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Abstract—While lifestyle behaviors play important roles in
Type 1 Diabetes (T1D), the individualized effects of lifestyle
factors on T1D patients have not been studied. In this paper,
we present a regression analysis-based approach to understand
the personalized impact of lifestyle factors on blood glucose
(BG) in T1D patients using the OhioT1DM dataset. Our method
addresses the following challenges: (1) effectively structuring the
multi-modal lifestyle, insulin, and BG data and (2) modeling
the data to derive personalized insights. To solve the first
challenge, a patient’s data are segmented into time windows
based on BG-affecting events. Consequently, we can better
reveal each lifestyle factor’s effect because windows capture
BG trends at higher granularity and contain fewer concurrent
BG-affecting factors. To model the data and derive personalized
insights, we first utilized variance inflation factor (VIF) and
correlation analysis to eliminate and combine lifestyle features to
avoid multicollinearity issues. We then trained multiple machine
learning models and found multivariate linear regression (MLR)
yielded the best BG prediction. We derived personalized insights
about the relationship between lifestyle factors and BG using
the MLR model’s statistical properties, including β coefficients,
P-values, and R2 values. Our results show that T1D patients
differ significantly in how lifestyle factors affect their BG,
indicating that personalized lifestyle interventions are necessary
for T1D management.

Index Terms—type 1 diabetes, regression analysis, smart
healthcare, digital health, lifestyle medicine

I. INTRODUCTION

Type 1 Diabetes (T1D) is a non-reversible, autoimmune
disorder characterized by the destruction of β-cells in
the pancreas, leading to a lack of insulin production.
T1D management focuses on glycemic control, keeping
blood glucose (BG) within a normal range to delay
or prevent complications [1]. Effective glycemic control
[2] involves exogenous insulin administration, continuous
glucose monitoring (CGM), and following lifestyle guidelines
regarding meal planning and eating patterns [3], [4], physical
activity [5], [6], sleep [7], [8] and stress management [9].

Personalized lifestyle intervention is a growing trend for
managing chronic diseases. By developing customized rather
than one-size-fits-all lifestyle strategies, individuals result
in better health outcomes [10]. For T1D, while previous
literature has investigated how lifestyle factors affect the T1D

population, the interpersonal differences in the impact of these
factors among T1D patients have not been studied.

Due to the widespread use of mobile applications and
wearables, we can track and generate ample lifestyle data.
Combining lifestyle data with BG data collected from CGM
presents an opportunity for a data-driven approach to analyze
T1D patients’ individual responses to lifestyle factors. In this
study, we aim to analyze the personalized effect of lifestyle
factors on T1D patients’ BG using CGM, insulin, and lifestyle
data to derive customized insights for better glycemic control.
Considering the complexity of T1D management and BG
dynamics, two challenges in developing such a system are
identified:

1) Complexity of T1D Data: Multi-modal lifestyle, insulin,
and CGM data sampled at different frequencies complicate the
data structuring, making it challenging to isolate and reveal
each factor’s impact on BG.

2) Personalized Lifestyle Insights: Lifestyle factors are
bi-directionally correlated with each other in T1D patients
[11], posing difficulty in identifying the true effects of different
factors on BG to generate personalized lifestyle insights.

To address these challenges, we propose a novel
regression analysis-based system with specifically designed
data segmentation and feature engineering. When structuring
the multi-frequency T1D data, we segment and aggregate
CGM and lifestyle data into temporal windows delimited by
pre-defined events. These events indicate trends in BG change
induced by new lifestyle factors, such as when individuals
fall asleep, consume meals, inject bolus insulin, etc. We can
thus capture BG dynamics at higher granularity and reduce the
number of concurrent factors within a given window, making
it easier to isolate each factor’s impact on BG. As a result,
each window corresponds to a dataset sample, consisting of
aggregated lifestyle and insulin data as features and the change
in BG within the window as the label.

