
1960 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 12, DECEMBER 2015

Enhancing Video Encoding for Cloud Gaming
Using Rendering Information

Yao Liu, Member, IEEE, Sujit Dey, Fellow, IEEE, and Yao Lu, Member, IEEE

Abstract— Cloud gaming allows games to be rendered on the
cloud server and allows the rendered videos to be encoded and
streamed in real time to the player’s devices. Compared with
other video streaming applications, cloud gaming offers a unique
opportunity to enhance the video encoding process by exploiting
rendering information. In this paper, we propose two techniques
to improve cloud gaming video encoding, aiming at enhancing
the perceived video quality and reducing the computational
complexity, respectively. First, we develop a rendering-based
prioritized encoding technique to improve the perceived game
video quality according to network bandwidth constraints.
We first propose a technique to generate a macroblock (MB)-
level saliency map for every game video frame using rendering
information. Furthermore, based on such a saliency map,
a prioritized rate allocation scheme is proposed to dynamically
adjust the value of quantization parameter of each MB. The
experimental results indicate that the perceptual quality can
be greatly improved using the proposed technique. We also
develop a rendering-based encoding acceleration technique that
utilizes rendering information to reduce the computational com-
plexity of video encoding. This technique mainly consists of
two parts. First, we propose a method to directly calculate the
motion vectors (MVs) without employing the compute intensive
motion search procedure. Second, based on the computed MVs,
we propose a fast mode selection algorithm to reduce the number
of candidate modes of each MB. The experimental results show
that the proposed technique can achieve more than 42% saving
in encoding time with very limited degradation in video quality.

Index Terms— Cloud gaming, graphic rendering,
macroblock (MB) mode selection, prioritized encoding.

I. INTRODUCTION

DURING recent years, significant interest in cloud gaming
has evolved, with commercial services like OnLive [1]

and Gaikai [2] evoking interest among gamers, as well as
attracting interest from researchers. Unlike traditional gaming,
cloud games are rendered and executed on a cloud server, and
the rendered game video is encoded and streamed to the thin
client device through the network. The delivered game video
will be decoded and displayed on the client device, while the
game control signals are sent back to the cloud server for
interaction.

Manuscript received September 22, 2014; revised February 7, 2015 and
April 18, 2015; accepted June 12, 2015. Date of publication June 26, 2015;
date of current version December 3, 2015. This work was supported by
InterDigital, Inc., Wilmington, DE, USA. This paper was recommended by
Associate Editor D. T. Ahmed.

The authors are with the Mobile Systems Design Laboratory, Department of
Electrical and Computer Engineering, University of California at San Diego,
La Jolla, CA 92093 USA (e-mail: yal019@ece.ucsd.edu; dey@ece.ucsd.edu;
yaolu@ece.ucsd.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2015.2450175

Although the cloud gaming approach is promising in
enabling gamers to play rich 3-D games on thin client devices
(such as mobile devices) without the need to download the
entire game or purchase expensive graphics cards, there exist
two challenges for this approach.

1) Video Quality: Since the encoded game video has to be
streamed through the network that may have a limited
and fluctuating bandwidth (especially mobile network),
the video bit rate has to be adapted to cope with the
available bandwidth. It is very challenging to maintain
good video quality when network bandwidth is low.
Moreover, unlike other video streaming applications
such as video conferencing, cloud gaming has a high
requirement for frame rate in order to ensure the fluid-
ness of game. The high frame rate requirement makes it
even more difficult to ensure a satisfactory video quality
under limited bandwidth.

2) Real-Time Encoding: Cloud gaming is a highly
interactive application, and the rendered video frames
need to be encoded in real time. For example, consider
playing a game with a frame rate of 30 frames/s,
which is believed to be sufficiently high to provide a
smooth playing experience. Then, in order to maintain
a highly interactive playing experience, the encoding
of each frame needs to be finished in 33.3 ms. The
short encoding time budget is not easy to achieve
if the game video is captured with large spatial
resolution.

Unlike other video streaming applications such as
Youtube or Skype, in cloud gaming, we have control over
the game rendering process (the generation of video content)
on the cloud server; hence, we can exploit some rendering
information such as the camera location and angle, the location
of each object, the distance of each object to the camera, etc.,
to help address the above two challenges.

In regard to the video quality challenge, we can leverage
rendering information to exploit the perception redundancy in
video encoding to provide a better perceptual video quality.
Previous research [3] has shown that humans focus on small
regions of the video rather than the entire video as a whole.
Therefore, in this paper, we develop ways to use rendering
information to identify the importance of different regions,
spend more bits on the important regions, and consequently,
achieve a better perceptual video quality compared with allo-
cating bits equally on the entire video frame.

About the real-time encoding challenge, we propose a
rendering-based video encoding acceleration technique to

1051-8215 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LIU et al.: ENHANCING VIDEO ENCODING FOR CLOUD GAMING USING RENDERING INFORMATION 1961

exploit the rendering information to accelerate the encoding
process. This technique consists of two parts.

1) We propose a method to directly calculate the motion
vector (MV) between adjacent game frames and use
this calculation method to replace the regular compute
intensive search-based motion estimation method.

2) We propose a fast mode selection algorithm, which
uses the homogeneity of MVs to reduce the number
of candidate macroblock (MB) modes that need to be
tested in the rate–distortion optimization (RDO) process,
ultimately reducing the computational complexity of
video encoding.

The rest of this paper is organized as follows. Section II
summarizes the related work. Section III explains the
rendering-based prioritized encoding technique, including
the extraction of MB importance and the bit rate allocation
algorithm, followed by the validation results. Meanwhile,
in Section IV, we explain in detail how to use rendering
information to help reduce the encoding complexity for cloud
gaming, including how to use rendering information to com-
pute MVs, and how to use rendering information to efficiently
select the encoding mode for each MB. Finally, Section V
concludes this paper and proposes some future work.

II. RELATED WORK

In recent years, there has been a great deal of interest
in cloud gaming [4]–[6], [14]. In cloud gaming, since the
captured game video needs to be encoded in real time and
streamed through networks, it is vital to maintain good per-
ceptual video quality and achieve fast encoding speed in order
to ensure a satisfactory interactive playing experience. There
have been some studies on cloud gaming aiming at enhancing
the video quality or encoding speed, but most of them are
based on adapting/optimizing the rendering richness of the
game scene. For example, Wang and Dey [8] analyzed the
relation between video bit rate and rendering richness, and
based on that, they proposed a rendering adaptation technique
that adapts the rendering richness of game frame according to
the network condition. Shirmohammadi [9] proposed to adapt
the game scene complexity by omitting some less important
objects (IOs) in the game frame when the network bandwidth
is low. However, in this paper, we address the challenges of
video quality and encoding speed from a different angle by:
1) optimizing the encoding process and 2) keeping the graphic
rendering richness untouched.

In order to enhance perceptual video quality under a given
network constraint (bit rate limit), prioritized encoding can
be a promising solution. There have been various works on
prioritized video encoding, which allocates more bits to
regions of high importance in order to improve the video per-
ceptual quality. However, for regular video, accurately extract-
ing the importance information for different regions within
a video frame is not a trivial task. In [10]–[13], techniques
have been developed to extract the importance information
using either spatial or temporal domain characteristics, such
as luminance or chrome values. These techniques are very
compute intensive and, therefore, not applicable for cloud
game application that requires real-time encoding.

Prioritized encoding techniques specific for cloud gaming
videos have not been very widely studied. Tizon et al. [15]
have proposed a method to identify the importance of MBs
based on the depth values (under the assumption that the
closer objects have higher priority from viewers’ perspective).
However, this assumption is not always true since the most
important game object may not be the closest object to
the camera. In this paper, we propose a more general and
flexible framework that allows object importance to be defined
according to the depth as well as the game scene information,
and therefore can correlate better with human perception and
achieves better video quality.

Video encoding acceleration techniques specific for cloud
gaming applications have not been widely investigated either.
Taher et al. [16] proposed a high-level method to acceler-
ate encoding by efficiently configuring the most important
encoding parameters that can reduce the complexity while
maintaining acceptable quality. However, instead of tuning
the high-level parameters like in [16], our method takes
a different approach, i.e., to use rendering information to
optimize the motion estimation and mode selection process
of H.264/Advanced Video Coding (AVC) [7] encoding.

On optimizing the motion estimation process,
Fechteler and Eisert [17] have proposed a rendering-based
method to calculate the MV using the motion information of
every MB’s central pixel. Similarly, Semsarzadeh et al. [18]
have proposed to use game objects’ motion information
to bypass the regular motion estimation process. The
two methods in [17] and [18] operate at MB level, and all
the blocks within an MB have the same MVs, therefore may
not achieve the best performance when encoding the MBs
that contain multiple objects moving to different directions.
In this paper, we propose to generate pixel-level MVs that
can lead to higher motion estimation accuracy and encoding
quality.

