
Contention-aware Adaptive Model Selection for
Machine Vision in Embedded Systems

Basar Kutukcu∗, Sabur Baidya∗, Anand Raghunathan†, Sujit Dey∗
∗Department of Electrical and Computer Engineering, University of California, San Diego

†Electrical and Computer Engineering, Purdue University
∗ Email: {bktkc, sbaidya, dey}@ucsd.edu; † Email: raghunathan@purdue.edu

Abstract—Real-time machine vision applications running on
resource-constrained embedded systems face challenges for main-
taining performance. An especially challenging scenario arises
when multiple applications execute at the same time, creating
contention for the computational resources of the system. This
contention results in increase in inference delay of the machine
vision applications which can be unacceptable for time-critical
tasks. To address this challenge, we propose an adaptive model
selection framework to mitigate the impact of system contention
and prevent unexpected increase in inference delay by trading
off the application accuracy minimally. The framework uses a
set of hierarchical deep learning models for image classification.
It predicts the inference delays of each model and selects the
optimal model for each frame considering the system contention.
Compared to a fixed individual model with similar accuracy, our
framework improves the performance by significantly reducing
the inference delay violations against a practical threshold. We
implement our framework on Nvidia Jetson TX2 and show that
our approach achieves a gain over the individual model by 27.6%
reductions in delay violations.

I. INTRODUCTION

Modern machine vision systems involve complex algorithms
based on artificial intelligence that need significant computing
resources to satisfy the performance demands. Especially,
the real-time applications of machine vision systems impose
stringent constraints on the end-to-end latency. However, this
is very challenging for applications, e.g. autonomous systems
where the computing is performed in a resource-constrained
system. Moreover, the computing system running the machine
vision application can share resources with other computing
loads, e.g., the connected and autonomous vehicles can process
camera data together with intermittently activated radar data
on the same computing unit for better fused perception in
crowded areas or in the presence of obstacles. In such a sce-
nario, the machine vision on camera data can contend with the
radar data processing for the computing resources, increasing
the application latency. While increasing the priority of certain
tasks can avoid the system level contention, it can cause a
starvation for the other tasks running on the same system.
Instead, an alternative approach is to handle contention within
time limits of the tasks. In this work, we examine the effects
of contention on an image classification system, and propose a
framework which minimally compromises the accuracy of the
image classification system to satisfy the latency requirements.

Since embedded systems have limited resources, running
deep learning algorithms on them has been addressed by sev-
eral previous efforts. Some works develop ground up efficient

deep neural networks [1], [2]. Some other works make existing
deep neural networks more efficient by using quantization
[3], [4]. However, even with lowering the computational
complexity of the deep learning algorithms, the system needs
to adapt to cope with the contending processes and satisfy the
performance of the image classification application.

As many modern systems may not allow accessing low level
system information in real-time due to security concerns or
complexity of the platform, herein, we propose an application-
level data-driven predictive framework for contention-aware
adaptive model selection. We implement the framework on
Nvidia Jetson TX2 and show the advantage of predictive
adaptation mechanism in dynamic contention scenarios.

II. SYSTEM OVERVIEW

A. Machine Vision System

In this paper, we consider image classification application of
the machine vision systems. There are two main metrics that
define the performance of an image classification applications
- inference delay and accuracy. An ideal real-time machine
vision system aims to minimize the inference delay and
maximize the accuracy of the image classification task.

Now, in a computing system, assigning more tasks than its
capability creates contention on the specific system resources
resulting in increase in delay for the completion of the tasks.
The contention can be seen in different computing resources
depending on the workload. For example, it can be on CPU
which has a limit of issuing instructions in a certain time
window, can be on memory which has a limited capacity,
or can be on bus which has a limited bandwidth. These
contentions and their impact are seen more frequently on the
resource constrained systems such as embedded systems than
servers or desktop computers.
B. Delay Accuracy Trade-off

There is a trade-off between inference delay and accuracy
of an image classification system as more complex image
classification algorithms result in higher accuracy but also re-
quire more time to compute those results for a given available
system resources. Since contention creates dynamic variations
in the available resources, a machine vision system needs to
optimize the performance in terms of delay and accuracy.
Typical autonomous systems need to satisfy a delay constraint
while maximizing its image classification accuracy. In order
to achieve that, machine vision systems can use a set of N
hierarchical image classification models {Mi}, i = 1(1)N



Figure 1. Inference delays of different models under changing contention

with increasing complexities. Then depending on the available
resources in presence of contention, it can chose the optimal
model. For example, inference delays of four different Ef-
ficientNet [5] models are shown in Figure 1. Each model’s
inference delay increases proportionally under increasing con-
tention. Figure 1 shows that if we have an inference delay
constraint, we can satisfy it by choosing appropriate model
for appropriate contention level.