Once we processed the data, we used feature engineering
techniques and regression analysis to model the relationships
between lifestyle features and BG to gain personalized
insights into T1D patients’ data. To minimize the correlations
between lifestyle and insulin features, we employed correlation
analysis and variance inflation factor (VIF) to guide feature



engineering. This results in a feature set that provides
better interpretability by avoiding multicollinearity issues
(i.e., several independent variables are highly correlated).
We compared multiple machine learning and statistical
regression models using the OhioT1DM dataset and found
that multi-variate linear regression (MLR) achieved the
best prediction performance. Furthermore, MLR provides a
higher degree of interpretability by demonstrating both the
magnitude and statistical significance of the associations
between variables. Our regression analysis results demonstrate
that interpersonal variance exists in how lifestyle factors affect
BG in T1D patients, highlighting the need for personalized
T1D lifestyle intervention. Moreover, we discuss personalized
lifestyle insights drawn from the regression analysis and how
to support the development of a customized recommendation
system. To the best of our knowledge, this is the first work
that investigates the personalized effect of lifestyle factors on
BG for T1D patients.

II. METHODOLOGY

A. Dataset Overview

We evaluated our approach using the publicly available
OhioT1DM dataset [12]. The dataset includes eight weeks of
CGM, insulin, physiological, and movement data, as well as
self-reported lifestyle events collected from 12 T1D patients
aged 20 to 60. All patients used basal-bolus therapy, i.e.,
taking multiple doses of long-acting insulin (basal) combined

with rapid-acting insulin (bolus) to stabilize daily BG levels.
Lifestyle events were reported through a custom smartphone
app, while physiological and movement data were tracked
using fitness bands. After eliminating patients with insufficient
lifestyle data (e.g., frequently missing sleep or meal data), 7
patients were analyzed for this study.

The OhioT1DM dataset’s wealth of lifestyle data makes it
ideal for analyzing the personalized effects of various lifestyle
factors on the BG of T1D patients. Listed below are data types
from the OhioT1DM dataset we include in our study:
1. BG Levels: CGM measurements recorded every 5 minutes.
2. Meals: meal times and estimated carbohydrate intake in
grams.
3. Sleep: sleep start-end times and self-rated qualities (1 to 3).
4. Exercise: exercise start-end times and self-rated intensities
(1 to 10).
5. Work: work start-end times and self-rated intensities (1 to
10).
6. Bolus: bolus insulin injection times and dosages.
7. Basal: basal insulin start-end times and the rates of
continuous injection (basal rate).
8. Steps: step counts recorded by a fitness tracker, aggregated
every 5 minutes.

These data constitute the main BG-affecting factors: diet,
sleep, physical activity, and exogenous insulin. Note that
work, either sedentary or physical, could affect both physical
activeness and psychological stress and lead to changes in BG.

Fig. 1. Illustration of our data segmentation on a sample day. On the timeline, we display the types and times of pre-defined events that indicate window
segmentation. The start and end times of each window are illustrated by dashed lines.



Due to this, we include it in the scope of our study.

B. Data Segmentation

Temporal segmentation of CGM, insulin, and lifestyle data
into time windows should be carefully designed in order
to accurately reflect the impact of each lifestyle factor on
an individual’s BG levels. Short windows are vulnerable to
picking up transient fluctuations in BG and CGM sensor
noise. When using long windows, such as 12 or 24 hours,
the change in BG of each window would be attributed to the
combined effect of all BG-affecting factors over this period.
These factors may cancel out each other’s effect, making it
challenging to isolate the impact of a single factor on BG.

Another crucial factor to consider when segmenting data
is the carbohydrate absorption rate. To accurately represent
a meal’s effect on BG over a period of time, it’s best to
consider the amount of absorbed carbohydrates, rather than
the total amount consumed. However, calculating absorbed
carbohydrates is difficult as the time for carbohydrates to fully
break down into glucose and enter the bloodstream can vary
from 0.5 to over 3 hours based on the type of carbohydrates,
glycemic index, and its combination with protein and fat
[13]. Keeping in mind these concerns, we propose a set of
segmentation events where each window should begin or end
at:

• BG-affecting Events: meals, bolus insulin injections, sleep
times, wakeup times, and exercise start times.