On optimizing the mode selection process,
Cheung et al. [19] have also used depth information to
accelerate the mode selection process. The method in [19]
is based on the assumption that regions of similar depth
are likely to correspond to regions of homogenous motion
and, hence, are suitable for encoding using large partition.
However, this assumption may not be true for MBs containing
multiple small objects, which have a similar depth but move
in different directions. The encoding acceleration technique
proposed in this paper uses the motion homogeneity instead
of depth, and therefore, it is not constrained by the above
assumption.

Furthermore, Shi et al. [20] have proposed a 3-D image
warping-assisted video coding method, which selects a set of
key frames in a video sequence, uses the 3-D image warping
algorithm to interpolate the other nonkey frames, and encodes
the key frames and the residual frames separately. Although
Shi’s coding method achieves good encoding performance,
there exist two limitations.

1) It works very differently from regular H264/AVC
encoder, and hence cannot benefit from H264/AVC’s
features like motion estimation, mode selection, and
variable block sizes.

1962 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 12, DECEMBER 2015

Fig. 1. Overview of rendering-based prioritized encoding technique.

2) A 3-D warping engine needs to be implemented
both on the encoder and decoder, which increases
the complexity.

On the other hand, our proposed technique follows the
framework of regular H264/AVC encoder, and hence is
much easier to implement and adopted by the cloud gaming
providers.

III. RENDERING-BASED PRIORITIZED

ENCODING TECHNIQUE

In this section, we present a rendering-based prioritized
encoding technique that aims at enhancing the video percep-
tual quality by adapting the encoding quality of the different
regions of the video frame according to their importance.
The proposed rendering-based prioritized encoding technique
will first utilize rendering information such as pixel depth to
compute the importance of different regions of game frame,
convert this rendering information to an MB-level saliency
map, and finally, find the optimal encoding parameter [in this
paper, we choose quantization parameter (QP)] of each MB.
The task of finding the optimal QP values for each MB is
formed as an optimization problem. The optimal QP values
are selected such that given the available bandwidth limit
(bit rate budget), the perceptual video quality is maximized
and the resulting video bit rate does not exceed the bandwidth
limit.

This section is organized as follows. First, in Section III-A,
we give a high-level overview of the rendering-based pri-
oritized encoding technique including two key components:
1) the importance computing module and 2) the bit rate
allocation module. In Section III-B, we first introduce how to
extract the rendering information from the rendering engine.
In Section III-C, we introduce how to use rendering informa-
tion to calculate the importance of each MB. In Section III-D,
we explain the approach to determine the optimal QP for each
MB according to its importance and the total bit rate budget.
Finally, in Section III-E, we discuss the experiment conducted
to validate the performance of the proposed technique.

A. Overview of Rendering-Based Prioritized
Encoding Technique

Fig. 1 shows an overview of the proposed rendering-based
prioritized encoding technique. First, the rendering engine
generates a game frame coupled with depth information
(a pixel-wise map that indicates the depth of each pixel) and
scene composition information (which pixel corresponds to

which 3-D object and the importance of the object). Then, the
rendering information will be fed to an importance computing
module, which is responsible for combining the depth informa-
tion and scene composition information together to generate
an MB-based saliency map. Meanwhile, we use a network
monitor proposed in [5] to periodically measure the interactive
latency by sending probe packets and then adapting the encod-
ing bit rate according to the measured latency based on the bit
rate adaptation algorithm also proposed in [8]. This bit rate
adaptation algorithm will dynamically select the appropriate
encoding bit rate such that the video bit rate will not exceed the
network bandwidth and cause network congestion. Moreover,
the selected bit rate target and the generated MB-level saliency
map will be used as inputs to a bit rate allocation algorithm,
which is responsible for deciding the optimal QP of each MB,
such that the overall perceptual video quality is maximized and
the encoding bit rate target is met. Finally, the output of the
bit rate allocation module, a set of the QP values for each MB,
will be passed to the quantization module of the encoder and
the game frame will be encoded using these QP values.

From implementation perspective, the proposed rendering-
based prioritized encoding process will be executed in a
frame-by-frame manner. The bit rate adaptation algorithm
will be periodically executed with a period of 1 s, which
allows enough granularity for bit rate switching to cope with
network bandwidth fluctuations.

B. Extraction of Rendering Information

In order to develop a prioritized encoding technique that
utilizes rendering information to determine the importance of
different regions of a game frame, the first step is to clarify
which rendering information we need, how they correlate with
importance of regions in the rendered frames, and how we
extract them. In this section, we will explain these three topics.

From a player’s perspective, the importance of a region is
defined by the probability/likelihood that region will attract
the player’s attention. In other words, regions with high impor-
tance are the regions that players will pay more attention to.
In this paper, we suggest two kinds of rendering information
that play significant roles in attracting human attention and
can be conveniently extracted from the rendering engine:
1) depth information and 2) scene composition information.

First, in any rich 3-D game (especially role playing games),
there is a virtual camera that generates the game video. One
can easily make the observation that the objects closer to
the camera (less depth) are more likely to attract player’s
attention [15]. Hence, the depth value would be a good

LIU et al.: ENHANCING VIDEO ENCODING FOR CLOUD GAMING USING RENDERING INFORMATION 1963

Fig. 2. Game frame and rendering information. (a) Top left: game frame
of PlaneShift. (b) Top right: values stored in Z -buffer. (c) Bottom left:
values stored in Stencil buffer. (d) Bottom right: illustration of distance-based
saliency.

indicator for the importance of each pixel (smaller depth
corresponds to higher importance). Moreover, the depth
value of each pixel can be conveniently obtained using the
well-known Z -buffer. During the rendering process, when
3-D objects are mapped to a 2-D plane, a depth value for each
pixel is computed to determine object occlusion. After a game
frame is rendered, the depth value of each pixel will be stored
in the Z -buffer. One can easily read the depth values stored in
the Z -buffer without interfering with the rendering pipeline.

Second, besides the depth value, another important factor
that determines the amount of attention a player pays to
a particular region is the scene composition information,
i.e., which region contains which object and the priority of
the object. For example, Fig. 2(a) shows a frame for the game
PlaneShift [21], which is a typical 3-D role playing game.
In this kind of game, the player controls the main avatar
moving in a 3-D world and performing a set of tasks such
as fighting against enemy avatars. In this game frame, the
main avatar and the enemy avatar would undoubtedly be more
important than the other objects such as the buildings and trees.
Within the video frame, the regions containing the avatars will
draw more attention from players.

The scene composition information is very helpful for
identifying the importance of different regions. In general,
this information is not available for regular video encoding
and streaming applications, but cloud gaming offers the unique
advantage for conveniently extracting scene composition infor-
mation from the rendering engine. Similar to the depth values,
we can obtain the scene composition information using the
well-known Stencil buffer by following these two steps.

1) First, we need to define a priority value for objects in
the game world. Take the game frame shown in Fig. 2(a)
as an example; we can define the priority of the main
avatar (the closer avatar) to be 1, the priority of the
enemy avatar (the further avatar) to be 0.8, the priority
of buildings to be 0.2, and other objects (like the sky
and floors) to be 0.1.

2) After defining the priority value for each object, we can
store this priority value into the Stencil buffer during
rendering. Stencil buffer is a pixel-wise buffer supported
by all the mainstream graphic libraries such as OpenGL
and DirectX. Both of these graphic libraries have API
functions, which allow game developers to control what
data to write into the Stencil buffer during rendering.
By configuring the Stencil buffer appropriately, when-
ever an object is being rendered, its corresponding pixels
in the Stencil buffer will be written with its priority
value. The values stored in the Stencil buffer can be
easily read out to help determining the importance of
different regions.

Note that although we have proposed prioritization of game
objects, it is a very flexible step in our framework and it can
be implemented in several ways.

1) Prioritize All Objects: If possible, the game developer
can assign a saliency value to each object.

2) Prioritize Some Objects: The game developer can define
some objects, which have certain functionalities or may
affect the game logic, as IOs. Examples of these IOs are
enemies, weapons, and doors. The game developers can
assign only priority values to these objects and set the
other objects’ priority to be 0.

3) Prioritize Only the Main Avatar: The game developer
can regard the main avatar as the only IO, set its priority
to be 1, and set all the other objects’ priority to be 0.

4) No Object Prioritization: In the case when game devel-
opers do not specify any object as IO, we will only use
the depth information to determine saliency of a certain
region.

Furthermore, the object prioritization step can be done
offline and only once for a game. For a new game, it can be
done during the game development period. Considering the
amount of effort taken to develop a 3-D game, the additional
effort for assigning object priorities should be negligible. Also
note that the priority value associated with an object will be
static and not dependent on game scenes.

Another scenario that should be taken into consideration is
that when a game frame contains transparent/semitransparent
objects. When a transparent/semitransparent object is
rendered, for all the pixels covered by this object, their
Stencil buffer values need to be updated to be the maximum
value of this transparent/semitransparent object’s priority and
the old value stored in the Stencil buffer. For example, if in a
game frame there is an enemy hiding behind a semitransparent
glass, then the priority values stored in Stencil buffer will be
the maximum value of the enemy object’s priority and the
glass object’s priority.

