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Abstract—Emerging Vehicle-to-Everything (V2X) technologies
promise to improve the perception of streets by enabling data
sharing like camera views between multiple vehicles. However,
to ensure accuracy of such enhanced perception, the problem
of vehicle matching becomes important; the goal of a vehicle
matching system is to identify if images of vehicles seen by
different cameras correspond to the same vehicle. Such a system
is necessary to avoid duplicate detections for a vehicle seen
by multiple cameras and to avoid detections being discarded
due to a false match being made. One of the most challenging
scenarios in vehicle matching is when the camera positions
have very large viewpoint differences, as will commonly be the
case when the cameras are in geographically separate locations
like in vehicles and street infrastructure. In these scenarios,
traditional handcrafted features will not be sufficient to create
these correspondences due to the lack of common visual features.
In this paper we will examine the performance of random forests
and neural networks as classifiers for both learned features and
high level visual features when used for this vehicles matching
problem. Additionally, a novel dataset of vehicles from cameras
with very large viewpoint differences was recorded to validate
our method; our preliminary results achieve high classification
accuracy with low inference time which shows the feasibility of
a real time vehicle matching system.

I. INTRODUCTION

In the United States in 2016, there were over 30,000 motor
vehicle related fatalities and over 2 million more cases of
bodily injury [1]. While vehicle safety has improved over the
years, there are still major improvements that can be made to
reduce the number of vehicle accidents; in the past decade,
there have been many new systems such as the Advanced
Driver Assistance Systems (ADAS) and Automatic Emergency
Braking (AEB) systems that have improved vehicle safety.
To support the advanced perception required by these types
of systems, consumer vehicles come standard with an array
of sensors such as cameras, radars, and ultrasounds which
provide the necessary input data. However, these sensors all
have range limitations and can have their accuracy affected by
factors such as occlusion and adverse weather conditions. Even
with the most sophisticated array of sensors, a single vehicle
can never have a perfect perception of its surroundings; there
will always be some gaps or areas beyond what its sensors
can see.

One way to address this problem is through collaboration.
If a collaborative vehicle environment existed where vehicles
share their sensor data with other vehicles, then each vehicle
could have a more complete perception of the area they are
in. To generate this improved perception, there is a large

Fig. 1. Example intersection showing the need for vehicle matching: the
yellow and blue car both detect different parts of the black car, but without
a vehicle matching system there will be two individual detections (blue and
yellow circles). If a vehicle matching system could create the correspondence
between the two individual detections, then they can be merged into a more
accurate detection that is closer to the ground truth (black circle).

data fusion challenge of creating correspondences between
each vehicles data that must first be solved. One of the most
common and studied type of sensors for vehicle perception is
a RGB camera, and an important correspondence that must be
established for this type of data is knowing when a vehicle
seen by one camera is the same as a vehicle seen by another
camera. This is the vehicle matching problem and solving
it is an important first step to generating the collaborative
perception of the vehicle’s environment.

Connected vehicle systems such as Vehicle-to-Vehicle
(V2V) [2] or Vehicle-to-Everything (V2X) [3] give vehicles
that have the appropriate hardware a way to communicate and
share information with each other. The motivation for solving
the vehicle matching problem can be seen by considering an
intersection in a connected vehicle environment such as the
one seen in Figure 1; there can be many vehicles at this
intersection that are generating camera data and the data from
each vehicle can be fused together to create a more complete
perception of that area than any of the individual vehicles
could create on their own. To generate a comprehensive
perception of this intersection, a naive solution might be to
assume that every object detected by each vehicle is unique.
However if multiple cameras saw the same object, the system’s
perception of the intersection would be littered with duplicate
detections. If we are able to match objects from one camera to
another and forward this information to the perception system,
then we can avoid these duplicate detections, while ensuring
we do not falsely eliminate true objects.



In this paper, we look to solve the vehicle matching problem
when the viewpoint difference between the cameras is large
and offers few or no overlapping regions and hence no
common visual features for the target vehicle; we term this
as the Non-Overlapping Vehicle Matching (NOVeM) problem.
For this problem, we consider multiple types of visual features
of vehicles as seen by camera images to determine if it is
possible to achieve high classification accuracy in vehicle
matching without considering the physics of the vehicles.