• BG Peaks and Valleys: local maxima or minimal of BG
measurements.

• Carbohydrate Absorption Completed: a fixed time tabsorb
after each meal.

Segmenting data at BG-affecting events reduces the number
of BG-affecting events that take place simultaneously in each
window while segmenting at BG peaks and valleys allows
BG dynamics to be captured in greater granularity, both of
which serve to isolate and reveal the impact of lifestyle factors
on BG. To deal with the varied carbohydrate absorption rate,
we constrain each window to start tabsorb after any previous
meals and end tabsorb after any meals within the window. By
doing so, we can assume that the absorbed carbohydrates are
equivalent to the consumed carbohydrates. Each window has

a minimum length of tmin to avoid picking up noise. In this
study, we set tabsorb to 3 hours and tmin to 1 hour. Windows
that are missing CGM readings within 15 minutes of the start
and end time are excluded. Figure 1 shows a sample of data
segmentation on 24 hours of data using our method. A total of
1789 windows were generated for 7 patients, with each patient
having more than 200 windows.

C. Feature Engineering

Lifestyle factors have both long-term (up to 24 to 48 hours)
and short-term effects on T1D BG levels [11], [14]. For
example, being physically active and getting adequate and
high-quality sleep on the former night may reduce stress levels
and increase insulin sensitivity on the next day, leading to
better glycemic control. This has motivated us to consider
different time periods when generating lifestyle features. As
a result, we named two kinds of features for each window -
window and 24hrs features. window features are aggregated
within each window to capture the short-term effects of
lifestyle on BG. 24hrs features are aggregated 24 hours before
the window start time to capture the feature’s long-lasting
effect on BG change. A complete list of the generated features
(original features) is shown in the left column of Table I. It’s
worth noting that when calculating the bolus insulin features,
we use ingested rather than consumed bolus insulin amounts
similar to carbohydrates. We utilized an exponential curve
implemented by the OpenAPS API to calculate the insulin’s
cumulative activity over time [15]. For the target variable,
we use BG difference which is calculated by subtracting the
starting BG from the ending BG of each window since we are
interested in the BG change instead of the absolute value of
BG.

Regression analysis is a statistical technique widely used
to investigate the association between two or more variables.
In this study, we selected multi-variate linear regression
(MLR) as the model, as described in subsection III-A. One
issue with using MLR is multicollinearity, which occurs
when a regression model’s predictors are highly correlated.
Multicollinearity leads to low accuracy of the estimated
coefficients and a loss in the model’s statistical power [16].

TABLE I
The originally generated features and the final features derived to avoid the multicollinearity issue in regression analysis. Features ending with window are

aggregated within each time window, while those ending with 24hrs are aggregated 24 hours before the window’s start time.

Original Features Final Features

carb window, sleep duration window, sleep duration 24hrs, carb window, sleep score window,

sleep quality window, sleep quality 24hrs, exercise duration window, sleep score 24hrs, exercise load window,

exercise duration 24hrs, exercise intensity window, exercise load 24hrs, work load window,

exercise intensity 24hrs, work duration window, work duration 24hrs, work load 24hrs, bolus window,

work intensity window, work intensity 24hrs, bolus window, basal window, steps window,

basal window, steps window, steps 24hrs steps 24hrs



A common method to detect multicollinearity is variance
inflation factor (VIF), which is calculated as follows:

V IFi =
1

1−R2
i

where R2
i is the R2 value of a linear regression model that

regresses the ith predictor using all the other predictors.
In practice, a VIF value less than 4 indicates a weak
correlation between one predictor and the other predictors
[17]. The original features in Table I yield high VIF values,
suggesting high correlations between features. To identify
which features are most correlated and guide the elimination
of certain features, we generate a feature correlation heatmap
for each patient. Figure 2 shows a heatmap of the correlation
matrix for one patient, with darker shades of red or
blue representing stronger positive or negative correlations,
respectively, between the two features. As highlighted by
yellow circles on the heatmap, there exist strong positive
correlations between sleep duration and quality, exercise
duration and intensity, and work duration and intensity,
either short-term or long-term. To eliminate high correlations
within the data while preserving a broad range of lifestyle
features, we replace the original sleep, exercise, and work
features with “sleep scores”, “exercise loads” and “workloads”
by multiplying the duration features with the intensity or
quality features. For example, “sleep score” is calculated by
multiplying sleep duration by the reported sleep quality. By

doing so, the VIF value of all predictors falls below 4 for
all patients. The final features for regression analysis are
summarized in the right column of Table I.

D. Regression Analysis for Personalized Lifestyle Insights

Personalized MLR models are developed for each
participant using the final features generated in the previous
section as predictors and the BG change within each window
as the target variable. Then, we utilize the R2 value for each
individual MLR model, the β coefficient, and its statistical
significance to derive personalized lifestyle insights. Note that
standardizing the features on a per-patient basis allows for
the comparison of their association with BG change using
coefficient values.

We start by gaining an overall understanding of how a
T1D patient’s BG changes are affected by lifestyle factors
using the R2 value and the number of significant predictors
for each patient model. In a regression model, the R2 value
captures the extent of variance in the target variable that is
explained by the predictors. Therefore, a high R2 indicates
that the T1D patient’s BG changes could be mostly explained
by lifestyle features, suggesting lifestyle intervention would
be pivotal in managing the patient’s BG levels. On the other
hand, a low R2 value implies that the lifestyle features are
insufficient to explain the BG changes of a patient. This could
mean that other factors besides lifestyle should be considered
in the patient’s BG management. Moreover, the number of

Fig. 2. The correlation heatmap of one patient. Notable correlations are circled in yellow.
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Fig. 3. Block Diagram of our proposed method of deriving personalized lifestyle insights.

significant predictors shows whether multiple or only a few
lifestyle features are potentially influencing the patient’s BG
levels, which is also valuable in forming a customized lifestyle
intervention strategy.

After analyzing the overall effects of lifestyle factors on BG,
we take a deeper look at each predictor’s β coefficients and the
significance levels across patients to investigate whether their
effects on BG vary interpersonally. For each predictor, we pick
all patients having significant coefficients and compare their
directionality. If we observe variations in the directionality, i.e.,
both positive and negative associations with BG change occur
in different patients, or when the directionality is opposite to
what is expected, e.g., carbohydrate intake showing a negative
association with BG, we perform additional inspection of
the data to provide explanations. Finally, we investigate
the top lifestyle predictor for each patient, defined by the
statistically significant lifestyle predictor having the largest
absolute coefficient value. This top factor could point to
the lifestyle behavior having the greatest effect on BG and
therefore inform personalized lifestyle management for T1D.
Figure 3 presents a summary of our regression analysis-based
method for deriving personalized lifestyle insights.

III. RESULTS

A. BG Change Prediction
We train multiple statistical and ML regression models to

determine which is most effective at modeling the lifestyle-BG
data, including support vector machine (SVM), random
forest (RF), gradient boosting (GB), and multivariate linear
regression (MLR). A dummy model that always predicts no
change in BG is used as a benchmark. All ML models
are trained using the final features in Table I, while for
MLR we trained two versions - MLR-original and MLR-final
- using either the original or final features as predictors
to investigate how our feature engineering approach to
avoid multicollinearity would affect the MLR’s prediction
performance. We performed 5-fold cross-validation on each
patient’s data, randomly picking 80% of the data as the
training set and 20% as the testing set. This process was
repeated 5 times, with the experimental results averaged.
Mean absolute error (MAE) and root mean squared error
(RMSE) are calculated as performance metrics. All model
implementation and evaluation are done using the Scikit-learn
library in Python. Hyperparameter tuning of the ML models
is performed over the 5-fold cross-validation.