C. Automatic Importance Computing Using
Rendering Information

After explaining how to extract the rendering information
(depth information and scene composition information),
this section introduces the automatic importance computing
module, which takes rendering information as input and
computes the saliency for each MB as output.

1964 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 12, DECEMBER 2015

Fig. 3. Game frame and combined saliency map (Scombine) for different
values of α.

As explained in Section III-B, we can configure the
Z -buffer and Stencil buffer such that, after a game frame is
rendered, the Z -buffer and Stencil buffer will contain the depth
value and object priority value for each pixel. As an example,
Fig. 2(b) and (c) shows the values stored in the Z -buffer
and Stencil buffer, respectively, after the game frame shown
in Fig. 2(a) is rendered.

The values stored in Z -buffer and Stencil buffer can be
utilized to determine the importance of each pixel within the
frame. In order to do that, we first define IO as the object
whose priority value is larger than a certain threshold. As an
example, in the game frame shown in Fig. 2(a), if we set
a priority threshold of 0.6, then among all the objects in
the game frame, only the two avatars have priorities higher
than 0.6 [according to Fig. 2(c)]. Hence, there are only two IOs
in the frame, as shown in Fig. 3(d).

We now propose two metrics to quantify the importance
of each pixel using the depth information from the Z -buffer
and the important region information derived using the Stencil
buffer.

1) Depth-Based Saliency (Sdepth): For each pixel, its
depth-based saliency is a metric related to the depth
of the pixel. The depth-based saliency for pixel M ,
Sdepth(M), can be computed using (1). In (1),
Z(M) is the value stored in the Z -buffer [a number
between 0 and 1, as shown in Fig. 2(b)]. Larger Sdepth
value corresponds to lower depth and higher saliency

Sdepth(M) = 1 − Z(M). (1)

2) Distance-Based Saliency (Sdistance): For each pixel, its
distance-based saliency is a value related to its location
and the location of all the IOs within the frame.

For a pixel M , in order to compute its Sdistance value,
Sdistance(M), two scenarios need to be considered.

1) If pixel M is inside an IO, then Sdistance(M) is equal to
the priority of that IO.

2) If pixel M is not inside any IO, then Sdistance(M) is
dependent on the distances from pixel M to the IOs
of the game frame. Take Fig. 2(d) as an example.
There are two IOs within that frame (the two avatars),
and the distance-based saliency for pixel M should be

computed as

Sdistance(M)

= 1

2 × log D

(
P1 × log

D

dist1
+ P2 × log

D

dist2

)
. (2)

In (2), P1 and P2 are coefficients that represent the object
priority of each avatar. Coefficients dist1 and dist2 are the
distances from pixel M to the centers of the two IOs’ minimum
bounding circles (in unit of pixels), as shown in Fig. 2(d).
D is the diagonal length of the video frame (in unit of pixels),
and it can be regarded as constant in (2). Note that we use the
diagonal length of video frame D to divide the distance values,
dist1 and dist2, in order to get rid of the influence of video
spatial resolution. We use the log function in (2) because it can
distribute importance in a similar manner the human visual
system works, such that the quality degradation starts to be
perceived by the user only when the distances, dist1 and dist2,
increase to a certain value. Ciubotaru et al. [23] have compared
the performance of modeling this relation using a linear
function and a logarithmic function. The experimental results
show that the logarithmic function achieves a much better
correlation with human perception than the linear function.

Equation (2) is for the game frames containing two IOs.
In general, suppose a video frame contains T IOs, then
Sdistance(M) is represented by

Sdistance(M)

=

⎧⎪⎪⎨
⎪⎪⎩

Pi (if M ∈ IOi)

1

T

T∑
i=1

Pi × log D
disti

logD
(if M ∈/ IOi ∀i ∈ [1, T]). (3)

In (3), T is the number of IOs, Pi is the priority of the
i th IO, and disti is the distance from pixel M to the center of
i th IO’s minimum bounding circle (only when pixel M is not
inside of any IO).

After defining the depth-based saliency and distance-based
saliency for each pixel, we combine them together to generate
an MB-level saliency map. The procedure to compute the
MB-level saliency map consists of the following steps.

1) Normalize the depth- and distance-based saliencies,
respectively. Let Sdepth(M) be the depth-based saliency
for pixel M . We first normalize Sdepth(M) as

SN
depth(M) = Sdepth(M)

Sdepth
(4)

where SN
depth(M) indicates the normalized depth-based

saliency for pixel M and Sdepth indicates the average
depth-based saliency of all the pixels in the current
frame. Similarly, we normalize Sdistance(M), the
distance-based saliency for pixel M , as

SN
distance(M) = Sdistance(M)

Sdistance
. (5)

Note that during the normalization step (4), (5), to
compute SN

distance(M) and SN
depth(M) for pixel M ,

we have already taken other pixels’ distance-based
saliency and depth-based saliency into consideration.

LIU et al.: ENHANCING VIDEO ENCODING FOR CLOUD GAMING USING RENDERING INFORMATION 1965

Hence, after the normalization step, the SN
distance(M) and

SN
depth(M) values are good indicators for the relative

importance of pixel M . Furthermore, this normalization
step (4), (5) will execute frame by frame and it can
automatically handle new emerging IOs. For the same
pixel M , its SN

depth(M) and SN
distance(M) values will keep

varying every frame, depending on how the current
game frame is composed.

2) The normalized depth- and distance-based saliencies
are next bounded as

SN
depth(M) = max

{
SL , min

{
SN

depth(M), SU
}}

(6)

SN
distance(M) = max

{
SL , min

{
SN

distance(M), SU
}}

(7)

where SL and SU are two constants to denote the lower
and upper boundaries of SN

depth(M) and SN
distance(M).

The thresholds SL and SU are used for calibrating
saliency values in a similar manner the human visual
system works, such that if the computed SN

depth(M) and
SN

distance(M) values are too large or too small, we bound
them to a reasonable range. The values of SL and
SU are determined based on a study where we record
multiple game video sequences, and then analyze the
distribution of SN

depth(M) and SN
distance(M) for each game

frame. We find that for all the frames, more than 90%
of the pixels have their SN

depth(M) values distributed
within [0, 4], and more than 90% of the pixels have
their SN

distance(M) values within [0, 4]. Hence, we choose
0 and 4 as the default values for SL and SU , respectively.
The details of the study can be found in [31].

3) Because the video is encoded at the MB level, we
combine the pixel-level saliencies to compute the
saliency at the MB level

Scombined(i) =
16∑

j=1

16∑
k=1

[
∂ × SN

distance(i, j, k) + (1 − ∂)

× SN
depth(i, j, k)

]
(8)

where i is the MB index and j and k are the pixel
indexes within one MB. As shown in (8), Scombined(i) is
a weighted average of SN

depth(i, j, k) and SN
distance(i, j, k).

Coefficient α is used to control the relative weight
between the depth-based saliency and distance-based
saliency, and it takes a value between 0 and 1.

4) After Steps 1–3, the Scombined(i) values of the spatial
neighboring MBs within a local area would sometimes
vary intensively. If the encoder allocates QP according
to the Scombined(i) values, the resulting visual quality of
the neighboring MBs may vary significantly, leading to
block artifacts. To solve this problem, a weighted 3 × 3
mean filter MF is applied to all the MBs in the game
frame to smoothen the saliency map Scombined

MF =

⎡
⎢⎢⎢⎢⎢⎣

1

12

1

12

1

12
1

12

1

3

1

12
1

12

1

12

1

12

⎤
⎥⎥⎥⎥⎥⎦

. (9)

After Steps 1–4, we have converted the pixel-level saliency
values (Sdistance and Sdepth) to an MB-level map Scombined.
Fig. 3 shows an example of a game frame, and the associated
Scombined with α varies between 0 and 1. From Fig. 3(b)–(f),
we can clearly observe how the coefficient α can be used
to control the relative weight between Sdistance and Sdepth.
When α equals 0, we can tell from (8) that Scombined will
be equal to Sdepth, which is shown in Fig. 3(b); on the other
hand, when α equals 1, Scombined will be simplified to Sdistance,
which is shown in Fig. 3(c). Fig. 3(d)–(f) can be regarded
as a weighted average of Fig. 3(b) and (c), depending on
the α value.

In order to determine the optimal α value for game
PlaneShift, we have performed a study where we invite a
group of subjects to play cloud game. As a subject is playing,
we vary the α value from 0 to 1 and ask the subject to select the
best α value. The best α value means the one that assigns the
MB saliency closest to the subject’s perception. According to
the results, we find that most subjects choose 0.5 as the optimal
value, and hence, in this paper, we heuristically select 0.5 as
the default α value. The details of the experiment result can be
found in [31]. Note that the optimal α value may be different
for different kinds of games. If the cloud gaming service
provider wants to experiment with different games, they can
easily repeat this experiment and analyze the distribution of
subjects’ evaluations.