C. Model Selection Problem

However, for perfect selection of an appropriate model, one
needs to have a priori knowledge about the accurate contention
level for the next time slot and select the best model that fits
in the available resources, which is nontrivial. However, one
can estimate the forthcoming impact of contention on different
image classification models ahead of time and select the best
model for the next image frame.

Real-time model selection is previously investigated in
literature for different scenarios. In [6], the authors measure
the input image’s complexity before classification and select
the ideal model for the specific input image content. In [7], two
models are employed, one big and one little. Each image is
classified by the little model first. Then, if the classification is
found unsuccessful, big model classifies the same image again.
However, the unsuccessful attempts in this method increases
the latency, and hence, not suitable for real-time machine
vision system. Moreover, the aforementioned methods do not
consider the contention into account for model selection.

In [8], the input and the contention are considered to
select an approximate branch of a predefined model. The con-
tention is determined by matching previous inference delays
of approximate branches and a look-up table that consists
benchmarks of each approximate branch. Our work is different
in two aspects. First, instead of approximate branches, we
use multiple models that are readily available in the RAM.
Hence, changing models does not have any overhead. Second,
our contention measurement is embedded in regression mod-
els instead of look-up tables. Also, our delay normalization
mechanism allows us to use different models’ inference delay
to measure contention. This can be useful when contention and
therefore model selection change rapidly. This work [8] also
shares some concerns for using multiple models in limited
memory. We address this by showing that loading multiple
models does not incur the memory problem, and present more
insights on this in the Performance Evaluation section.

Figure 2. Overview of the proposed framework

Herein, we predict the future inference delay of the model
set {Mi} in presence of contention. Then, we find a subset
of models {Mj |Dj < T}, j = 1(1)L, L ≤ N , where Dj is
the predicted inference delay of model Mj and T is a latency
threshold of the system. After that we choose the appropriate
model Mk such that the accuracy Ak = max{Aj}.

III. SOLUTION FRAMEWORK

A. Prediction Framework
The overview of the proposed framework is shown in

Figure 2. The framework employs a set of image classifi-
cation models whose accuracy and inference delay increase
incrementally. The framework chooses the optimal model for
the next frame’s classification while considering the current
contention on the system. The optimal model is determined
by using historical information and a set of linear regression
models. The historical information comes from the previous
frames’ normalized inference delays. There is one regression
model for each image classification model used in the frame-
work. The regression models are trained before runtime using
their corresponding image classification models on randomly
changing contention level. All regression models take the same
input, the previous normalized inference delays, and output
the predicted inference delay for their corresponding image
classification model. Then, the framework chooses the most
appropriate model based on the delay threshold constraint and
maximum accuracy as mentioned earlier.
Delay Normalization
Figure 3a shows the 2000 consecutive frames’ inference delays
for EfficientNet-B0, B2, B4 and B6 [5] under increasing
contention. It shows that the inference delay values depend
on two things - the system level contention, and the image
classification model type. Since our framework uses historical
inference delay values to represent the impact of contention,
we remove the model type dependency by normalization. We
use min-max normalization as following:

xnormalized =
x−min(x)

max(x)−min(x)
(1)

The result of normalization is shown in Figure 3b. The
minimum and maximum values for each model is saved before
runtime and used to normalize the inference delays of the
models during runtime.
Prediction and Selection
The training data is created by running each model under
randomly changing contention levels. As input, the normalized
data is split into chunks of n consecutive normalized inference
delays. All of the regression models take the same input as



(a) Inference delays (b) Normalized inference delays

Figure 3. Inference delays under increasing contention and normalization

Figure 4. Effect of history sizes on accuracy and delay violations

they will be predicting in parallel using the same input. As
prediction output, non-normalized delays are used. Each re-
gression model has different output corresponding to its image
classification model. Hence, each regression model takes same
input, n previous normalized inference delays, and predicts its
corresponding image classification model’s inference time for
the next frame. After this step, the framework has a predicted
inference delay for each image classification model. The image
classification models are already ranked in terms of accuracy
on static datasets before runtime. Therefore, the framework
chooses the model which has the highest rank and also a
predicted inference delay under the predefined threshold.

