(b) shows the angle between the left arm and the vertical
direction as an example of the motion feature. Suppose that the
user performs each gesture with delay 71, 7> and 73 (71 # ©2 # 13),
they can be estimated using MCC and the two sequences can
be aligned by shifting each gesture by the corresponding
estimated delay.

2)  Motion Data Distortion

In many cases, human reaction delay and network delay
may not be uniform. The user may not be able to follow the
task timely or perform some incorrect motion when the task is
difficult for him/her. For example, when following a task of 2
seconds, it takes a user 1s to react to the instructions and
another 1s to complete the task since he realizes that he is
behind. In this case the user’s reaction delay is not uniform
(delay = 1s when t < 1s, delay < 1s when 1s < ¢ <2s, and delay
= 0 when ¢ = 2s). Besides, the user’s valid motion sequence
(1s) is shorter than the PT’s (2s), so shifting one sequence by
the estimated delay cannot effectively align them. Network
delay may also be not uniform due to many factors, such as
varying bandwidth and network load. Although some response
time management techniques have been developed [27], the
network delay in cloud mobile applications cannot be
eliminated. Therefore, under the influence of fluctuating
network delay or when the user is following some difficult
tasks, the user’s motion data might be distorted compared with
the PT’s. Fig. 3 shows the motion data of the same task as Fig.
2, but with both time shift delay and motion data distortion. In
this case, using MCC to shift the user’s sequence by an
estimated delay is unreliable. To calculate the similarity
between the two sequences effectively, we need to find an
optimal way to align them.

PT ' -

1 'I:l
(a) [(2)
Fig. 2. (a) Shoulder abduction and adduction. (b) Motion data (i.e., angle
between left arm and the vertical direction) of the PT and user for three
gestures with only time shift delay. Delay for each gesture is 7, 7, 73.
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Fig. 3. Motion data (i.e., angle between left arm and vertical direction) of the
PT and the user with both time shift delay and motion data distortion.
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IV. MOTION DATA ALIGNMENT AND USER PERFORMANCE
EVALUATION

To solve the data misalignment problem and evaluate the
user’s performance correctly, we propose a DTW-based data
alignment and evaluation method. Section IV-A introduces the
principle of classical DTW and its use in the proposed system.
Section IV-B proposes the GB-DTW-A algorithm which
segments user gestures so that data alignment can be done in
real time based on each gesture, and introduces the
enhancements of GB-DTW-A compared with the original GB-
DTWO algorithm [13]. In Section IV-C, we discuss how to
evaluate the user’s performance according to the alignment
results of GB-DTW-A. Finally, Section IV-D introduces visual
and textual guidance in the proposed system and discusses
how to provide effective guidance for the user.

A.  Dynamic Time Warping

DTW is a dynamic programming algorithm that is widely
used in speech processing [28]. It measures the similarity
between two sequences 4 = {ai, aa, ..., an} and B= {by, by, ...,
b,} by calculating their minimum distance. To calculate the
minimum distance, an mxn distance matrix D is defined where
D(i, j) is the Euclidean distance between a; and b;.

D(i, j) =[a - . (5)

To find the best alignment between 4 and B, a continuous
warping path through the distance matrix D should be found
such that the sum of items on the path is minimized. Hence,
this optimal path stands for the optimal mapping between A
and B such that their distance is minimized. This path is
defined as P = {pi, p2, ..., pq} where max{m, n} <g<m +n-—
1 and pi= (xx, yx) indicates that ay, is aligned with b,,. Moreover,
this path is subject to the following constraints.

e  Boundary constraint: p, =(11) and p, =(m,n).
e  Monotonic constraint: X,,; =X, and Y,,; =Y, .
e  Continuity constraint: X, —X, <land Y,,, -y, <1.

To find the optimal path, an mxn accumulative distance
matrix S is constructed where S(i, j) is the minimum
accumulative distance from (1, 1) to (i, j). The accumulative
distance matrix S can be represented as

SGi-1,j-1)
S@i,j-1 (6)
SGi-1, )

S, j) = D(i, j)+min

and S(m, n) is defined as the DTW distance between A and B
[29]; smaller DTW distance indicates that the two sequences
are more similar. The optimal warping path can be found by
backtracking from (m, n) to (1, 1) and this path indicates the
best way to align the two sequences. Time complexity of the
DTW method is O(mn). Fig. 4(a) shows an example of two
sequences 4 and B. The purple marked elements construct a
path from (1, 1) to (m, n) on which the accumulative distance



is minimized. It is the optimal warping path between A4 and B.
Fig. 4(b) shows the corresponding alignment given by the
optimal path in Fig. 4(a). For example, a; is aligned with b1, a>
and a3 are aligned with b».

(b)

Fig. 4. (a) Warping path of DTW on sequence 4 and B. (b) Alignment
results between 4 and B.

In the proposed system, DTW can be used to find out the
optimal alignment between the PT’s and user’s movements.
As mentioned in Section III-A, there are two types of motion
data: time-varying motion data " and constraint motion data
F¢. For time-varying motion data F”, delay problems
mentioned in Section III-B may cause the data to be
misaligned with each other. Therefore, DTW can be applied to
the PT’s and user’s time-varying motion data to find out an
optimal warping path P = {pi, ps, ..., pq}, where pr= (xx, V&)
indicates that the user’s performance in frame y; matches PT’s
movement in frame x;. Constraint motion data vs. time are
horizontal lines (e.g., the knee angle vs. time is a horizontal
line at 180 degrees for criterion “keep knee straight” in Table
I and DTW cannot be used to align them. Constraint motion
data are aligned using the DTW alignment results of time-
varying motion data. Consequently, based on the alignment
results, the user’s performance can be evaluated by comparing
his/her movements with the PT’s demonstration movements.