D. Rate Allocation Algorithm

In this section, we describe a bit rate allocation algorithm
that aims at determining the optimal QP values of each MB,
such that a specific bit rate budget is met and the overall visual
quality is maximized.

First, for any MB MBi , we adopt the linear relation
model [24] between the compression distortion in terms of
mean square error (MSE) and the quantization step qi

MSEi = k × qi + b. (10)

Second, we adopt the rate model proposed in [25] that
the encoding bit rate can be modeled using the quantization
step qi as

Ri = θ

qγ
i

. (11)

After introducing the relation between the distortion and
quantization step (10) and the relation between bit rate and
quantization step (11), we formulate the rate allocation task
as the following optimization problem.

Given: Video bit rate target BT .
Find the optimal quantization step for each MB qi so as to

min WMSE = 1

N

N∑
i=1

Scombined(i) × MSEi (12)

s.t. R = 1

N

N∑
i=1

Ri ≤ BT . (13)

In this problem formulation, we use the weighted
MSE (WMSE) as the object to minimize because WMSE is

1966 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 12, DECEMBER 2015

the weighted average of the distortion for all the MBs, and
it has incorporated the saliency value of each MB. Therefore,
minimizing WMSE is equivalent of maximizing the human
perceived video quality.

In the objective function WMSE, the saliency map of
each MB, Scombined(i), can be extracted from rendering engine
and can be regarded as known parameters. Furthermore,
according to (10) and (11), both MSEi and Ri are the functions
of the quantization step qi . Hence, both the objective function
and constraint function can be expressed as function of qi ,
and we can use the well-known Lagrange method to solve
this optimization problem.

First, according to the problem formulation, the correspond-
ing Lagrange function can be stated as

f (q1, . . . , qN) = 1

N

N∑
i=1

Scombined(i) × MSEi

+λ

(
1

N

N∑
i=1

Ri − BT

)
(14)

where λ is the Lagrange multiplier that needs to be determined.
Substituting (10) and (11) into (14) yields

f (q1, . . . , qN) = 1

N

N∑
i=1

(k × qi + b)Scombined(i)

+λ

[
1

N

N∑
i=1

θ

qγ
i

− BT

]
. (15)

To obtain the optimal solution for {qi }, we use the Lagrange
method

∂ f

∂q1
= ∂ f

∂q2
= ∂ f

∂q3
= · · · = ∂ f

∂qN
= ∂ f

∂λ
= 0. (16)

By solving (16), we obtain the optimal qi value

q∗
i =

⎛
⎝ θ

BT N
×

∑N
i=1 S

γ
1+γ

combined(i)

S
γ

1+γ

combined(i)

⎞
⎠

1
γ

. (17)

We can observe from (17) that the optimal quantization
step q∗

i is dependent on MBi ’s importance, Scombined(i). For
a given MB, a high importance value will correspond to
a low quantization step and good encoding quality. The
qi value is also dependent upon the model coefficients θ and γ
[shown in (11)], which are determined by the video content
characteristics and encoding parameters such as frame rate.

Finally, we convert the quantization step qi to the
QPs QPi , since QP is the parameter that is adjustable in
the encoder. The relation between QP and qi specified in the
H.264/AVC [7] standard is

QP∗
i = round

[
6 × log

(
q∗

i

) + 4
]
. (18)

The round function is used to ensure that the QP∗
i value is an

integer such that the encoder can set it.

Fig. 4. Screenshot of game Broadsides.

TABLE I

PARAMETERS FOR VIDEO CODING

E. Subjective Assessment Experiments

In order to demonstrate the effectiveness of the proposed
rendering-based prioritized encoding technique, in this section,
we present the procedure and results of a subjective assessment
experiment where we asked subjects to compare the quality of
two sets of preencoded game videos. One set of test videos are
encoded with regular H.264/AVC encoder, and the other set
are encoded with the proposed prioritized encoding technique.

In order to demonstrate the generality and robustness of
our proposed technique, our experiment—in addition to the
previously introduced game PlaneShift—includes another
game called Broadsides [22], which belongs to a different
game genre. While PlaneShift is a role playing game,
Broadsides is a first person shooter game. The screenshot of
Broadsides is shown in Fig. 4.

We captured two raw game videos for PlaneShift and
Broadsides, respectively. Then, we encode them using the
typical parameter settings for H.264/AVC real-time encoding,
as tabulated in Table I. As shown in Table I, each of these
two raw videos has a length of 40 s. The spatial resolution is
chosen to be 800 × 600 and 1280 × 720. In addition, the bit
rate target varies between 600 and 2000 kbits/s. The model
coefficient α [in (8)] is set to be 0.5. The coefficients θ and γ
[in (11)] are set to be 7800 and 0.68.

For each raw video and bit rate target, two versions of
encoded videos are created by encoding the same raw video
twice. The first video is encoded in the usual manner such that
the entire frame is encoded with the same quality. The second
video is encoded using the proposed technique.

We recruited 22 subjects to participate in this experiment,
most of whom are students from UCSD. The subject group
included 14 males and 8 females with an age distribution rang-
ing from 18 to 28. All of them have some prior experiences
of playing video games.

The test procedure is conducted in a similar fashion to
the recommendation from ITU-R BT.500-12, double-stimulus
continuous quality scale [26] in order to evaluate the
quality of the encoded video with and without the proposed

LIU et al.: ENHANCING VIDEO ENCODING FOR CLOUD GAMING USING RENDERING INFORMATION 1967

Fig. 5. Encoded video frames without and with rendering-based prioritized
encoding, under the video encoding bit rate budget of 1000 kbits/s.

technique under a fixed bit rate target. The test was conducted
indoor with good light condition. An iPad Air tablet with
a customized application was used to play videos and
collect participants’ evaluations. The test procedure takes
approximately 25 min, including 5 min of briefing and 20 min
of user study. During the briefing, the subject was presented
with a training video with instructions on how assessment
will be conducted. The outlines of the 20-min user study are
as follows.

1) For each game, five pairs of test videos are presented to
the subject. Each pair corresponds to a bit rate target and
consists of a normally encoded video and a prioritized
encoded video.

2) The subject watches the test videos one pair at a time.
Within each pair, the normally encoded video and the
prioritized encoded video are presented in a random
order, and the subject is unaware of the order.

3) After watching a pair of videos, the subject is asked
to rate each of the two video’s quality according to a
five-point rating scale ranging from 1 (bad), 2 (poor),
3 (fair), 4 (good), and 5 (excellent). For each pair, the
subject is able to switch between the two videos until
he/she makes a decision.

As an example, Fig. 5 shows two encoded video frames
without and with prioritized encoding, with the bit rate target
set to be 1000 kbits/s. As we can see, for important areas such
as the avatar, the video encoded without prioritized encoding
has a much lower quality than the one encoded with prioritized
encoding. Concurrently, for the less important areas of the
game frame, rendering-based prioritized encoding leads to
lower quality. Fig. 5 demonstrates the idea that the prioritized
encoding increases the quality of important areas at the cost
of quality degradation in less important areas.

The average subjective evaluations over all the subjects
are shown in Fig. 6. We can see that for both games, the
prioritized encoded videos lead to higher user experience than
the normally encoded videos (without prioritized encoding).

Fig. 6. Subjective evaluation of two games under different encoding bit rates.
(a) Left: for game PlaneShift. (b) Right: for game Broadsides.

The gap between with and without prioritized encoding is big
when bit rate target is low, and it will decrease as the bit
rate target increases. This is due to the fact that, when the bit
rate target increases to a certain value, the visual quality of
the important areas is already sufficiently good and spending
more bits on these areas will not further increase the visual
quality, hence the advantage of prioritized encoding will not
be as noticeable compared with the low bit rate cases.

Furthermore, in the experiment described above, except
for video quality comparison, we have also compared the
encoding time for the normal encoder and the proposed
encoder. We find that the encoding times of the two encoders
are very close, which means that the additional computational
overhead introduced by our proposed technique is negligible.
The details of the experimental results and explanation can
be found in [31].

IV. RENDERING-BASED ENCODING

ACCELERATION TECHNIQUE

The rendering-based prioritized encoding technique
described in Section III aims at increasing the perceptual
video quality under a fixed bit rate budget. We can think
about this approach from another perspective that in order
to achieve the same perceptual video quality, the prioritized
encoding technique can help reduce the required video
bit rate that needs to be streamed from the cloud servers.
Hence, the proposed technique will be of interest for cloud
gaming service providers since it can reduce the bandwidth
consumption of the cloud server, and hence bring down the
operational cost.

In this section, we propose another technique, referred to
as rendering-based encoding acceleration (REA) technique, to
further reduce the operational cost for cloud gaming by reduc-
ing the computational complexity of game video encoding.