II. RELATED WORK

The vehicle matching problem can be considered as a subset
of the general object matching problem, the latter having been
studied in various contexts for decades [4]. However, most
object matching techniques such as [5] rely on common visual
features like Oriented FAST and Rotated BRIEF (ORB) [6]
and Scale Invariant Feature Transform (SIFT) [7] to create
matches which will not be possible in the case of large
viewpoint differences. More recently, techniques have been
proposed for vehicle re-identification, where images from
surveillance cameras in different areas are matched to try and
identify if the same vehicle is seen. Liu et al. [8] proposed
Deep Relative Distance learning which uses a two branch
neural network with a coupled cluster loss function to create
a feature representation of vehicle images where distance can
be directly used to measure the similarity of arbitrary two
vehicles. Chu et al. [9] proposed a viewpoint-aware metric
learning approach and associated neural network that classifies
if the vehicle images have similar or different viewpoints
and has a corresponding metric for each case. Zheng et
al. [10] proposes a two-stage progressive training approach
to learning more robust visual representations from vehicle
datasets. However, none of the vehicle re-identification work
consider data from vehicle views, i.e. cameras that are on the
vehicles. The appearance of vehicle features from the views
of other neighboring vehicles can vary greatly compared to
those from surveillance camera views and thus it is unlikely
the vehicle re-identification models will perform well in the
context of vehicle views. Recently, there has been some work
that considered vehicle matching from the views of vehicle
cameras. Liu [11] proposed using a pre-trained neural network
with the contrastive loss function to classify vehicle images as
the same or not; the dataset used for this paper was recorded
from the perspective of the vehicles but the problem of Non-
Overlapping Vehicle Matching, where there are no overlapping
visual features, is not addressed, which is the focus of this
paper.

III. METHODOLOGY

In this section, we describe our approach of studying
different classifiers and feature representations to see which
best addresses the NOVeM problem. The general pipeline we
use is shown in Figure 2. For each pair of input images, we
want to create a feature set that can be used by a classifier
to generate a similarity score for the image pair. As such, the
two most important design choices to consider is what to use
for the feature extractor and what to use for the classifier.

Fig. 2. Overview of vehicle matching approach: the system takes a pair of
vehicle images as input and produces a similarity score between 0 and 1.

Note that in general, there can be more than two simultaneous
vehicle camera views of the same road scene, and hence more
than a single pair of detected objects (vehicles) that need to be
matched. In this paper, we assume that such multi-view vehicle
matching is performed as multiple pairwise matchings.

We are interested in using a machine learning model as our
classifier, so another decision to be made is what dataset to
train/test on. While other vehicle image datasets exist, there
are none suitable for the NOVeM problem. KITTI [12] and
Cityscapes [13] only include data from one vehicle; Vehicle
re-identification datasets, such as VeRi [14] and VehicleID [8],
only contain street surveillance footage of vehicles and have
no images from multiple vehicle cameras. For our problem,
we want a dataset that has camera views from multiple
vehicles taken simultaneously to replicate the real time vehicle
matching that would need to take place in a connected vehicle
environment, which none of the previously mentioned datasets
have available. As such, it is necessary to create a new dataset
for the NOVeM problem.

A. Dataset

For data collection, two cameras were set up on opposite
sides of an intersection on the UCSD campus in positions that
mimic two cars stopped on opposite sides of the intersection;
the recorded images of vehicles passing through the intersec-
tion have no overlap in their visual features. The dataset is
an aggregate of recordings done over 4 separate afternoons.
For the recorded data, object detection was applied to every
video frame and all detected vehicles were cropped out; each
cropped vehicle image from camera 1 is paired with every
cropped vehicle image in camera 2 and binary labels are
assigned according to if the vehicles are the same (1, positive
sample) or not (0, negative sample). In total, 10,816 pairs
were labeled with 7795 being negative labels and 3021 being
positive labels. A 80%/20% random split was applied to form
a training and a testing dataset; an additional 95%/5% random
split was applied to the training set to generate a validation set.
Additionally, we ensured that the ratio of positive to negative
samples remained constant over these random splits to ensure
that each subset is not biased more towards one class. Example
image pairs can be seen in Figure 3; as shown in the figure, the
vehicle image pairs contain two completely different views of
the vehicle that have little or no overlap in their visual features.