B. Real-Time Gesture Segmentation Based on DTW

Although DTW is an effective way to find out the optimal
alignment between the PT and user’s motion sequences, it
works only after the two motion sequences are obtained, that
is, after the user finishes the entire task. In the proposed system,
we would like to provide real-time evaluation for the user after
he/she finishes each gesture, thus real-time gesture
segmentation is needed during the user’s performance. There
has been numerous research in the field of gesture
segmentation, including methods based on machine learning,
signal processing [30], [31], etc. In this work, since DTW can
be used to align the motion sequences, we further propose a
variant of DTW called GB-DTW-A so that gesture
segmentation can be implemented in the process of DTW. We
next present the details of GB-DTW-A.

For a given task, gestures in the PT’s motion sequence have
been pre-defined and segmented, which will be used as the
ground truth to segment user’s gestures. Suppose that 4, = {a,
a, ..., am} is defined as the first gesture in the PT’s motion

sequence 4. Then we would like to use DTW to find a
subsequence B = {bi, b, ..., br} (2 < k < n) of the user’s
motion data B that matches the PT’s gesture 4; best. Since the
DTW distance S(mi, k) represents the similarity between A,
and B, the optimal endpoint 7, of the user’s gesture should be
the position with the minimum DTW distance.

n, =argmin{S(m,k)}. (7)

2<k<n

In [29], the Subsequence DTW algorithm searches the
entire user sequence B to find out the global optimum #;.
However, it works only after the user completes the entire task,
which means that it is not real-time. Here we propose a new
approach to estimate the global optimum by testing each local
optimum. Firstly, we define a normalized distance function
(k) = S(m, k)/ (X2, a;), where 272, a; is the sum of PT’s
motion data on this gesture. Then 7(k) can be used as a
uniform similarity metric for different gestures. For a local
optimum k", we propose the following conditions to check
whether it is the global optimum.

Condition 1: k™ is the current global optimum, i.e.,
T(k") < T(k) for any k< k.

Condition 2: The normalized distance between A; and Bs is
below a threshold, i.e., (k") <.

Condition 1 is a necessary condition for the global optimum.
If Condition 1 is not satisfied, we continue to search and check
the next local optimum. In Condition 2, if the threshold is set
strict (i.e., 7 is low), it fails to consider the possibility of user’s
poor performance even if the user has completed the gesture.
If the threshold is set loose (i.e., zis high), T(k") <z may be
satisfied at some local optimums before the user completes the
gesture. To solve this problem, we propose a dual-threshold
strategy as follows. In Condition 2, a strict threshold zg is used.
Therefore, Condition 2 is used to detect the global optimum
when the user is following the PT accurately. If a local
optimum satisfies both Condition 1 and Condition 2, it can be
estimated as the global optimum. If only Condition 1 is
satisfied and Condition 2 is not satisfied, we further use the
following method to check whether k™ may be the endpoint of
the user’s gesture. If k™ is the global optimum ny, By is the best
match with A;. When the user completes one gesture, he/she
may stay in the ending posture for several frames, so the
following frames {bn+1, bn+2, ...} will be quite close to by,.
Based on the above observation, we propose the following
empirical evidence. For the global optimum nj, all of its
following r frames {bn +1, bn+2, ..., bn+r} tend to be aligned
with am, in DTW. In other words, for frame ni+j(j=1, 2, ...,

r), (6) becomes
S (m,n +j)=D(m,n +j)+S (m,n +j-1), (8)
For the r frames following a local optimum k", we calculate

the DTW distances Siyue= {S(m1, k*+1), S(m1, k*+2), ..., S(my,
k*+7)}. In the meantime, we compute Syssumprion= {S (m1, k*+1),



S'(my, k*+2), ..., S'(m1, k*+r)} using (8). The relative error
between Sive and Sussumprion 1S

error =|S S, |.IS

assumption ~ true|* ' “true - )

Then we propose Condition 3 to further test a local optimum
k" in case Condition 2 is not satisfied.

Condition 3: The relative error between Sive and Sagsumpiion 1S
below an error tolerance threshold J, i.e., Mean(error) < 0.
Besides, the normalized distance between A; and B; is below a
loose threshold 7;, i.e., T(k") <71;.

Condition 3 is used to detect the global optimum for the
user’s poor performance. When the user performs the task, the
normalized distance 7(k) is calculated for each frame k. For
any local optimum k", it is estimated as the global optimum if
it satisfies Condition 1 and 2. If Condition 2 is not satisfied,
Condition 3 is further used to test it.

However, it is still possible that a true global optimum #;
does not meet Condition 2 or 3. If we continue searching the
following frames after ni, T(k) will keep increasing and we
cannot obtain the correct segmentation result even until the
end of the task. To stop the searching timely, we propose
Condition 4 to decide whether the current frame k is behind
the global optimum #;.

Condition 4: T(k)>T(1) and there exists ky <k such that
T(ky) < 131 -

In Condition 4, T(ky) <1, is used to exclude the situation
where T(k) may be increasing for the first several frames. If
frame £ satisfies Condition 4, the search should be stopped and
the current global optimum (i.e., the minimum point among
T(1) ~ T(k)) can be estimated as the global optimum. The
pseudo-code for the proposed GB-DTW-A algorithm is shown
in Fig. 5.

Compared with GB-DTWO proposed in [13], the new GB-
DTW-A algorithm achieves higher segmentation accuracy and
less segmentation delay. In GB-DTWO, only Condition 3 is
used to test local optimums. However, the single threshold J is
sensitive to the user’s performance. Fig. 6 shows an example
where the task and motion feature are the same as Fig. 2. Fig.
6(a) shows the motion sequence of a PT’s gesture, and Fig.
6(b)(c) show the motion data of two users, where E| and E, are
the endpoints of their gestures. User 1 follows the PT
accurately, so the DTW distance between PT and user 1 is
small. For the true gesture endpoint £}, the relative error in (9)
may be high since Sy is small. In this case, the threshold
should be higher to allow E to be detected as the global
optimum. User 2 is performing poorly (not following PT
accurately), so the DTW distance is large. Point 4 is a local
optimum of the DTW distance, but not the gesture endpoint.
For point 4, the relative error in (9) may be small since Spe 18
large. To avoid mistakenly detecting 4 as the global optimum,
o0 should be set lower. Therefore, a uniform threshold ¢ for all
users may result in segmentation errors. In contrast, the dual-
threshold strategy proposed in GB-DTW-A can be used for all
types of user performance, and therefore reduce the
segmentation errors. Besides, the segmentation delay (i.e., the