It is well known that the most widely used video coding
standard H.264/AVC achieves significantly higher encoding
efficiency than the previous standards by adopting a set of
new features such as adaptive motion compensation with
variable block sizes, RDO technique, and so on. However,
although H.264/AVC has a much higher encoding efficiency
compared with the other standards, it also induces significantly
higher computational complexity, which poses a challenge for
applications like cloud gaming requiring real-time encoding
and high interactivity.

1968 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 12, DECEMBER 2015

The high computational complexity of H.264/AVC standard
is mainly because of the search-based motion estimation and
the large number of candidate modes. In order to address
these two bottlenecks of encoding complexity, in this paper,
we propose an encoding acceleration technique, which mainly
consists of two parts.

1) We propose a direct MV calculation technique to utilize
rendering information to directly calculate the MV for
each pixel in a game frame, therefore bypassing the com-
pute intensive search-based motion estimation process.

2) We propose a fast MB mode selection algorithm that
exploits the motion homogeneity of the game frame and
other rendering information, to efficiently determine a
subset of candidate modes for each MB and skip the
unlikely and unnecessary encoding modes.

This section is organized as follows. In Section IV-A,
we described in detail how to use rendering information to
directly calculate the MVs. In Section IV-B, we further reduce
computational complexity by introducing a fast MB mode
selection algorithm. Section IV-C presents the experimental
results demonstrating the performance improvement achieved
by the proposed technique.

A. Direct Calculation of Motion Vectors

In the H.264/AVC standard, temporal correlation in video
sequence is exploited by block-based motion compensation,
where the MBs of the current frame are predicted from the pre-
viously encoded frames. The removal of the correlation redun-
dancy leads to high compression efficiency, but the search
for the best MVs is a compute intensive process. Although
researchers have developed various fast search methods for
MVs, the search-based motion estimation still contributes to a
big portion of the time taken by the video encoding process.

Fortunately, cloud gaming offers a unique opportunity to
make the MVs much easier to be obtained. In cloud gaming,
we have control over the rendering process (video content gen-
eration process), and we can use some rendering information
to directly calculate the MVs with a set of calculations such as
matrix multiplication, instead of using the compute intensive
search-based approach specified in the H.264/AVC standard.
In this section, we will explain this direct calculation method
for obtaining the MVs.

The basic idea for direct calculation method is that, for
each pixel in the current frame (assume that the corresponding
screen coordinates is Sc = (sxc, syc)), we want to find
the corresponding pixel location Sp = (sx p, syp)) in the
previous frame (reference frame). Then, the MV for this pixel
is the difference between these two locations (Sc and Sp)
multiplied by four to account for the quarter-pixel resolution of
H.264/AVC [7].

In order to calculate the pixel location in the previous
frame (Sp), we need to obtain the following rendering informa-
tion: the camera projection matrix for the current frame (PMc)
and the previous frame (PMp) as well as the depth value for
the pixel in the current frame (zc), which can be conveniently
extracted from the Z -buffer. The procedure to compute Sp is
the following.

First, convert the pixel location (screen coordinates) in the
current frame (Sc = (sxc, syc)) to the 3-D world coordinates
(Wc = (wxc, wyc, wzc)) using the inverse of the projection
matrix PM−1

c

Wc = PM−1
c × [sxc, syc, zc]T. (19)

Second, after obtaining the 3-D world coordinates in the
current frame (Wc), we need to find the corresponding 3-D
world coordinate in the previous frame

Wp

=
{

Wc (if Wc belongs to a stationary object)
Wc+ (−Vo)T f (if Wc belongs to a moving object).

(20)

As shown in (20), if the 3-D coordinates Wc belong to a
static object, then its 3-D coordinates (coordinates in the game
world) in the previous frame, Wp, will be the same as the
location in the current frame, Wc. On the other hand, if Wc
belongs to a moving object, such as a moving enemy avatar,
we need to calculate Wp by considering the velocity of this
moving object (Vo), as well as the time difference between
two consecutive frames (Tf). The information of Vo and Tf
can be conveniently obtained from the rendering engine.

Third, the 3-D world location Wp is reprojected to 2-D pixel
location using the projection matrix of the previous frame

Sp = PMp × Wp. (21)

Finally, the MV is calculated as

MV = 4(Sp − Sc). (22)

Hence, for each pixel in the current game frame (at screen
coordinate Sc), we can compute its MV (MV) through a few
simple calculations such as matrix multiplication. This method
is much faster than the regular search-based motion estimation
process.

Although this direct calculation method is convenient, there
exists two kinds of problematic cases where the proposed
method cannot be applied.

1) New Emerging Objects: It is common in game videos
that some objects will suddenly appear in a game frame, but
did not exist in the previous frame. For the pixels and MBs
that cover these new emerging objects, there exists no MV.
We need to disable the proposed direct calculation method
once we detect these pixels.

These pixels can be detected using the Stencil buffer. Each
object in a game frame has a unique object ID. During the
rendering process, as an object is being rendered, we can
store the associated object ID in the correct locations of the
Stencil buffer. As the game executes, whenever we detect a
new object ID appearing in the stencil buffer that does not
exist in the previous frame’s Stencil buffer, we can mark this
object as a new emerging object. For example, Fig. 7 shows
an example of two consecutive frames of game Broadsides.
Fig. 7(a) shows the reference frame (previous frame), and
Fig. 7(b) shows the latter frame (current frame that needs to
be encoded). The main difference between these two frames
is that in the current frame, the ship has shoot some

LIU et al.: ENHANCING VIDEO ENCODING FOR CLOUD GAMING USING RENDERING INFORMATION 1969

Fig. 7. Two consecutive frames of game Broadsides and the corresponding
uncovered pixels. (a) Previous frame (reference frame). (b) Latter frame
(current frame to be encoded). (c) Black pixels correspond to the uncovered
pixels detected using the Stencil buffer.

black shells out, and these shells are the new emerging objects
that do not exist in the reference frame. In Fig. 7(c), the
detected new emerging objects using Stencil buffer are shown.

2) Pixels Pointing Out of the Frame: During the direct MV
calculation process (19)–(22), it is possible that the compute
pixel location in the previous frame (Sp) is not within the
game frame’s spatial range. An intuitive interpretation for this
kind of situation is that the MV points out of the frame, and
in this case, we need to disable the proposed direct calculation
method as well.

In this paper, we will name the pixels that point out
of the frame or cover new emerging objects as uncovered
pixels. For these pixels, there exists no corresponding pixel
in the reference frame and our proposed rendering based
direct calculation method will not work. Furthermore, if an
MB contains uncovered pixels, we name it uncovered MB.
As will be explained later, in our proposed encoding accelera-
tion technique, we will treat these uncovered MBs differently
from other MBs. For these uncovered MBs, we need to
use regular search-based motion estimation (ME) methods to
obtain their MVs.

Note that the output of the direct calculation technique
will be pixel-level MV. As will be explained in the next
section, the pixel-level MV will first be exploited to determine
the candidate mode set for each 16 × 16 MB. Then, in the
following step of computing the rate-distortion (RD) cost for
each possible mode, the pixel-level MV will be combined into
block-level MV. In this paper, we propose to use the average
vector of all the associated pixels’ pixel-level MV as the
block-level MB.

B. Fast Mode Selection Algorithm

As introduced in Section IV-A, H.264/AVC standard
uses RDO technique to select the optimal mode from
a set of candidate modes with block size ranging from
16 × 16 to 4 × 4.

In the scope of intra encoding, large size MB partition
is suitable for smooth areas with low spatial complexity,
and small partition is suitable for detailed areas with high
spatial complexity. In the scope of inter modes where motion
compensation is used to reduce temporal redundancy, large
partition is suitable for the MBs exhibiting homogeneous
motion properties, and small-size MB is suitable for MBs with

Fig. 8. Different partitions for 16 × 16 MB. (a) 16 × 16. (b) 16 × 8.
(c) 8 × 16. (d) 8 × 8.

complex motion. For example, if an MB contains multiple
objects that move in different directions, then using large
partition (such as 16 × 16) for motion compensation will
lead to large motion-compensated residual, which severely
degrades the encoding efficiency.

Since cloud gaming provides us the unique advantage
for conveniently calculating pixel-wise MVs (explained
in Section IV-A), in this section, we propose a fast mode
selection algorithm that exploits these MV characteristics to
help select the appropriate block size. The basic idea is that
by analyzing the homogeneity of the pixel-wise MVs within
a 16 × 16 MB, we propose a set of candidate coding modes
and eliminate unlikely modes in order to reduce the modes
that need to be tested in RDO.

Inspired by the tree-structure block sizes defined in
H.264/AVC [7], we propose four metrics to indicate the
homogeneity for different regions within a 16 × 16 MB.