B. Experimental setup

The experiments are performed on the Nvidia Jetson TX2
platform with the Tensorflow framework. We used Efficient-
Net [5] for image classification, as EfficientNet proposes
multiple models with similar architectures but with scaled
features. Therefore, accuracy and delay of the proposed mod-
els are incrementally ranked. For demonstration, we use 4
EfficientNet models - EfficientNet-B0, B2, B4, B6. Among
these, B0 has the lowest accuracy and the smallest inference
delay and B6 has the highest accuracy and the largest inference
delay. We used pre-trained weights from the Tensorflow library
and the ImageNet-v2 [9] dataset for testing. All of the reported
accuracy values are from top-1 prediction labels.

We consider a scenario of modern vehicles, where radar
processing can intermittently contend with the image classi-
fications in different road situations. So, we created system
contention from radar detection algorithms. Two different
Poisson distributions are used to generate contention. One
distribution P1(λ1) is used for the duration of the contention,
other P2(λ2) is used to determine the contention level. Each
contention period is followed by a random non-contention idle
period. and we continue the cycle over 2000 frames.

We compare our predictive model selection with two re-
active algorithms. The first one is called 1-step reactive
which checks the last frame’s inference and then, selects 1-
step stronger model if the last frame’s inference is below
threshold. Otherwise, it selects the next (1-step) weaker model.
The second reactive algorithm is called N-step reactive. This

Figure 5. Temporal comparison of individual models, reactive methods and
the predictive method
algorithm similarly checks the last frame’s inference delay and
selects 1-step stronger model if the last frame’s inference is
below the threshold. However, if the last frame’s inference
is above the threshold, it conservatively selects the weakest
model for the next frame to satisfy the delay threshold.

C. Performance Evaluation

The regression models use previous n normalized inference
delays, we experiment with different n values as shown in
Figure 4. The optimal n value is found to be 5 since it results
in a prediction framework with the highest accuracy and the
smallest delay violation for image classification. A smaller n
value results in a regression model which is too sensitive to
noise. Similarly, a higher n value results in a regression model
which is slow to react to contention changes.

The temporal plots for 2000 frames under a specific con-
tention regime with λ1=200 and λ2=6 are shown in Figure 5.
The inference delay and the selected model’s index are given
for three different model selection methods. The individual
models’ inference delays are also plotted for comparison
purposes. The inference delays are averaged for 10 frames
to smooth the plots. The delay plots for individual models
show that using a single model under varying contention is
not optimal. The individual plots also suggest the best model
under a specific contention regime, e.g., around the frames
100, 250, 500, 1000, the ideal models are B4, B2, B6, B0
respectively. It can be seen that the predictive method can
successfully select the optimal model most of the time. It
can also choose multiple models under the same contention
region. For example, B0 is the ideal model around frame 1000.



Model Accuracy
(%)

Delay Viola-
tions (%)

EfficientNet-B0 59.90 0.40
EfficientNet-B2 63.80 11.25
EfficientNet-B4 69.55 39.55
EfficientNet-B6 72.15 58.45

Average-(B0-B2-B4-B6) 66.35 27.41
1-step Reactive Model Selection 69.50 30.20
N-step Reactive Model Selection 67.60 21.50

Predictive Model Selection 69.20 11.95
Table I

COMPARISON OF METHODS IN A SPECIFIC CONTENTION REGIME.

However, B2 is not completely above the limits. Therefore, B2
can also be chosen from time to time in this region since it
will give a better accuracy.