delay between the true gesture endpoint and the time when the
segmentation is completed) of GB-DTWO is at least  frames
since Condition 3 needs to check r frames following the
gesture endpoint. In GB-DTW-A, Condition 1 and 2 can be
checked in real time without any delay. Condition 3 is checked
only if Condition 2 is not satisfied. Moreover, Condition 4
provides a way to stop the searching in time when we miss the
global optimum instead of searching to the end of the task
(which is used by GB-DTWO0). Thus GB-DTW-A also reduces
the segmentation delay compared with GB-DTWO. Details
about the comparison results between these two algorithms are
provided in Section V-B.

Algorithm Gesture-Based Dynamic Time Warping (GB-DTW-A)
Input: PT’s gesture 41, user’s motion sequence B = {b1, b2, ...,
bn}
Output: Endpoint of user’s gesture
Initialization: curMin = Inf, curMinlndex = -1, flag = false

1. for each frame & in sequence B

2 if & is a local minimum and 7(k) < curMin
3 if T(k) < zg

4, return k

5. else

6 calculate Syve and Sassumptiun

7 error = Sassummion - S|rue / Strue

8 if Mean(error) < o and T(k) <7,
9. return &

10. end if

11. end if

12. end if

13. if T(k) > T(1) and curMinlndex > 0 and flag == true
14. return curMinindex

15. end if

16. if T(k) < curMin

17. curMin = T(k) and curMinindex = k
18. end if

19. if flag == false and T(k) < 1),

20. flag = true

21. end if

22. end for

23. return curMinlndex

Fig. 5. Psuedo-code of GB-DTW-A algorithm.

PT User | User 2

El E2
- > »
0 0
@ 92 ® ! (c) {
Fig. 6. (a) PT’s motion sequence. (b) User 1’s motion sequence with
accurate performance. (c¢) User 2’s motion sequence with poor performance.
A is a local optimum of the DTW distance.

Using the above approach, gesture segmentation is
implemented in the process of DTW. If By = {b\, by, ..., by} is
determined as the user’s gesture related to the PT’s gesture A1,
DTW can be conducted from the new starting point (m; + 1, n;
+ 1). Fig. 7 shows the example of applying GB-DTW-A on the
same sequences as Fig. 4. Suppose that there are four gestures
in the task, segmentation allows DTW to be performed



separately for each gesture. The shaded area is indicative of
the computation cost for each gesture.

For each gesture, Condition 1 and 2 can be checked on each
local optimum in constant time. For a task with g gestures,
each PT’s gesture contains m/g frames and each user’s gesture
contains n/g frames on average. The complexity of GB-DTW-
A on each gesture is O(mn/g°). For Condition 3, » more frames
following the local optimum need to be tested. The extra
complexity to test local optimum is O(mr/g). So the average
complexity of GB-DTW-A is

o(gx (2 + My —omE +r)) =0(™2) << o(mn). (10)
9° g g g

When the number of gestures g in the sequence is large, the
proposed GB-DTW-A algorithm can significantly decrease the
computation complexity compared to classical DTW on the
entire sequence. If real-time detection fails, which means that
the true global optimum does not meet Condition 2 or 3,
Condition 4 is used to break the search and output the correct
segmentation result, although with some delay. In this case,
the computation complexity increases. If the segmentation is
delayed to the end of the entire task in the worst case, the
complexity becomes O(mn). However, it is shown in Section
V-B that this worst situation happens very rarely. In most cases,
the segmentation delay is low and the complexity is close to
O(mn/g).
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Fig. 7. Average computation complexity of GB-DTW-A in a task of four
gestures.

C. GB-DTW-A Based User Performance Evaluation

In this section, we will discuss how GB-DTW-A can be
applied to evaluate the user’s performance. As discussed in the
last section, GB-DTW-A aligns motion sequences as soon as
the user completes a gesture, instead of waiting until the entire
task is over, with much less complexity compared with
classical DTW. Then based on the alignment results, we can
check the user’s error on each criterion by comparing his/her
motion data with the matched PT’s motion data, and calculate
an overall evaluation score for his/her performance on the
previous gesture.

1) GB-DTW-A Based User Error for Each Criterion
For each criterion in a task (see examples in Table I), we
denote 4 = {a, ay, ..., an} as the PT’s motion data and B = {b;,

b, ..., by} as the user’s motion data. An optimal path P = {p,,
P2 ..., pqt which indicates the optimal alignment between A
and B has been calculated by applying GB-DTW on the time-
varying motion data.

To measure the user’s error, first we need to discuss
different alignment types in P. We define the monotonicity of
a subsequence 4" = {a;, ais1, ..., airn-1} as follows. If all the
elements in 4" are monotonic (i.e. keep increasing or
decreasing) then A" is monotonic, otherwise it is non-
monotonic. When multiple PT frames A" = {a;, ai+1, ..., Gi+w1}
are aligned with one single user frame b;, there are two
different cases. (a) If 4™ is monotonic, it means that the effects
of multiple frames in 4" are similar to the effect of b;, which
indicates that the user moved faster than the PT at that time.
(b) If 4™ is non-monotonic, it means that some back and forth
PT movements are simplified as one single frame b; in the
user’s performance, thus the user’s movement is incomplete
for this back and forth motion. Similarly, if one single PT
frame is aligned with multiple user frames, we can judge
whether the user is slower or overdoes the movement. (Note
that the cause for the user to be slow might also be due to
receiving the training video delayed due to the wireless
network, that is, effect of network delay.) Table II and Fig. 8
illustrates the five alignment types in DTW. For example, in
type 1 the user performs faster than the PT so monotonic PT
subsequence {a3, a4} is aligned with one single user frame b4.
In type 4 the user’s movement does not reach the required
amplitude, so non-monotonic PT subsequence {ai7, ais, 19} is
aligned with one single user frame b,;. Type 5 represents the
basic case where one PT frame is aligned with one user frame.