The first metric, VAR16×16, is the variance of all the
256 pixels’ MVs

VAR16×16 = 1

256

16∑
i=1

16∑
j=1

∣∣∣∣∣∣PMVi, j − 1

256

16∑
i=1

16∑
j=1

PMVi, j

∣∣∣∣∣∣
2

(23)

where i and j are the row and column indexes of a pixel
within a 16 × 16 MB and PMVi, j is the pixel-level MV for
the pixel located at row i and column j .

The second metric, VAR16×8, is defined as the average
variance of the top half’s and bottom half’s pixel-level motion
vectors. As shown in Fig. 8(b), we denote the top half of an
MB by region R1 and denote the bottom half by region R2.
Then, VAR16×8 is computed as

VAR16×8

= 1

2

2∑
k=1

1

128

∑
(i, j)∈Rk

∣∣∣∣∣∣PMVi, j − 1

128

∑
(i, j)∈Rk

PMVi, j

∣∣∣∣∣∣
2

. (24)

Similarly, the other two terms VAR8×16 and VAR8×8 are
defined as the average variance of different regions’ pixel-
level MVs, and the corresponding region partitions are shown
in Fig. 8(c) and (d)

VAR8×16 = 1

2

2∑
k=1

1

128

∑
(i, j)∈Ck

∣∣∣∣∣∣PMVi, j − 1

128

∑
(i, j)∈Ck

PMVi, j

∣∣∣∣∣∣
2

(25)

VAR8×8 = 1

4

4∑
k=1

1

64

∑
(i, j)∈Qk

∣∣∣∣∣∣PMVi, j − 1

64

∑
(i, j)∈Rk

PMVi, j

∣∣∣∣∣∣
2

.

(26)

1970 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 12, DECEMBER 2015

Metrics VAR16×16, VAR16×8, VAR8×16, and VAR8×8 are
used to measure the homogeneity of the 256 pixel-wise
MVs in different regions (higher value corresponds to lower
homogeneity). We can use this information to estimate what
mode will have the higher probability leading to a low RD
cost. For example, for a 16 × 16 MB, if the metric VAR16×8
is very low, then we can infer that the pixels in the top
half [region R1 in Fig. 8(b)] have homogenous motion and
the pixels in the bottom half [region R2 in Fig. 8(b)]
have homogenous motion as well. Then, encoding
regions R1 and R2 separately (encoding this MB using
Inter_16 × 8 mode) may lead to small motion-compensated
residuals and low RD cost; hence, Inter_16 × 8 is very likely
to be selected as the optimal mode after the RDO process.

Inspired by the above analysis, we classify each 16×16 MB
into one of the following categories when the specified
condition is satisfied.

Category A: The entire 16 × 16 MB is homogeneous

VAR16×16 ≤ Tc. (27)

Category B: The motion within the 16×16 MB is complex
and exhibits no obvious homogeneity in any subpartition

VAR16×16 > Tc and VAR16×8 > Tc and

VAR8×16 > Tc and VAR8×8 > Tc. (28)

If the MB does not satisfy the above two conditions, it is
further classified into one of the following categories.

Category C: The motion in the MB is more likely to be
homogeneous within the top half and the bottom half, therefore
it is suitable to be encoded using 16 × 8 partition

VAR16×8 < VAR8×16 and VAR16×8 ≤ Tc. (29)

Category D: The motion in the MB is more likely to be
homogeneous within the left half and the right half, therefore
it is suitable to be encoded using 8 × 16 partition

VAR8×16 < VAR16×8 and VAR8×16 ≤ Tc. (30)

Category E: The MB is more suitable to be encoded using
8 × 8 partition

VAR8×8 ≤ Tc and VAR16×8 > Tc and VAR16×8 > Tc.

(31)

The value of the threshold TC is selected to be 0.25 by
extensive experiments. This value achieves a good and con-
sistent performance on a variety of videos including different
game scenes and activities.

Based on the above MB classification according to the
pixel-level motion homogeneity, the candidate inter modes
for each MB category are summarized in Table II (the prefix
Inter_ is omitted).

By utilizing the motion homogeneity, we have established a
heuristic to generate candidate inter modes. Further optimiza-
tion can be achieved using the detection of uncovered pixels
(explained in Section IV-A) to eliminate the inter modes for
some MBs. This idea is inspired from the intuition that for
the MBs that contain the uncovered pixels (namely, uncovered
MBs), we cannot find the corresponding colocated MBs in the

TABLE II

CANDIDATE INTER MODE FOR EACH MB CATEGORY

Fig. 9. Game frame for Broadsides and the optimal MB mode selected with
full mode RDO.

previous reference frame, and therefore there would be large
motion-compensated residual if we encode these MBs using
inter mode. Hence, we propose to directly bypass all the inter
modes for all the MBs that contain uncovered pixels.

Fig. 9 shows an example that supports the idea of
eliminating all the inter modes for uncovered MBs. Fig. 9
shows the optimal modes for each MB selected by the regular
H.264 encoder that performs RDO on all the possible modes
(including intra modes, inter modes, and SKIP mode). Note
that the game frame shown in Fig. 9 is identical to the frame
shown in Fig. 7(b). We can observe that the uncovered MBs,
which contain pixels that did not appear in the reference
frame [shown previously in Fig. 7(c)], are mostly encoded
using intra mode.

As a summary, the overall flowchart of the fast mode selec-
tion algorithm is shown in Fig. 10. To encode a 16 × 16 MB,
we first test whether it satisfies the SKIP condition [28].
If yes, we just encode it with the SKIP mode. Otherwise,
we then test if this MB contains uncovered pixels. If yes,
then we claim that encoding this MB using inter mode is not
suitable and we consider only intra-mode encoding. If the MB
does not consider uncovered pixels, we first generate candidate
inter-mode set according to Table II, and then consider both
inter mode and intra mode as possible modes for RD cost
calculation. Finally, we calculate the RD cost of each possible
inter or intra mode and select the one with the minimum
RD cost as the optimal mode.

Note that the proposed algorithm is only used for
MB that belongs to P slice. For those MBs that belongs
to I slice, it must be encoded using intra mode, and we just
use the regular H.264/AVC encoding process to maintain
high encoding quality for I slices. Furthermore, we assume
that the B frame will be disabled since cloud gaming requires

LIU et al.: ENHANCING VIDEO ENCODING FOR CLOUD GAMING USING RENDERING INFORMATION 1971

Fig. 10. Flowchart of the proposed fast mode selection algorithm.

real-time video encoding and has strict requirement about
encoding delay, and hence the typical encoding group of
pictures (GOP) structure is IPPP.

C. Assessment Experiment

In this section, we present the results of two rounds
of assessment experiments, where we apply the proposed
REA technique on a variety of game sequences. The first
round of experiments is for studying the performance (speed
and quality) of the proposed direct MV calculation method
(explained in Section IV-A), and the second round of
experiments is for studying the performance of the entire
REA technique (including the direct MV calculation method
and the fast mode selection algorithm).

We have captured six representative game videos as the
source for the test videos: 1) four sequences for game
PlaneShift and 2) two sequences for game Broadside. The
video sequence name and descriptions are summarized
in Table III. These six videos are selected such that our exper-
iment has covered different game scene types and different
motion properties.

To encode these video sequences, the following encoding
setting is applied: GOP structure is IPPP, GOP size is set
to be 30, video frame rate is 30 frames/s, video resolution
is 800 × 600, reference frame number is set to be 1 (for low
encoding delay), RDO and context-adaptive binary arithmetic
coding are used in the main profile, and MV resolution is
1/4 pel. A group of QP values from 24 to 36 is used to
encode. We use the open source X264 encoder software [27] as
the implementation of the H.264/AVC standard. The version

TABLE III

DESCRIPTIONS OF EXPERIMENT VIDEOS

Fig. 11. ME time per frame using different ME approaches.

number of the X264 software was R2389. The cloud game
server and the encoder are executed on a PC with Intel i7
2.7-GHz CPU and 8-GB RAM.

Next, we will discuss the procedures and results of
two rounds of experiments. Both of these experiments use the
video sequences and the encoding settings described above.

1) First Round of Experiments: First, we conducted an
experiment to compare the computation time of our proposed
direct MV calculation method with full search method and
two classic fast ME methods: 1) Diamond search [29] and
2) UMHexagon search [30]. In order to compare these three
ME methods with our proposed method, we configure the x264
encoder to use full mode selection, encode the video sequences
listed in Table III, and record the time spent on motion
estimation process. Note that the other three ME methods
(full search, Diamond, and UMHexagon) are included in the
X264 source code, so we do not need to implement them by
ourselves.

From the results of ME time shown in Fig. 11, we can
observe that full search method takes the most time, Diamond
search takes least time, and our proposed method takes slightly
longer than Diamond, but much less time than UMHexagon.
The results tell us that although our proposed MV calculation
method performs pixel-level calculation that seems to be
computationally intensive, its actual complexity is similar to
the Diamond search. The analytical explanation is shown
in [31].

Second, in order to evaluate the quality degradation caused
by the proposed direct MV calculation method (not by the fast
mode selection), we conduct the second experiment, which is
outlined as follows.