B. Feature Extraction

In this section, we present our approach to feature extraction
and the different kind of feature sets we use. Because this is
an image comparison problem, a Siamese architecture [15]
is used for feature extraction. With this design, we generate
feature vectors for both inputs using the same feature extractor
in parallel as shown in Figure 4. Instead of creating our own



Fig. 3. Example image pairs from our dataset. Each column represents a vehicle image pair; the green boxes are matches and were assigned a positive label
and the red boxes are non-matches and were assigned a negative label.

Fig. 4. A siamese architecture where the same feature extractor is applied to
both input images in parallel is used to produce two feature vectors that can
be combined/compared to form a feature set.

way to extract features from images, we want to use available
methods that can produce features that are viewpoint invariant,
i.e., the features will be the same for the most part no matter
what viewpoint you are viewing the object from. To do this we
will utilize transfer learning, where we use knowledge learned
from one problem and apply it to a different problem. In this
case, we will use feature extractors that have been trained and
used for a different purpose, but whose features can be used for
vehicle matching. Next we will discuss two possible feature
sets that can be used as viewpoint invariant features.

High Level Visual Features: For the first set of features,
we create a vector of high level visual features that are inspired
by human intuition for vehicle matching. When we as humans
look at pictures of two vehicles, we might consider things like
the vehicles’ colors, makes, and models to figure out if the
two images are of the same vehicle. There exist information
retrieval methods to generate these high level visual features
from image data that can be used as a feature extractor for
our problem; one such method is the Sighthound vehicle
recognition API [16] which can provide a classification of a
vehicle type, color, make and model with confidence scores
for many of these features. With this data, a feature vector
for every vehicle can be created; pairs of feature vectors are
compared element-wise and merged into a combined feature
vector as shown in Figure 5. We wanted to include both a
field to check if the type, color, make, and model matched but
also an average confidence score so that the system may be
able to learn to distrust the comparisons with low confidence.
These combined feature vectors serve as the input data for
the classifier and we have labeled them High Level Visual
Features (HLVF).

Learned Features: The second set of features are features
learned by a neural network on a very large image dataset. The
HLVF is a small feature set of predetermined features so to
contrast that we wanted to have a large set of learned features
for the second feature set. We chose to use a ResNet-18 [17]
model trained on the ImageNet [18] dataset. This feature set
has been used by many others and has proven to be very
successful for a wide variety of applications [19]. For the
ResNet-18 model, we remove the fully connected (FC) layer
and take the flattened output of the last convolutional layer as
the feature set; this is because this network was trained for
the ImageNet Large Scale Visual Recognition Challenge and
this FC layer is making classifications specific to that problem.
This feature set is relatively high dimensional, much more so
than the HLVF (512 vs 8). Since there are two images, we get
two features vectors from the DNN’s which are concatenated
to form the combined feature vector and we label this feature
set as Learned Features (LF).

C. Classification
In this section, will discuss the two classifiers we chose and

why they are a good fit for this problem. The feature extractors
we use are pretrained with different datasets and since our
dataset (Section III.A) is relatively small, we decide not to
retrain the feature extractor networks. Instead, we use machine
learning models as the classifier that can learn parameters
specific to the NOVeM problem to make the classifications
based on the generated feature sets.

For the first classifier, we decide to use a Random Forest
(RF) model. The main reason for choosing a RF is due to
the fact that it can work with almost any type of data. With
RF, we can use the same model with the same parameters
for both HLVF and LF to get an idea of which feature
set is more discriminative for NOVeM. Compared to other
decision tree based models, the RF has lower variance and
generally a lower overall error due to its use of aggregate
bootstrapping. In aggregate bootstrapping, random subsets of
features are selected to form decision trees and predictions

Fig. 5. HLVF combined feature vector is formed by doing an element-wise
comparison of the two vehicle feature vectors. For type,color,make, and model
comparison the result is a Boolean variable and the average confidence scores
are real number between 0 and 1.