Patient-level and overall prediction results for each model
are summarized in Table II. On an individual patient level,
SVM and GB each achieved the best performance for Patients

TABLE II
Comparison of different models’ patient-level and overall prediction performance (each cell is formatted as MAE / RMSE).

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Mean

SVM 47.6/58.8 64.9/82.7 50.2/63.9 49.5/63.5 50.1/68.2 48.0/58.4 36.7/44.6 49.6/62.9

RF 32.8/42.8 68.0/91.9 47.2/62.4 50.5/64.5 45.8/57.5 45.6/57.9 34.0/41.8 46.3/59.8

GB 35.5/44.3 79.5/108.6 51.2/64.1 55.2/71.2 47.2/61.5 40.7/50.4 38.8/46.6 49.7/63.8

MLR-original 31.7/42.6 62.3/82.0 44.5/59.5 50.6/65.2 39.7/52.5 43.7/52.9 32.7/38.5 43.6/56.2

MLR-final 31.5/43.3 61.5/79.7 45.0/60.5 50.2/64.8 38.3/51.0 43.1/51.7 33.4/39.3 43.3/55.8

Dummy Model 51.7/63.5 64.8/82.8 50.8/64.5 49.5/63.6 51.6/69.7 47.7/58.2 36.4/44.7 50.4/63.9



TABLE III
Regression analysis results of each patient. Each cell displays the β coefficient showing the association of the predictor with that patient’s BG change. The

top lifestyle predictor besides carbohydrate intake for each patient is bolded.

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7

(R2 = 0.61) (R2 = 0.24) (R2 = 0.19) (R2 = 0.34) (R2 = 0.39) (R2 = 0.29) (R2 = 0.28)

carb window 112.2** 47.6** 44.9** 57.9** 71.1** 42.2** 37.8**

bolus window -68.6** -43.0** -39.8** -62.1** -49.4** -48.6** -29.8**

basal window 16.3** -10.3 -1.8 -8.0** 2.9 -18.7** 0.5

sleep score window -21.6** 3.6 18.0** 4.1 10.2* 7.1 -0.6

exercise load window -6.0 -3.0 -5.0 -0.2 -19.5** -10.6* -9.7*

work load window 8.3* -11.9* -1.5 7.3 -10.8** n/a n/a

steps window n/a -17.7 -9.7* 6.2 0.4 -1.8 n/a

sleep score 24hrs -1.7 3.7 -0.8 3.6 3.1 -0.3 -2.5

exercise load 24hrs 2.4 3.5 0.9 3.0 -0.4 -2.2 6.0

work load 24hrs -6.9 7.3 -2.0 3.5 6.9* n/a n/a

steps 24hrs n/a -6.2 0.7 5.6 -1.9 -0.6 n/a

∗ indicates significance at the 0.05 level.
∗∗ indicates significance at the 0.01 level.
n/a indicates that no lifestyle data is recorded for that patient.

4 and 6, respectively, while MLR-original or MLR-final
yielded the best performance for all other patients. Out of the
three ML models (SVM, RF, GB), RF achieved the best overall
prediction performance with an MAE of 46.3 and RSME of
59.8 averaged across all patients. MLR-original achieved a
mean MAE of 43.6 and RMSE of 56.2 across all patients.
MLR-final resulted in the best overall performance, achieving
an MAE of 43.3 and RMSE of 55.8. One possible reason for
the ML models’ worse performance is overfitting due to the
small dataset. In this case, MLR is better suited for smaller
datasets due to its simplicity and lower risk of overfitting.
All methods outperformed the dummy model, indicating their
success in capturing meaningful patterns within the data.