1) We first encode the six game videos listed in Table III
of the revised manuscript using a regular x264 encoder,
with full-search ME and full model selection. The
MV resolution is 1/4 pel, and the MV search range
is ±16 pels.

1972 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 12, DECEMBER 2015

TABLE IV

AVERAGE PSNR DIFFERENCE FOR TEST VIDEOS

2) We then encode the same videos again with a customized
x264 encoder, in which we have modified the source
code to use the MVs calculated with our approach to
substitute the MVs derived with normal ME method.
During this second encoding process, the customized
encoder still uses full mode selection in order to make
sure that the mode selection method is the same with
the first encoding process.

Table IV lists the average peak signal-to-noise ratio
(PSNR) difference between the two encoders for each test
video sequence over a group of QP values from 24 to 36.
The negative values in Table IV indicate that our proposed
ME approach achieves lower PSNR than regular ME method.
But as we can see, among the six test videos, the PSNR degra-
dation varies between 0.065 and 0.225 dB. The small PSNR
difference values demonstrate that the quality degradation of
our proposed ME method is very slight compared with normal
ME method.

As a summary, from Fig. 11 and Table IV, we can
conclude that: 1) our proposed MV calculation method has a
similar computational complexity with other fast ME methods
such as Diamond search and 2) the proposed method has
very limited quality degradation compared with normal
ME (full search). However, the advantage of our proposed
method is obvious: with the same complexity, it can produce
pixel-level MVs, which provides more information than the
regular block-level MVs, and can benefit the subsequent mode
selection step.

2) Second Round of Experiments: In the second round
of experiments, we study the performance (encoding speed
and video quality) of the entire REA technique, including
both the MV calculation method and the fast mode selection
algorithm.

We first use the regular X264 encoder with
UMHexagon [30] ME and full mode selection as the
reference encoder. We then implement three fast encoding
techniques, including our proposed REA technique,
Fechteler’s technique [17], and Liu’s technique [32],
respectively, for performance comparison.

Our proposed REA technique is different from
Fechteler’s and Liu’s technique in the following aspects.

1) Fechteler’s technique uses rendering information to com-
pute MVs to bypass the ME process, but it does not
optimize the mode selection process.

2) Liu’s technique is a fast mode selection technique
that utilizes the motion homogeneity to eliminate some
unlikely block modes during the RDO process, and it
can optimize the mode selection process, but it requires
to perform block-level ME for every 4 × 4 block.

Fig. 12. Relation between encoding time per frame and bit rate for video
sequence BOH.

Fig. 13. Relation between PSNR and bit rate for the video sequence BOH.

3) Our technique first utilizes rendering information to
bypass regular ME, and subsequently uses MVs’ prop-
erties to optimize the mode selection process as well.

Figs. 12 and 13 show an example of the experimental
results using video sequence POH. Fig. 12 shows the relation
between encoding time per frame and the video bit rate. Fig. 13
shows the encoding efficiency: the relation between PSNR
and bit rate. We can observe from Figs. 12 and 13 that our
proposed approach can achieve much lower encoding time
compared with the other three approaches, without noticeable
video quality degradation (decrease in PSNR). Compared
our proposed technique with Fechteler’s technique, we can
observe that our technique leads to a lower computation time
(shown in Fig. 12) while keeping a higher encoding efficiency
(shown in Fig. 13). This is because our proposed fast mode
selection algorithm reduces the possible tested modes for the
RDO process.

Furthermore, if we compare our proposed REA technique
with Liu’s fast mode selection technique, we find that our
technique can also achieve a faster encoding speed while
maintaining a slightly higher video quality. This is because
of the following two reasons.

1) We have proposed in our technique that for those uncov-
ered MBs (defined in Section IV-A), we will disable
inter-prediction mode because for these blocks, there is
no corresponding blocks in the reference frame and inter
predication might lead to large motion-compensated
residual. Liu’s method [32], on the other hand, does not
have this mechanism because in Liu’s method, the
encoder does not have any information about which

LIU et al.: ENHANCING VIDEO ENCODING FOR CLOUD GAMING USING RENDERING INFORMATION 1973

TABLE V

AVERAGE PERFORMANCE COMPARISON OF THE

THREE FAST ENCODING TECHNIQUES

blocks belong to which objects and which objects are
new emerging objects.

2) To encode a 16 × 16 MB, in our proposed technique,
the mode selection heuristic is based on 256 pixel-level
MVs, while in Liu’s technique, it is based on 16 block-
level MVs (each one corresponds to a 4 × 4 block).
Given that the computation complexity for generating
the MVs is approximately the same for our technique
and Liu’s technique, our technique provides fine-grained
MV information, and hence may achieve a higher accu-
racy in mode selection and, therefore, higher encoding
efficiency.

Table V shows the experimental results from a different
perspective; it lists the results of all the six video sequences
(for each video sequence, the average results over all the
QP values are shown). To evaluate the average encoding
performance (efficiency and complexity) for each video,
we calculate Bjontegaard delta PSNR (BDPSNR) specified
in [33] between each fast encoding technique (ours,
Fechteler’s, and Liu’s) and the reference encoder (the regular
X264 encoder). BDPSNR is a metric used to measure the
average PSNR difference between two RD curves. Compared
with the reference encoder, the average encoding time saving
in percentage is defined as

TS = Tr − T f

Tr
× 100% (32)

where Tr and T f indicate the encoding time per frame for
reference encoder and fast encoder.

It can be observed from Table V that our proposed fast
encoding technique can achieve on average of 42.6% reduction
in encoding time compared with the regular X264 encoder
over all the six game video sequences, at the cost of a
PSNR degradation of only 0.388 dB on average. We can
observe that the proposed fast encoding algorithm achieves
a consistent gain in encoding time savings for all sequences
with the least gain of 33.3% in video sequence BH and the
greatest gain of 52.0% in video sequence PIL. Compared with
Fechteler’s algorithm, our proposed technique is faster and
can reduce an extra 20.3% encoding time, and the PSNR
degradation of our technique is 0.229 dB smaller than that
of Fechteler’s algorithm. Compared with Liu’s algorithm, our

proposed REA technique can reduce an extra 9.5% encoding
time. Furthermore, the PSNR degradation of our technique
is 0.027 dB smaller than that of Liu’s technique.

In Table V, we have listed another metric called coverage,
which is defined as the ratio of the number of MBs whose
optimal encoding modes are covered by our proposed fast
mode selection algorithm (Fig. 10) to the total number
of MBs. We can observe that our proposed fast mode
selection algorithm can make the optimal choice in 88.9%
of all the MBs. This high accuracy of mode selection is the
main reason that our proposed algorithm has only a 0.388-dB
PSNR degradation compared with the regular H.264/AVC
encoder with full search RDO.

Although the proposed REA technique can significantly
reduce the encoding time, there exist one limitation: the
encoding efficiency may drop if the game has complex lighting
and rendering effect such as shadowing and reflection, since
in these scenarios, for the same pixel, its value (colors and
luminance) may not be the same in consecutive frames. If we
use the collocated block in the previous frame as the reference
block for inter prediction, the resulted motion-compensated
residual might be large, leading to lowering of the encoding
efficiency.

V. CONCLUSION

In this paper, we propose two rendering-based techniques
that utilize rendering information to enhance video encoding
for cloud gaming application to achieve: 1) better video
perceptual quality under a fixed bit rate budget and 2) lower
encoding complexity and encoding time for every video frame.

The rendering-based prioritized encoding technique
exploits rendering information including depth map and scene
composition information to prioritize different regions of a
game frame, and adapts the QP values for each MB according
to their importance and the bit rate budget. Assessment
experiments have been carried out to validate the effectiveness
of this prioritized encoding technique. The experimental
results show that this technique can significantly increase the
player’s perceptual video quality under a given bit rate budget.

The proposed REA technique uses rendering information to
reduce the computational complexity of the encoding process
of H.264/AVC technique by:

1) directly calculating the motion vectors and eliminating
the need for regular search-based motion estimation;

2) using rendering information to reduce the number of
candidate encoding modes for ROD process.

The experimental results show that the proposed REA tech-
nique can achieve a significant and consistent encoding time
reduction compared with regular H.264/AVC standard over a
variety of test videos.

The two techniques proposed in this paper have utilized
rendering information that can be very conveniently obtained,
such as the depth map and object ID. In the future, in
addition to using the above rendering information, we plan
to investigate the use of pixel-domain features of the rendered
video frame, such as luminance and chrome values of every
pixel, to increase the perceptual video quality as well as

1974 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 12, DECEMBER 2015

accelerate video encoding. Furthermore, these pixel-domain
features can be used to detect the object boundaries or to
estimate the spatial complexity of an MB, and hence can help
in optimizing the mode selection algorithm by eliminating
some unlikely intra modes. These are interesting topics that
we plan to investigate in the future to further enhance the
quality and efficiency of video encoding of cloud gaming.