Fig. 6. NN architecture for classifying LF data

are made based off of the average prediction over all the
decision trees. There are also very few parameters to tune, the
two most important parameters are the number of estimators
(trees) and the maximum number of features selected for each
estimator; we used 100 estimators with number of features
equal to square root of the total number of features.

The second classifier we use is a neural network (NN).
Both feature extraction methods involve a deep convolutional
NN extracting a feature set for us, so our NN design is just
focused on classification. Given a set of input features, a NN
classifier is a set of FC layers that map the input feature
set to the desired output. We could use as little as 1 FC
layer, but to give the model more parameters and allow it
to learn more complex patterns in the data we decided to
use 4 FC layers. The Rectified Linear Unit (ReLU) activation
function and batch normalization are applied between each
layer besides the output layer which has the sigmoid function
applied to generate the similarity score. Figure 6 shows our
NN architecture, including the number of FC layers and their
different input and output sizes. We decided to only use the
feature set LF for the neural network, since the dimension
of the feature set HLVF is so low there would be very few
parameters to learn. For the training process, we used a batch
size of 256, learning rate of .001, the binary cross entropy loss
function, and the Adam optimizer [20]. Random horizontal
flip augmentation was added during training to increase the
viewpoint diversity in the training set. The network itself was
implemented in Python using the PyTorch library and was run
on Nvidia GTX 1080 Ti GPU.

IV. RESULTS

When examining the performance results of our model, one
thing to note is the difference the effect false positives and false
negatives can have on the overall collaborative perception. A
false positive would be when two different objects are viewed
by two cameras and the system identifies them as the same
object. In this case, both detections could be deleted by the
collaborative perception system using the results of the vehicle
matching method, and a wrong “merged” detection could take
their place resulting in unsafe perception information being
relayed to the drivers/vehicles. A false negative would be when
two cameras view the same object but our system failing

to identify that they are the same. In this case, a duplicate
detection will appear in the collaborative perception. As such,
false negatives in vehicle matching should be considered less
dangerous than false positives because while there may be
multiple detections for the same object in the case of false
negatives, the system will still have information about the
object’s location and the driver can be made aware of it.

Fig. 7. ROC Curve of the proposed feature extraction and classification
techniques.

Fig. 8. PR Curve of the proposed feature extraction and classification
techniques.

Fig. 9. F1 Score over different classification thresholds for proposed feature
extraction and classification techniques.

Figures 7-9 give different interpretations of our model’s
performances on the test set and the results are summarized
in Table 1. For each figure, we show the results for the



TABLE I
ACCURACY RESULTS

Metric ROC AUC AP ∥F1∥∞
LF + NN .994 .980 .947

HLVF + RF .949 .917 .849
LF + RF .969 .906 .864

three different combinations of features sets and classifiers:
HLVF + RF, LF + RF, and LF + NN. Figure 7 shows the
Receiver Operating Characteristic (ROC) curve, showing how
the different feature sets and classifiers perform in terms
of true positive rate and false positive rate over different
classification thresholds . All similarity scores greater than or
equal the classification threshold are given positive labels and
scores less than the classification threshold are given negative
labels. As such, the choice of the classification threshold will
directly affect the rate of false positives; how to choose an
appropriate classification threshold will be discussed at the
end of the section. The area under the ROC curve (ROC AUC)
gives a general metric for how well the classifier is performing
over all classification thresholds. A perfect classifier will have
a ROC AUC equal to one and so we want our models to
get as close to this value as possible; in this context the LF
+ NN model performs best at a ROC AUC of .994. While
this curve and metrics from it are widely used for evaluating
the performance of a binary classifier, it alone does not give
a full picture of the system’s performance. In our dataset,
the number of negative examples outnumbers the number of
positive examples by more than 2:1, so the false positive rate
can be inflated due to the large number of true negatives. Since
we consider reducing false positives to be very important to
our problem, we will consider other metrics that give us a
more accurate picture of the occurrence of false positives.