TABLE II
FIVE ALIGNMENT TYPES INDTW
Type Number of frames Monotonicity User’s

PT User  of subsequence performance
1 >1 1 Monotonic Too Fast
2 1 >1 Too Slow
3 ! Non-Monotonic Overdone
4 >1 1 Incomplete
5 1 1 Matches PT

PT
Type 1
(A)| Type

User \
(B) l\/

Fig. 8. Five alignment types in DTW: 1) The user moves faster. 2) The user
moves slowly. 3) User’s overdone motion. 4) User’s incomplete motion. 5)
Basic case where one PT frame is aligned with one user frame.




Next, the PT’s motion data are considered as the ground
truth and the user’s error can be calculated by comparing each
PT frame and the aligned user frame/frames. If there is only
one single user frame b; aligned with the PT frame a; (i.e., type
5), the user’s error in this frame can be computed as

€ rame :"al _bj"' (11)

However, if PT frame a; is aligned with multiple user frames
B* = {bj, bj+1, ..., bjru1}, the difference between the two
sequences will be counted several times according to (11). In
this case we should revise (11) to count in the user error for
only once based on the alignment types in Table II and Fig. 8.
If B" is monotonic (i.e., type 2), the user performs slower than
the PT. For most physical therapy tasks, user’s speed is not
important. (Tasks for which speed is important are not
discussed in this paper.) Only the average user error should be
counted, and (11) can be revised as

1 w-1
a; _(Wzbj”) .

r=0

e frame —

(12)

If B” is non-monotonic (i.e., type 3) which represents the
user’s overdone movements, the largest user error needs to be
counted, and (11) can be revised as

%ame = OmaX ||ai —b;

+r
<r<w-1 )

. (13)

For type 1 and 4 where multiple PT frames are aligned with
one single user frame, user’s error will be calculated separately
for each PT frame according to (11). Based on the discussion
above, the user’s overall error on this criterion can be obtained
by averaging the user’s error for each PT frame.

2) Overall Score Estimation

In the previous section, we discussed how to calculate the
user’s error on each criterion. Combining them into a vector
we can get the user’s error vector e for the task. In this section,
we will introduce how to transform the error vector e into a
normalized overall score that indicates the user’s overall
performance for this task.

To obtain the score estimation model, a subjective study is
needed where the proposed system calculates the error vector

e and the physical therapist gives a true score s for each subject.

Given the error vectors {ei, ez, ..., e, ..., ey} and the
corresponding scores {si, s2..., Si, ..., SN} (si € [0, 10]) for N
samples, our goal is to find an optimal function /(e) so that
s; = h(e;). Here we choose / to be linear and include constant
1 in e; as the bias term. Thus / can be represented as

he)=A"e. (14)

We use linear regression [32] to estimate the optimal 8* as

B =(X"X)'Xy, (15)
where

X =(e,e,L e,)",y=(s,s,,L ,s,)" . (16)

From (15) the optimal parameter 8* can be calculated from
all the scores given by the physical therapist and error vectors
in the training set. Then this optimal function /(e) can be used
to estimate the overall score for any new user performance.

D. Real-Time Guidance and Satisfactory Score

In order to help the user improve performance accuracy, we
propose a replay system which highlights the user’s error and
provides visual and textual guidance for the user. Fig. 9 shows
a screenshot of the guidance system for the leg lift task. The
overall score for the user’s performance is shown on the upper
left corner of the screen. Two avatars replay two views of the
user’s movements, with the view angles determined by the
task to better show the user’s error. In Fig. 9, the left avatar
shows the side view and the right avatar shows the mirrored
view. For each gesture, the user’s motion data on each criterion
are compared with the corresponding PT’s motion data. If the
user’s error on a criterion is above the error threshold defined
by the physical therapist (see Table I), the guidance video will
be slowed down, and visual/textual guidance is provided for
the user to calibrate his/her movements.

[Your score: 5; Your position: red; Corrected position: green

Side view Your mirrored movement

-
—Keep your right knee straight

Keep your right leg in front
of you

Fig. 9. Examples of textual and visual guidance in the leg lift task. Left
avatar: side view. Right Avatar: mirrored view. User’s incorrect body parts:
red. Corrected position: green. Textual information is placed beside the body.

Visual guidance uses colored cylinders to label the user’s
incorrect body positions and the correct positions. Incorrect
body positions are rendered in red and the corrected positions
are rendered in green so user can see the clear difference. In
addition, directional arrows rendered in yellow will give
further guidance on how to correct this movement. Textual
guidance is provided beside the corresponding body parts to
instruct the user. There are two types of textual guidance:
qualitative and quantitative textual guidance. Qualitative
textual guidance gives only general instructions on how to
calibrate incorrect motion (e.g., “bring your right leg higher”),
while quantitative textual guidance provides detailed
instructions on the quantitative error (e.g., “bring your right
leg higher by 20 degrees”). Quantitative guidance is important
for the user to make right calibrations and avoid over



corrections. However, when textual guidance is provided
together with visual guidance, qualitative textual guidance
may be sufficient since visual guidance already gives the user
intuitive instructions about the quantitative error. To determine
which kind of guidance is most helpful for the user, we have
conducted subjective tests, whose results are shown in Section
V-D.

In addition, there are multiple choices for the timing of
providing guidance. For example, 1) concurrent guidance
when the user is learning the task, or 2) knowledge of result,
i.e., guidance after the user has done the whole training task,
and 3) post-gesture guidance after the user finishes each
gesture. Concurrent guidance is hard to achieve since the data
alignment approach cannot be applied in hard real time.
Besides, concurrent guidance may be overwhelming for the
user. Too many instructions in training may cause user’s
failure in following the task. Guidance after the entire task is
not real-time and cannot provide timely guidance for the user.
Besides, for some tasks that include multiple different gestures
and last several minutes, the user may have forgotten his/her
performance on the first few gestures, which may cause the
guidance to be ineffective. Post-gesture guidance can be
considered soft real-time and can make it easier for the user to
utilize the guidance. Moreover, post-gesture guidance can be
fully personalized depending on the user’s performance. For
good user performance, no guidance is needed and the user can
continue his/her training. When the user makes some errors in

a gesture, he/she will receive timely guidance after this gesture.