Moreover, MLR-final achieved better patient-level and
overall performance than MLR-original, confirming that the
feature engineering we performed to enhance the model’s
statistical power did not compromise the model’s predictive
power. These observations led us to use MLR-final in our
regression analysis for determining personalized insights about
lifestyle’s impact on BG.

B. Regression Analysis of Individualized Lifestyle Impact

The regression analysis results for each patient are presented
in Table III. These results include the R2 value, the β
coefficients, and their statistical significance under the 0.05
and 0.01 levels for each of the predictors.

Across all patient models, the R2 values ranged from
0.19 to 0.61, averaging 0.33. The number of predictors
significant under the 0.05 significance level ranged from 3
to 6, averaging 4.7. These observations suggest that T1D
patients vary in terms of how much their BG changes are

explained by lifestyle factors. For example, Patient 3’s
model resulted in an R2 value of 0.19, indicating that this
patient’s BG change may not be well explained by the
insulin and lifestyle factors included in the dataset. However,
Patient 3’s model still resulted in statistically significant
coefficients for four predictors (carb window, bolus window,
sleep score window, steps window), indicating some
associations exist between the lifestyle factors and BG
changes. On the other hand, Patient 1’s model achieved
an R2 value of 0.61, demonstrating a strong fit of the
model. Patient 1’s model also resulted in five statistically
significant predictor variables including carb window,
bolus window, sleep score window, exercise load window,
and work load window, suggesting that multiple lifestyle
factors might play important roles in managing BG for this
patient.

Having an overall understanding of lifestyles’ effect on
the patients, we proceed to investigate the coefficients of
each predictor to study if variance exists among patients.
For all patients, carb window and bolus window show
significance under the 0.01 significance level and achieved
the overall largest absolute values of coefficients, where
coefficients of carb window are all positive, and coefficients of
bolus window are all negative. These findings are consistent
with the strong rising and reducing effects of carbohydrates
and bolus insulin on BG, respectively. This indicates that
our method can correctly capture and model the dynamics of
carbohydrate intake, bolus insulin, and BG.

basal window is significant in Patients 1, 4, and 6, two
of which have negative coefficients and the other with
positive coefficients. Compared with bolus window, the lower



frequency of significance and smaller absolute values of
coefficients may be explained by basal insulin’s slower and
milder effect on BG. It is interesting to note that for Patient
1, the basal insulin rate has a positive association with BG
change, despite its usual BG-lowering effect. It is possible
that an increase in BG change may require a higher dosage
of basal insulin to stabilize BG levels, leading to a positive
association. Therefore, it is important to take caution when
interpreting regression analysis results as there may be other
underlying reasons contributing to the associations.

Among other short-term lifestyle predictors, Patients
1, 3, and 5 showed significance in sleep score window
(two positive and one negative association), Patients 5, 6,
and 7 showed significance in exercise load window (all
three negative associations), Patients 1, 2, and 5 showed
significance in work load window (two negative and one
positive association), and Patient 3 showed significance in
steps window (one negative association). For the long-term
lifestyle predictors, absolute values of coefficients are low,
and only one patient had work load 24hrs as a significant
predictor. It could be inferred that the long-term effects
of lifestyle factors on T1D patients’ current BG change
are less significant than the short-term effects. For the top
lifestyle predictor defined in subsection II-D, Patients 1
and 3 have sleep score window, Patients 5, 6, and 7 have
exercise load window, and Patient 2 has work load window
as their top lifestyle predictors. Patient 4 doesn’t have
significant lifestyle predictors. The variety in top lifestyle
predictors and their different directionality with BG change
implies interpersonal differences exist in lifestyle’s impact on
BG.