Figure 8 shows the Precision Recall (PR) curve, showing
how our models perform in terms of precision and recall over
different classification thresholds. The average precision (AP)
metric represents the average precision value over all classifi-
cation thresholds; the precision metric is inversely proportional
to false positives, so the higher the AP the less false positives
the system is experiencing on average. In the context of this
metric, the LF + NN is the best with an AP of .980. However,
we do not want to over bias the system to maximize AP;
for example, if a model predicts a negative label for every
image pair we would have zero false positives, but now the
system would be overwhelmed with false negatives. As such,
the metric of F1 score is calculated as well. The F1 score is the
harmonic mean of precision and recall, so having a high F1
score is what allows the high values of AP to be meaningful
since we can be assured that the system is not overly biased
towards reducing false positives. A graph of each model’s F1
score vs the classification threshold is shown in Figure 9. We
use the infinity norm of the F1 scores as a way to compare
the performance of the different models; in this context the LF
+ NN model is once again the best with a ∥F1∥∞ equal to
.947. Additionally, the LF + NN model achieves much more
consistent performance over different thresholds shown by the
relatively flat F1 curve around the maximum.

These metrics give an overall idea of the model perfor-
mance, but for a real world implementation a classification
threshold must be selected; Figure 10 shows the precision
and recall values for different thresholds for the LF + NN
model. Choosing a specific value of the threshold depends
on how many false positives are allowed to pass through.
Table 2 shows the specific precision and recall values for
different classification thresholds. With the application of
collaborative perception and automotive safety in mind, a
very high precision would be required to minimize the false
positives and a high classification threshold (>.8) may be
chosen accordingly; however, for a different application where
false positives are not viewed so harshly, one may want to
choose a more balanced classification threshold (∼.5) that
maximizes the F1 score.

Fig. 10. Precision and Recall over different classification thresholds for the
LF + NN model

TABLE II
COMPARISON OF DIFFERENT CLASSIFICATION THRESHOLDS

Classification Threshold Precision Recall F1 Score
.5 .938 .953 .945
.6 .950 .939 .944
.7 .957 .924 .940
.8 .965 .896 .929
.9 .979 .834 .901

V. CONCLUSION

In this paper, we compared the performance of two different
features sets and classification models and found that a deep
neural network feature extractor trained on ImageNet provides
a very good set of features for NOVeM. While the HLVF
are more intuitive in vehicle matching for humans, the LF
perform better overall when applied to a machine learning
classifier. Additionally, neural networks achieve higher accu-
racy as compared to Random Forests when used as a classifier
in this context. In the end, we have a system that is capable
of achieving a very high level of precision with a good F1
score that shows the feasibility of vehicle matching even in
scenarios with very large viewpoint differences. While the
proposed methods were able to achieve varying degrees of
success with the defined task, they all have low inference times
(< 10 ms for a single instance on a Nvidia GTX 1080 Ti GPU)
which is a positive sign that real time systems are achievable.



VI. FUTURE WORK

Overall, the results are very promising and give us a baseline
for future work in which we will consider more complex
and broader vehicle matching scenarios, like matching vehicle
camera and street camera views, and extending to cameras
views from moving vehicles. Our goal is to create a general ve-
hicle matching system that can handle any viewpoint situation,
whether it be nearly identical or completely nonoverlapping,
so that the candidate images can be matched regardless of
whether the camera is on the vehicle or on a street camera.
We plan to use the NOVeM dataset as the starting point for
a much larger and all-encompassing dataset that will include
these other situations of camera placements and mobility. We
also plan to incorporate the physical aspects of the vehicles
as well including the position, orientation, velocity, and 3D
structure of the vehicles. To do this we will need to look
temporarily across images through tracking as well as spatially
using GPS, IMU, and depth sensors. By combining these
physical aspects of the vehicles along with visual features,
further improvements can be made to the vehicle matching
system that will allow it to work in a more diverse set of
scenarios.
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