Hence, we believe that post-gesture guidance is the most
helpful in the proposed system. Real-time gesture
segmentation has been achieved by the proposed GB-DTW-A
algorithm. To determine whether to provide guidance or
continue training, a satisfactory score is set by the physical
therapist (which will be discussed in Section V). Scores above
the satisfactory score means that the user passes the gesture
and can progress to the next gesture. Otherwise, the system
will pause the training and provide guidance for this gesture.

V. EXPERIMENTAL RESULTS

We conducted experiments based on the testbed (shown in
Fig. 10) we have developed to emulate the system architecture
in Fig. 1. The cloud server is running on a desktop with a quad
core 3.1GHz CPU and 8GB RAM, and the user device is a
laptop PC with a dual core 2.5GHz CPU and 4GB RAM. The
network connection between the cloud server and the mobile
laptop is emulated using a network emulator (Linktropy [33]),
which can be programmed to emulate different wireless
network profiles. All the experiments were conducted with the
assistance of a licensed physical therapist who specializes in
movement disorder population with a background in
orthopedics and fitness.

AP e
Desktop
)'
~
-
AT, <

Network Emulator

\

Fig. 10. Experiment testbed.

Microsoft Kinect

A.  Experiments to Validate Data Alignment Approach

To validate the proposed data alignment and gesture
segmentation approach, the tested task is shoulder abduction
and adduction (shown in Fig. 2(a), criteria and motion features
are shown in Table III) with different target heights for five
times. The PT’s motion data for the five gestures are shown as
the blue curve in Fig. 11. Only the left shoulder angle is shown
here for simplicity.

125 T PT motion data
Gesture 1, X —Bandwidth
1 1 1
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Fig. 11. PT's motion data (i.e., left shoulder angle) and the bandwidth

profile.

Four users (User A, B, C and D) with different motion
abilities were invited as subjects in the experiment. They tried
to follow the PT’s movements by watching the training video
which was transmitted through the network emulator to the
laptop. Each user was tested under ideal network condition
(without any bandwidth constraint) and non-ideal network
condition (limited by a bandwidth profile to simulate the
downlink network). The bandwidth profile is shown as the
black solid curve in Fig. 11 and it was repeated for each user
using the network emulator. It can be observed that the
bandwidth is relatively lower at the third and fourth gestures.
Then we use three different techniques: 1) tradition method of
MCC, 2) classical DTW on the entire motion sequences, and
3) GB-DTW-A, to align the motion sequences of the PT and
the user. For the GB-DTW-A algorithm, the double thresholds
{5, 7, } are setas {0.1, 0.5} and 7;,= 0.5, r =20, 6 = 5%. The
alignment results of user A are shown in Fig. 12. In each figure,
we plot the motion data of the PT and the user, with the x-axis
showing the frame number and the y-axis showing the tested
shoulder angle. The vertical dashed lines in GB-DTW-A show
the gesture segmentation results. In the two DTW algorithms,
when multiple frames in one sequence are aligned with one
single frame in the other sequence, the single frame is repeated



TABLE III
MOTION FEATURES AND CRITERIA OF SHOULDER ABDUCTION AND ADDUCTION, LEG LIFT AND JUMPING JACK

Task Feature Type Criteria Feature
Time-varyin “Rai i
Shoulder vine Raise th"ha‘f“;ltf? the required Angle between the arm and the vertical direction: set by the PT (e.g., 90°)
abduction N, =1) eight
and Constraint . 0
adduction No=1) “Keep the elbow straight” Angle between the upper arm and lower arm: 180
Time-varying “Lift right leg to the required Angle between the right leg and the vertical direction: set by the PT (e.g.,
N, =1) height” 60°)
Lee lift “Keep the trunk upright” Angle between the trunk and the vertical direction: 0°
eg li
(ri g}glt) Constraint “Keep pelvis level” Angle between the pelvis and the horizontal direction: 0°
(N.=4) “Knee right knee straight” Angle between the right thigh and shank: 180°
Keep rlg}g(}gf],,m front of the Angle between the right leg and the patient’s right direction: 90°
Time-varying “Raise left arm beyond the head” Angle between left arm and the vertical direction: 120°
N=2) “Raise right arm beyond the head” Angle between right arm and the vertical direction: 120°

“Keep left ight . . .
cep left and right arm Difference between the two time-varying features: 0°

symmetrical”
J;;Tlf ng Keep left ettrr:rrlﬂe:’l’lgned with the Angle between the left arm and the body plane: 0°
Constraint
Ne=5) Keep nghtt?:nnkillgned with the Angle between the right arm and the body plane: 0°
“Keep left elbow straight” Angle between the left upper arm and lower arm: 180°
“Keep right elbow straight” Angle between the right upper arm and lower arm: 180°
(1) Original p =0.7793 (1) Original p = 0.4575
120 . LIS@T 120 —— LSBT
_ =5 =
g% g
T 80 T 80
£ 60 £e
40 40
20
o] 200 400 600 800 2 0 200 400 600 800
Frame Number Frame MNumber
(2) MCC p =0.9358 = (2) MCC p =0.7566 =
._.1 20 | PT ._.1 20 I FT
§’I 00 _g"l 00
T 80 T 80
=] =]
E 60 é &0
40 40
2 0 200 400 G600 800 X 0 200 400 600 800
Frame Number Frame Number
0 (3) DTW p =0.9738 & 120 (3) DTW p = 0.9868 -
= l—FT | _ [l
g g
T 80 T 80
(=2 =]
< & < @
40 40
20 20
0 200 400 600 BUUF 1UUUN 12;;0 0 200 400 600 8OO 1000 1200
rame Number Frame Mumber
{4) GB-DTW-A p=0.974 {4) GB-DTW-A p =0.984
R R i = pro| 120 1o 1 [ -
100 1 1 1 1 100 1 1 1 1
E =
ofh g S IUREAYTY
=
IR WiY 1 ] g% 1A 1 1
40 1 1 1 40 I 1 1 1
200 200 400 600 BUUF 1UUUN 12;;0 200 200 400 600 BOO 1000 1200
rame Number Frame Mumber
User A (ldeal Network) User A (Non-ldeal Network)