REFERENCES

[1] OnLive. [Online]. Available: http://www.onlive.com, accessed Jul. 23,
2014.

[2] Gaikai. [Online]. Available: http://www.Gaikai.com, accessed Jul. 23,
2014.

[3] B. A. Wandell, Foundations of Vision. Sunderland, MA, USA:
Sinauer Associates, Inc., 1995.

[4] S. Wang and S. Dey, “Cloud mobile gaming: Modeling and measuring
user experience in mobile wireless networks,” ACM SIGMOBILE Mobile
Comput. Commun. Rev., vol. 16, no. 1, pp. 10–21, Jan. 2012.

[5] Y. Liu, S. Wang, and S. Dey, “Content-aware modeling and enhancing
user experience in cloud mobile rendering and streaming,” IEEE J.
Emerg. Sel. Topics Circuits Syst., vol. 4, no. 1, pp. 43–56, Mar. 2014.

[6] M. Hemmati, A. Javadtalab, A. A. N. Shirehjini, S. Shirmohammadi,
and T. Arici, “Game as video: Bit rate reduction through adaptive object
encoding,” in Proc. 23rd ACM Workshop Netw. Oper. Syst. Support Digit.
Audio Video, New York, NY, USA, 2013, pp. 7–12.

[7] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[8] S. Wang and S. Dey, “Adaptive mobile cloud computing to enable rich
mobile multimedia applications,” IEEE Trans. Multimedia, vol. 15, no. 4,
pp. 870–883, Jun. 2013.

[9] S. Shirmohammadi, “Adaptive streaming in mobile cloud gaming,” in
Proc. IEEE COMSOC Multimedia Commun. Tech. Committee E-Lett.,
Sep. 2013, pp. 20–23.

[10] Y. Liu, Z. G. Li, and Y. C. Soh, “Region-of-interest based resource
allocation for conversational video communication of H.264/AVC,”
IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 1, pp. 134–139,
Jan. 2008.

[11] G.-L. Wu, Y.-J. Fu, and S.-Y. Chien, “Region-based perceptual quality
regulable bit allocation and rate control for video coding applications,”
in Proc. IEEE VCIP, Nov. 2012, pp. 1–6.

[12] W. Lai, X.-D. Gu, R.-H. Wang, W.-Y. Ma, and H.-J. Zhang, “A content-
based bit allocation model for video streaming,” in Proc. IEEE Int. Conf.
Multimedia Expo (ICME), Jun. 2004, pp. 1315–1318.

[13] Z. Li, S. Qin, and L. Itti, “Visual attention guided bit allocation in video
compression,” Image Vis. Comput., vol. 29, no. 1, pp. 1–14, Jan. 2011.

[14] H. Ahmadi, S. Z. Tootaghaj, M. R. Hashemi, and S. Shirmohammadi,
“A game attention model for efficient bit rate allocation in cloud
gaming,” Multimedia Syst., vol. 20, no. 5, pp. 485–501, Oct. 2014.

[15] N. Tizon, C. Moreno, and M. Preda, “ROI based video streaming for
3D remote rendering,” in Proc. IEEE 13th Int. Workshop Multimedia
Signal Process. (MMSP), Hangzhou, China, Oct. 2011, pp. 1315–1318.

[16] M. R. H. Taher, H. Ahmadi, and M. R. Hashemi, “Power-aware analysis
of H.264/AVC encoding parameters for cloud gaming,” in Proc. IEEE
Int. Conf. Multimedia Expo Workshops, Jul. 2014, pp. 1–6.

[17] P. Fechteler and P. Eisert, “Accelerated video encoding using ren-
der context information,” in Proc. 17th IEEE Int. Conf. Image
Process. (ICIP), Sep. 2010, pp. 2033–2036.

[18] M. Semsarzadeh, M. Hemmati, A. Javadtalab, A. Yassine, and
S. Shirmohammadi, “A video encoding speed-up architecture for cloud
gaming,” in Proc. IEEE Int. Conf. Multimedia Expo Workshops,
Jul. 2014, pp. 1–6.

[19] G. Cheung, A. Ortega, and T. Sakamoto, “Fast H.264 mode selec-
tion using depth information for distributed game viewing,” in Proc.
IS&T/SPIE Vis. Commun. Image Process. (VCIP), San Jose, CA, USA,
Jan. 2008.

[20] S. Shi, C.-H. Hsu, K. Nahrstedt, and R. Campbell, “Using graphics
rendering contexts to enhance the real-time video coding for mobile
cloud gaming,” in Proc. 19th ACM Int. Conf. Multimedia, Nov. 2011,
pp. 103–112.

[21] PlaneShift. [Online]. Available: http://www.planeshift.it/, accessed
May 6, 2014.

[22] Broadsides. [Online]. Available: http://cse125.ucsd.edu/cse125/2012/
cse125g1/, accessed May 6, 2014.

[23] B. Ciubotaru, G. Muntean, and G. Ghinea, “Objective assessment of
region of interest-aware adaptive multimedia streaming quality,” IEEE
Trans. Broadcast., vol. 55, no. 2, pp. 202–212, Jun. 2009.

[24] W. Ding and B. Liu, “Rate control of MPEG video coding and
recording by rate-quantization modeling,” IEEE Trans. Circuits Syst.
Video Technol., vol. 6, no. 1, pp. 12–20, Feb. 1996.

[25] T. Chiang and Y.-Q. Zhang, “A new rate control scheme using quadratic
rate distortion model,” IEEE Trans. Circuits Syst. Video Technol., vol. 7,
no. 1, pp. 246–250, Feb. 1997.

[26] Methodology for the Subjective Assessment of the Quality of Television
Pictures, document ITU-Rec. BT.500-11, 2002.

[27] X264. [Online]. Available: http://www.videolan.org/developers/x264.html,
accessed Feb. 10, 2014.

[28] I. Choi, J. Lee, and B. Jeon, “Fast coding mode selection with rate-
distortion optimization for MPEG-4 part-10 AVC/H.264,” IEEE Trans.
Circuits Syst. Video Technol., vol. 16, no. 12, pp. 1557–1561, Dec. 2006.

[29] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block-
matching motion estimation,” IEEE Trans. Image Process., vol. 9, no. 2,
pp. 287–290, Feb. 2000.

[30] C. Zhu, X. Lin, L. Chau, and L.-M. Po, “Enhanced hexagonal search for
fast block motion estimation,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 14, no. 10, pp. 1210–1214, Oct. 2004.

[31] Supplementary Material. [Online]. Available: http://esdat.ucsd.edu/
TCSVT_paper.html, accessed Feb. 10, 2014.

[32] Z. Liu, L. Shen, and Z. Zhang, “An efficient intermode decision
algorithm based on motion homogeneity for H.264/AVC,” IEEE Trans.
Circuits Syst. Video Technol., vol. 19, no. 1, pp. 128–132, Jan. 2009.

[33] G. Bjøntegaard, Calculation of Average PSNR Differences Between
RD-Curves, document VCEG-M33, Apr. 2001.

Yao Liu (M’10) is currently working toward
the Ph.D. degree with University of California at
San Diego, La Jolla, CA, USA.

His industry experiences include interning with
Qualcomm, Beijing, China, in 2010, and Yahoo,
Santa Clara, CA, USA, in 2013. His research inter-
ests include mobile multimedia, wireless communi-
cation, and mobile cloud computing.

Sujit Dey (SM’03–F’14) received the Ph.D. degree
in computer science from Duke University, Durham,
NC, USA, in 1991.

He was a Senior Research Staff Member with
NEC Research Laboratories in Princeton, NJ, USA.
He joined the University of California at San
Diego (UCSD), La Jolla, CA, USA, in 1997. He is
currently a Professor with the Department of Elec-
trical and Computer Engineering, UCSD, where he
is the Head of the Mobile Systems Design Labo-
ratory, which is involved in developing innovative

mobile cloud computing architectures and algorithms, adaptive multime-
dia, and networking techniques to enable the next generation of mobile
multimedia applications. He is also the Director of the UCSD Center for
Wireless Communications. He also serves as the Faculty Director of the von
Liebig Entrepreneurism Center, and is affiliated with the Qualcomm Institute.
He founded Ortiva Wireless in 2004, where he served as its founding CEO
and later as CTO till its acquisition by Allot Communications in 2012. He has
co-authored over 200 publications, including journal and conference papers,
and a book on low-power design. He is the coinventor of 18 U.S. patents,
resulting in multiple technology licensing and commercialization.

Dr. Dey has been a recipient of the six IEEE/ACM Best Paper awards, and
has been the Chair of the multiple IEEE conferences and workshops.

Yao Lu (M’12) received the B.S. degree in electrical
engineering from Tsinghua University, Beijing,
China, in 2012. He is currently working toward the
Ph.D. degree with University of California at San
Diego, La Jolla, CA, USA.

His research interests include mobile
multimedia, computer graphics, video encoding,
computer networks, and cloud computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