With a closer look at each lifestyle predictor, the coefficients
of significant exercise load window and steps window
predictors are all negative, consistent with physical activity’s
immediate lowering effect on BG levels. For significant
sleep score window predictors, two patients (Patients 3
and 5) have positive coefficients, implying longer sleep or
higher sleep quality is associated with higher BG raise.
This finding may be explained by a rising BG trend during
sleep for these two patients, suggesting sleep disturbances,
potentially caused by sleep apnea, may be taking place [18].
Furthermore, the self-reported sleep quality rated from 1 to
3 has a limited scale and could be inaccurate as patients
might consistently report the same value out of convenience
or their subjective estimation of the quality could be biased.
As a result, longer sleep with sleep disturbance could lead to
higher sleep scores and is associated with higher BG raises.
For work load window, the distinction in the directionality of
coefficients might be attributed to different work types such
as physical work and sedentary work which are not recorded
in the OhioT1DM dataset. Overall, the insights gained from
the regression analysis point towards interpersonal differences
in the relationship between lifestyle factors and BG in T1D
patients.

IV. DISCUSSION AND FUTURE WORK

Based on the insights generated by our method, a
personalized recommendation system could be developed.
Lifestyle factors having the top associations with BG changes
could be reported to T1D patients so that they can prioritize
managing these lifestyle factors for optimal glycemic control.
Guidelines on how to manage these factors could be provided
based on the directionality of the coefficients. For instance,
if the coefficient of a lifestyle factor is consistent with its
established effect in the literature, we can guide patients
on how to increase or reduce the conduct of that lifestyle
factor to achieve lower BG levels. On the other hand, if the
coefficient of a lifestyle factor is contrary to its established
effect in the literature, further analysis should be done before
recommendations are given. For instance, as mentioned in
subsection III-B, positive associations exist between sleep
score and BG changes in two T1D patients. A deeper analysis
of the data rationalizes this finding as the BG raises during
sleep, suggesting the occurrence of sleep disturbances. In
this case, a warning could be given to patients to help them
be aware and diagnose their potential sleep problems. The
implementation of such a system needs future endeavors and
is the topic of our future research. It is also essential to note
that association doesn’t necessarily equate to causal effect, and
the actual effects of such recommendation systems should be
further studied through controlled trials in the future.

With minor modifications, our method can be adapted
to other T1D datasets collecting different sets of lifestyle
factors. Just like what we do on the OhioT1DM dataset, a
new set of events indicating the emergence of BG-affecting
factors could be defined to segment the data into windows.
Lifestyle and insulin data are then aggregated inside
each window, with a distinct calculation of the ingested
amount of carbohydrates and bolus insulin as described in
subsection II-C. Subsequently, VIF values and the correlation
matrix are used to guide the elimination or combination of
factors that have a high correlation with other factors to
avoid multicollinearity issues before generating the regression
analysis results.

There are two limitations of this study. Firstly, though
the performance of the MLR model outperformed other ML
models significantly as shown in Table II, the MAE and RMSE
values are still high. A more accurate model could potentially
increase the R2 values of MLR models and yield a more
accurate estimation of each factor’s association with the BG
changes. Secondly, the data size is relatively small, limiting
the analysis of the long-term effects of lifestyle factors. In
our future work, we plan to study the effect of sample size
on personalized analysis of lifestyle factors on BG by (a)
collecting larger datasets and (b) exploring using smaller
window lengths. A larger dataset could increase the model’s
fit to the complex T1D data and reduce prediction errors, also
opening up possibilities to advanced ML models for better
data modeling and lifestyle insights.



V. CONCLUSION

In this study, we propose the first data-driven system
to analyze the personalized effects of lifestyle factors on
T1D patients. Through carefully designed data segmentation,
feature engineering, and MLR-based regression analysis, the
impact of insulin and lifestyle factors on T1D patients’
BG change can be isolated to derive personalized lifestyle
insights. Regression analysis results on the OhioT1DM dataset
demonstrate significant interpersonal differences in lifestyle
factors’ effect on BG changes, underscoring the need for future
research in personalized T1D lifestyle intervention.
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