Fig. 12. Data alignment results for User A under ideal and non-ideal network conditions. (1) Original misaligned motion sequences of the PT and the user. (2)
Aligned sequences using MCC. (3) Aligned sequences using classical DTW on the entire sequence. (4) Aligned sequences using GB-DTW-A and gesture
segmentation.



for several times to show the alignment results. From Fig. 12
we can see that the user performs worse with fluctuating
bandwidth than ideal network condition due to the network
delay. Especially at the third and fourth gestures when
bandwidth is limited, he/she cannot follow the PT and
performs more slowly. To quantify the alignment results, we
calculate the correlation coefficient p of the aligned sequences
x and y in each method as

_ B0 =91

Joio; a

where ¥,y are the means of x, y and o,?, 6,2 are the variances.
High correlation coefficient indicates that the two sequences
are aligned better. The correlation coefficients for each user
using different methods are shown in Table IV. Comparing the
three methods, it can be concluded that when the user follows
the PT quite well and there is only time shift delay, the
traditional method of MCC gives high correlation coefficients
(p > 0.85). However, when the network condition is not ideal
and therefore the training video is delayed, or when the user
cannot follow the PT due to his/her motion ability, the user’s
motion data are distorted. In this case the two DTW algorithms
perform much better (p > 0.95) than MCC (p < 0.80). For
DTW and GB-DTW-A, their alignment results are quite close
and both of their correlation coefficients are more than 0.95.
Fig. 13 shows the running time of DTW and GB-DTW-A on
the four users under ideal and non-ideal network conditions.
We can see that GB-DTW-A needs significantly less time
compared with DTW to align the two sequences, which
validates our deduction in (10). Therefore, the proposed GB-
DTW-A outperforms other alignment methods as well as
enable real-time guidance with reduced computation
complexity.

TABLE IV
CORRELATION COEFFICIENTS FOR USER A, B, C, AND D USING DIFFERENT
ALIGNMENT METHODS UNDER IDEAL AND NON-IDEAL NETWORK CONDITIONS

Network .. GB-
User Condition Original MCC DTW DTW-A
A Ideal 0.7793 0.9358  0.9738  0.9747
Non-Ideal 0.4575 0.7566  0.9868  0.9841
B Ideal 0.7824 0.9578  0.9741 0.9753
Non-Ideal 0.4726 0.6104  0.9811 0.9827
c Ideal 0.6388 0.8766  0.9654  0.9649
Non-Ideal 0.1036 0.6351  0.9888  0.9729
D Ideal 0.6190 0.9302 09752  0.9761
Non-Ideal ~ -0.0944 0.7115  0.9851 0.9851
[deal (D
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Fig. 13. Running time of DTW and GB-DTW-A under ideal and non-
ideal network conditions.

B. Experiments to Compare GB-DTW0 and GB-DTW-A

Wireless networks can be associated with significant jitter
(variations in network delay). Jitter can exacerbate the motion
data misalignment problem due to network delay, and
challenge the performance of the data alignment and
segmentation algorithms GB-DTWO [13] and GB-DTW-A.
Hence, we conduct experiments to compare the performance
of the two algorithms in the presence of jitter. We emulate the
condition where the user follows the PT accurately, but his/her
motion sequence is affected by jitter. By using this “perfect”
user, the motion data misalignment is completely caused by
jitter. Therefore, the effectiveness of the two algorithms can be
tested by checking whether they can achieve “perfect”
alignment result (correlation coefficient close to 1). In our
experiments, the motion sequence of the “perfect” user is
created by delaying each frame of the original PT’s motion
sequence shown in Fig. 11 by Az. (Frames are not reordered
even if subjected to differing delays.) At follows a positive
truncated normal distribution (i.e., At ~ |N(0, ¢°)|), and the
mean of At is

At? >
jAt—eszdAt_/ ‘5. (18)
T

Ua 1s proportional to the standard deviation o. Larger u,
represents higher delay and jitter in the wireless network. In
the experiments, py, ranges from Os to 8s. For each value of
Uas, €xXperiments are repeated for ten times and the average is
calculated. For GB-DTWO0 and GB-DTW-A, we calculate the
following four indexes.

Correlation Coefficient (CC): see (17).

User Error (UE): user’s average error in each frame. In the
shoulder abduction and adduction task, user error is in degrees
since the motion feature is the shoulder angle.

Segmentation Error (SE): error between the detected
endpoint and the true endpoint of the user’s gesture.

Segmentation Delay (SD): delay between the true endpoint
of the user’s gesture and the time when the segmentation is
completed.