Table I shows the summary of data for Figure 5 in terms
of average performance of different schemes. If a frame
classification takes more time than predefined threshold, we
consider it as delay violation. It shows that all of the model
selection methods have an accuracy close to B4, which is the
second best individual model in terms of accuracy. However,
the reactive methods have large delay violations as well. On
the other hand, the predictive method has only 11.95% delay
violation. We also experimented with the model selection
methods in different contention regimes by varying λ1 and
λ2. For our experiments, 5 different contention duration distri-
butions λ1={40, 80, 120, 160, 200} and 3 different contention
level distributions with λ2={4, 6, 8} are used. The unit of
contention duration is frames and the unit of contention level is
radar application instances. The mean accuracy and the mean
delay violation results are reported in Figure 6. It shows that
in every contention regime predictive method has much lower
delay violations while maintaining similar or better accuracy.

An ideal model selection method would yield scatter values
that forms a line with zero slope in Figure 6. Because that
means the ideal method can foresee the future and select
exactly the correct model for every contention level, and
therefore it would not violate inference delay threshold by
compromising accuracy. The Figure 6 shows that the predictive
method has the smallest slope and the lowest delay violation
values in each contention level compared to reactive methods.

We further tuned the predictive model selection by adjust-
ment of variance of delays. The variance of the inference
delays increase after contention level 4 as shown in Figure 3.
This noise causes occasional errors in model selection. To
solve this, we compute the variance of inference delays of
each model in Figure 3a. Then, at runtime, if the mean
normalized inference delays is the high-variance region, we
add the pre-computed variances to the predictions of the
regression models. The result of the variance corrected (VC)
predictive model is also shown in Figure 6. Compared to the
vanilla predictive model selection, the mean accuracy only
reduces by 0.68% (from 0.691 to 0.686), while it improves the
performance by reducing the mean delay violation by 11.85%
(from 0.135 to 0.119).

The average time cost for one frame of our predictive
framework is 0.29ms which is approximately 850 times
smaller than average inference delay for one frame. Therefore,

Figure 6. Delay violations vs avg. accuracy for different model selection
methods under different contention levels
we can say that the time cost of the framework is insignificant.
The memory cost of our framework is 3GB when 4 models
are used. However, 2.6GB of this cost comes from Tensorflow
and it is a one time cost as long as all of the models are
loaded in the same process. For example, we loaded and
used 25 EfficientNet-B0 instances with the cost of 4.1GB
which leaves a very large space for other processes or even
more deep learning models in Jetson TX2 with 8GB memory.
Thus, RAM availability is not the bottleneck for increasing
the number of models in this problem as indicated in [8].
In practice, the bottleneck is finding large number of clearly
separated steps (with models or some other methods) in terms
of both distinct accuracy and inference delay. Even after this
bottleneck is solved, it can be rare to observe this large number
of contention levels in practical applications on an embedded
system to make using this large number of steps reasonable.

IV. CONCLUSION

In this paper, we proposed a contention-aware adaptive
image classification model selection framework. The exper-
imental results show that our predictive model selection out-
performs the average of individual models in both accuracy
and inference delay violation. Predictive model selection also
outperforms the reactive model selection methods.

ACKNOWLEDGMENT

This work is partially supported by DARPA under grant
number 304259-00001.

REFERENCES

[1] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and< 0.5 mb model size,” arXiv:1602.07360, 2016.

[2] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely Effi-
cient Convolutional Neural Network for Mobile Devices,” in Proceedings
of the IEEE CVPR, 2018.

[3] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to+ 1 or-1,” arXiv:1602.02830, 2016.

[4] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,”
in ICLR, 2017.

[5] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for
convolutional neural networks,” in ICML, 2019.

[6] B. Taylor, V. S. Marco, W. Wolff, Y. Elkhatib, and Z. Wang, “Adaptive
deep learning model selection on embedded systems,” ACM SIGPLAN
Notices, 2018.

[7] E. Park, D. Kim, S. Kim, Y. D. Kim, G. Kim, S. Yoon, and S. Yoo,
“Big/little deep neural network for ultra low power inference,” in Interna-
tional Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS, 2015.

[8] R. Xu, R. Kumar, P. Wang, P. Bai, G. Meghanath, S. Chaterji, S. Mi-
tra, and S. Bagchi, “ApproxNet: Content and Contention-Aware Video
Analytics System for Embedded Clients,” arXiv:1909.02068, 2020.

[9] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do imagenet
classifiers generalize to imagenet?” in ICML, 2019, pp. 5389–5400.