Results are shown in Fig. 14, with the x-axis showing ¢
and y-axis showing CC, UE, SE, and SD in the four sub-
figures respectively. Since each user motion sequence contains
only network delay, the user’s performance can be considered
“perfect” and thus CC should be close to 1 and UE should be
close to 0. Smaller SE indicates more accurate segmentation
and smaller SD means more real-time segmentation. From Fig.
14 it can be concluded that, when the jitter is low (i.e., Up; <
2s), both GB-DTWO and GB-DTW-A achieve good
segmentation and alignment results. Note that the SD result of
GB-DTWO is always larger than 20 frames because Condition
3 is always used to check r frames following the gesture
endpoint. When jitter is higher (i.e., up; > 4s), GB-DTW-A
shows superiority over GB-DTWO, especially in maintaining
low SE and SD. The average number of CC, UE, SE, and SD
for GB-DTWO0 and GB-DTW-A are shown in Table V. We can



observe significant improvements achieved by the new
algorithm GB-DTW-A compared to GB-DTWO0 [13],
especially in reducing estimation of user error (lower UE),
enhancing segmentation accuracy (lower SE), and making
segmentation real-time (lower SD). Note that the segmentation
delay (SD) achieved by the new algorithm GB-DTW-A is only
11 frames on average, compared to an average of 39 frames
for GB-DTWO, and never higher than 40 frames. The low SD
numbers achieved by GB-DTW-A validates that the
computation complexity of GB-DTW-A is close to O(mn/g) in
most cases, and since it never has to search till the end of the
user sequence, it shows that it never reaches the worst-case
computation complexity of O(mn) (section IV-B).
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Fig. 14. Comparison between GB-DTWO0 and GB-DTW-A. The four sub-
figures show results of correlation coefficient (CC), user error (UE),
segmentation error (SE), and segmentation delay (SD).

TABLE V
AVERAGE IMPROVEMENTS OF GB-DTW-A CoMPARED TO GB-DTW0
CcC UE (degree) SE (frame) SD (frame)
GB-DTWO0 0.97 0.78 21 39
GB-DTW-A 0.98 0.38 10 11
Improvement  0.95% 50.1% 54.1% 71.2%

C. Experiments to Estimate Overall User Score

As discussed in Section I'V-C, the optimal function A(e) for
each task can be estimated by applying linear regression on
training samples. In this experiment, the tested tasks are leg
lift and jumping jack which are shown in Fig. 15. Motion
features and criteria for each task are shown in Table II1.
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Fig. 15. (a) Leg lift. (b) Jumping jack.

In the experiment 10 subjects (aged 18~30, 6 males, 4
females) used the proposed training system to perform leg lift
and jumping jack for several times. For each performance of
each subject, the physical therapist gave an evaluation score s
€[0,10]. In the meantime, the proposed training system
captured the subject’s movements, processed the motion data
and calculated an error vector e. 60 samples were gathered for
each task.

All the samples are randomly divided into a training set
(including 42 samples) and a test set (including 18 samples).
For the training set, Equation (15) is used to train the samples
and calculate /(e). Then we apply the optimal function 4(e) on
the test set. The results are shown in Fig. 16, with the x-axis
showing the real score spr given by the physical therapist and
the y-axis showing the estimated Score Sestimated Using %(e). The
mean absolute error (MAE) between spr and Sestimated 1S
calculated and shown in Fig. 16. Samples on the diagonal line
SPT = Sestimated Means that the estimated score is the same as the
real score without any error. The two dotted lines spr = Sestimated
+ 1 define the diagonal area for which the estimation error is
below 1. (We choose 1 as the error threshold since most scores
given by the physical therapist are integers, for which 1 is the
minimum error.) We can see that most of the test samples lie
in the diagonal area, which means that the evaluation models
are accurate. Besides, using /4(e) to evaluate the patients is
superior because the intra-rater reliability [34] of a human
performing movement analysis without any analytical tools
besides eye site shows increased variability. By utilizing the
system to analyze the movements there is a more uniform
scoring and increased intra-rater reliability.

(a) Leg lift (MAE=0.54)

(b) Jumping jack (MAE=0.50)

Estimated score
Estimated score

6 7 8 9 10 0 1 2 3 6 7 8 9

4 5
PT score

4 5
PT score

Fig. 16. Estimated score vs. PT real score and the mean absolute error
(MAE) for (a) leg lift and (b) jumping jack.

D. Effectiveness of Visual and Textual Guidance

As discussed in Section IV-D, visual and textual guidance
can be provided after each gesture according to the user’s
performance. The satisfactory score is set as 7 by the physical
therapist in order to allow for some intrinsic error correction,
which would allow for increased learning of the task. If the
threshold is set too low, the patients would obtain a passing
score too easily and not have the correct amount of feedback
to properly correct the deficits in his/her movements. If the
score is set too high, it might discourage the patients from
trying their best and create a negative mindset, resulting in a
reduction in retention.



To validate the effectiveness of the guidance system, we
conducted another subjective test to compare four types of
guidance: 1) no guidance (N), 2) visual guidance (V), 3)
quantitative textual guidance (T), 4) visual and qualitative
textual guidance (VT). There are two alternative ways to
design the subjective test. The first one is having each user try
four different tasks with equal difficulty level, with each task
associated with one type of guidance. The four tasks should be
completely different, otherwise the user’s ability may improve
after he/she tries one task which will impact his/her
performance of the next task and hence our evaluation of the
effectiveness of the associated guidance. The other way is
dividing all the subjects into four groups, with equal average
ability in each group. People in different groups practice the
same task but are provided with different types of guidance.
After consultation with the physical therapist and multiple
attempts of data capture, it was not clear if it is possible to have
tasks which are significantly different from each other and yet
have same quantifiable difficulty level, because of the tracking
insufficiency of the Kinect sensor for some tasks (e.g., use of
wheelchairs, occlusion problem). Hence we considered the
first method to be not feasible, and instead decided to use the
second method.

In the test, 28 subjects (aged 17 ~ 38, 14 males, 14 females)
were invited to perform two training tasks (leg lift and jumping
jack) using the proposed system. To ensure the same initial
average score of each group, groups were assigned after the
first attempt of each subject. Each subject performed each task
four times and the average score of each group is calculated.
Fig. 17 shows the average performance and 90% confidence
intervals (black vertical lines) of each group, with each group
represented by a different color. The red dotted curve shows
the satisfactory score.
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Fig. 17. Average score of each group with vertical lines showing 90%
confidence interval. (a) Leg lift. (b) Jumping jack.

From Fig. 17 we can see that the average scores on the first
attempt in each group are similar, which ensures similar initial

ability of each group. We also make the following important
conclusions from the results. While scores for people in group
N (without any kind of guidance) fluctuates with large
confidence intervals, and may or may not reach the
satisfactory score, using each type of real-time guidance helps
the users improve performance, though with varying
effectiveness. People in group V (who get visual guidance) and
group T (who get quantitative textual guidance) reach the
satisfactory score 7 after the fourth attempt. On the other hand,
the results show that the combination of visual and textual
guidance is the most helpful: it helps users in group VT reach
score 7 after only the second attempt.

E. Performance Validation Using Real Cloud Environment

To validate the performance of the proposed system on a real
cloud environment, we implemented the system on Amazon
Web Services (AWS) [35]. The experiment setup is the same
as Fig. 10 except that the desktop and network emulator are
replaced by AWS (and the real network from AWS to the user
device). Specifically, we use AWS g2.2xlarge instance which
provides access to one NVIDIA GRID GPU with 1,536 CUDA
cores and 4GB of video memory. The CPU it provides is Intel
XeonE5-2670 @2.60GHz with 15GB memory. The operating
system we deploy is Windows_Server-2008-R2_SP1.

One of the concerns of having the system run on a real cloud
environment is the possible impact of additional delay from
the cloud to the user device. We tested the delay of the training
and guidance videos under three different network conditions:
1) unloaded network (e.g., accessing our cloud-based system
using home Wifi at midnight), 2) loaded network (e.g.,
accessing our cloud-based system using LTE network at Spm),
3) loaded and noisy network (e.g., accessing our cloud-based
system using public Wifi at Spm). The histograms of the
measured delay under each condition are shown in Fig. 18,
with the x-axis showing the delay and the y-axis showing the
frequency of each value (i.e., number of occurrences of the
value).

Loaded network

Unloaded network I_Z%gded and noisy network

200 200

]
o
o

w
o
w
o

o
o

>
o
Frequency

Frequency
Frequency

o
o
o
o

{18 G W R P

0 50 100 0 50 100 0 50 100
Delay (ms) Delay (ms) Delay (ms)

Fig. 18. Histogram of the measured delay of avatar video from cloud
(AWS) to user device under unloaded, loaded, and loaded and noisy network
conditions.

The mean and Standard Deviation (STD) of the measured
delay are shown in Table VI. When the network is unloaded,
the delay is under 30ms most of the time. When the network
is loaded and noisy, the delay is increased significantly but still
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Fig. 19. Data alignment results for User 1, 2, 3 using AWS. (1) Original misaligned motion sequences of the PT and the user. (2) Aligned sequences using GB-
DTW-A and gesture segmentation.

under 100ms, which means that the video streaming from the
cloud to the user’s mobile device can be considered real-time
in the system. Furthermore, we invited three new users to
perform the shoulder abduction and adduction task using the
proposed training system. The motion data alignment
algorithm (i.e., GB-DTW, see Section IV-B) and the user
performance evaluation algorithm (see Section IV-C) are
implemented on AWS. Fig. 19 shows the motion data
alignment results. We can see that the proposed GB-DTW
algorithm still works well in aligning motion data and
segmenting gestures in the real cloud environment. Table VII
shows the running time of the alignment and evaluation
algorithms on AWS. The running time of the two algorithms
are under 20ms, again demonstrating their real-time nature.
From all the above results, it can be concluded that the
proposed system is able to provide real-time training and
guidance for the user in a real cloud environment.

TABLE VI
MEAN AND STD of DELAY FROM CLOUD TO USER DEVICE UNDER
UNLOADED, LOADED, LOADED AND NOISY NETWORK CONDITIONS

Unloaded Loaded Loaded and noisy
Mean (ms) 28.09 46.90 60.72
STD (ms) 11.85 11.19 20.99
TABLE VII

RUNNING TIME OF GB-DTW-A AND USER PERFORMANCE EVALUATION
ALGORITHMS IN CLOUD (AWS)

Algorithm User 1 User 2 User 3
GB-DTW-A (ms) 16.87 14.91 14.90
User performance evaluation (ms) 0.35 0.29 0.38

V1. CONCLUSION AND FUTURE WORK

In this paper, we propose a cloud-based physical therapy
monitoring and guidance system that captures and evaluates
the user’s performance automatically. It can also be applied to
many other types of training applications, such as wellness and
fitness training, and ergonomics training. To address the

motion data misalignment problem as well as enable real-time
evaluation, we propose the GB-DTW-A algorithm to align the
motion data and segment the user’s motion sequence into
gestures in real time with reduced computation complexity.
Experiments with multiple subjects using real network profiles
show that the proposed method works better than other
alignment techniques. Moreover, we provide results to
demonstrate the accuracy and real-time performance of the
proposed GB-DTW-A algorithm. Furthermore, the evaluation
model for the user’s performance is trained based on
subjective test and linear regression method. Testing results
show that the evaluation model is able to provide an accurate
score which is quite close to the real score given by the
physical therapist for the user’s performance. Besides, the
proposed guidance system can provide detailed visual and
textual guidance, whose effectiveness has been validated in
subjective test. Experiments using real cloud environment
AWS show that the proposed system can provide real-time
training and guidance for the user.

In the future, we may incorporate other kinds of sensors,
like pressure sensors and epidermal sensors. Besides, Kinect
can lead to inaccurate and unstable skeleton tracking,
especially when tracking complex movements or patients with
walkers and wheelchairs. Hence we would like to use multiple
cameras or incorporate other motion capture sensors to
improve the skeleton capture accuracy. Moreover, setting
uniform criteria for different patients may cause injury or over
corrections. Thus we would like to make the criteria of each
task more adaptive and personalized for patients according to
their health conditions. Furthermore, we will explore more
about the design of guidance. Currently the proposed visual
and textual guidance are proved useful for the user to improve
performance, and the combination of visual and textual
guidance is the most helpful. However, many other issues need
to be considered to improve the effectiveness of guidance, e.g.,
are there other types of guidance which may be more effective
for certain types of patients, what is the proper frequency to
provide guidance, and how much guidance might be right as
opposed to being overwhelming for the user. All of these
issues need to be considered and explored in our future work.
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