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ABSTRACT Vehicular sensing has reached new heights due to advances in external perception systems
enabled by the increasing number and type of sensors in vehicles, as well as the availability of on-board
computing. These changes have led to improvements in driver safety and have also created a highly
heterogeneous environment of vehicles on the road today in terms of sensing and computing. Using
collaborative perception, the information obtained by vehicles with sensing capabilities can be expanded
and improved, and older vehicles that lack external sensors and computing capabilities can be informed of
potential hazards, opening the opportunity to improve traffic efficiency and safety on the roads. However,
achieving real-time collaborative perception is a difficult task due to the dynamic availability of vehicular
sensing and computing and the highly variable nature of vehicular communications. To address these
challenges, we propose a Heterogeneous Adaptive Collaborative Perception (HAdCoP) framework which
utilizes a Context-aware Latency Prediction Network (CaLPeN) to intelligently select which vehicles should
transmit their sensor data, the specific individual and collaborative perception tasks, and the amount of
computational offloading that should be utilized given information about the current state of the environment.
Additionally, we propose an Adaptive Perception Frequency (APF) model to determine the optimal end-
to-end latency requirement according to the current state of the environment. The proposed CaLPeN
model outperforms six implemented comparison models in terms of effective mean average precision
(EmAP), beating the next best model’s performance by 5.5% on average when tested on the OPV2V
perception dataset using two different combinations of wireless communication conditions and vehicular
sensor/computing distributions.

INDEX TERMS Connected Vehicles, Collaborative Perception, Edge Computing, Machine Learning.

I. Introduction
Advances in vehicular sensing and perception have paved
the way for improved safety systems for users and have
opened many new possibilities for further improvements
in intelligent transportation systems (ITS). Collaborative
vehicular perception is an emerging topic that is showing
the potential to produce new heights in vehicular perception
performance. Collaborative perception models use sensor
data from multiple vehicles as well as sensors on road
infrastructure in order to provide a larger perception area than
can be achieved by a single vehicle, as well as reducing the
impact of environmental hazards such as poor weather and

occlusions. From a computational perspective, collaborative
perception can also reduce the aggregate computing require-
ment by utilizing mobile edge computing, which can allow
all vehicles to benefit, even if they lack on-board computing.
However, achieving collaborative perception in ITS is a
challenge considering the data exchange that must occur
between vehicles and the dynamic wireless communication
channels encountered by moving vehicles, as well as the
heterogeneous nature of modern vehicular sensing.

As vehicular perception technology evolves, so has the
amount of sensing and computing available in vehicles [1].
As such, there exists a large distribution of sensor and
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computing configurations that appear on the roads today
and this distribution will only get larger as time goes on.
This heterogeneity among vehicular sensing creates a unique
opportunity to utilize collaborative perception in order to
continually improve the achievable perception, particularly in
high traffic areas where accidents are most likely to occur; as
new vehicles with advanced levels of computing and sensing
are introduced, the older vehicles will be able to benefit by
collaborating with these new vehicles. The emergence of
edge computing, which provides computational resources at
the edge of the communication network such as base stations
on cell towers or mobile access points, provides a potential
infrastructure for facilitating data exchange between vehi-
cles and supplementing computational needs. Furthermore,
broadcasting the collaborative perception results from these
edge nodes allows any vehicle with networking capabilities to
benefit with minimal additional communication overhead [2].
This approach provides benefits for all vehicles in terms of
perception accuracy while also promoting a future direction
towards equity in mobility with the inclusion of pathways
for legacy vehicles to gain information from state-of-the-art
vehicles.

While collaborative perception can produce numerous
benefits for vehicular environments, there are also many
potential challenges in its real-world implementation. Some
of these challenges include integrating the current street infras-
tructure while adding additional networking and computing
resources needed for edge assisted vehicular collaborative per-
ception, developing communication protocols to standardize
the collaborative perception process among all OEMs, and
creating security measures to ensure that individual privacy
is preserved and adversarial attacks are avoided. For the
purpose of this paper, we will focus on the challenge of
optimizing the end-to-end collaborative perception process
for 3D object detection, both in terms of perception accuracy
and execution latency, in edge-based vehicular environments
with varying distributions of vehicle types and network
conditions. Mobile edge computing can provide an avenue
for the vehicular data exchange and computational resources
needed, but ensuring that the end-to-end collaborative sensor
fusion process, including the data transmissions, completes in
the required latency is a considerable challenge considering
the highly dynamic nature of vehicular environments. In
this work, we explore how to maximize collaborative sensor
fusion accuracy in a heterogeneous sensing environment
while ensuring that latency requirements are achieved. More
specifically, the contributions of this work is as follows:

• We present a Heterogeneous Adaptive Collaborative
Perception (HAdCoP) framework for enabling real-time
collaboration between vehicles with diverse sensing
capabilities in vehicular edge environments.

• We propose an Adaptive Perception Frequency (APF)
model for dynamically adjusting the latency requirement
to increase reliability, minimize perception delays and
reduce idle computing time.

• We have created a neural network-based Context-aware
Latency Prediction Network (CaLPeN) which predicts
the optimal set of collaborative perception actions that
maximize perception accuracy while ensuring the latency
requirement is met.

The remainder of this paper will be organized as follows:
Section II will be a review of related work in the area of
individual and collaborative vehicular perception, as well as
vehicular edge computing. In Section III, an overview of
the heterogeneous sensing environment with vehicular edge
computing is presented, as well as a discussion of the different
trade-offs and our problem formulation. In Section IV, we
discuss our HAdCoP framework and the three submodels
that it consists of as well as our dataset selection process. In
Section V, we present the chosen collaborative sensor fusion
model, the associated feature extraction models, and the
hardware that was used for testing as well as describing how
we are evaluating the collaborative sensor fusion performance
before presenting an action decision model performance
comparison on four associated sets of testing data. Finally,
we conclude the paper and discuss our plans for future work
in Section VI.

II. Related Work
A. Vehicular Perception
Research in vehicular perception has been rapidly accelerating
in the last decade, largely due to the vehicular sensing datasets
that have been released during this time. The most well
known of these datasets is Kitti [3], but other datasets that
are even more comprehensive in terms of environmental
diversity and amount of labeled data have emerged such
as the NuScenes [4] and Cityscapes [5] datasets. Due to
the high quality labeled data these datasets provide along
with the rise of machine learning methods, many models
have been created for a variety of perception tasks such
as motion/trajectory prediction [6] [7], object detection [8]
[9], object association [10] [11], object tracking [12], and
semantic segmentation [13] that have shown promising levels
of performance on these vehicular perception datasets. Object
detection, specifically 3D object detection [14], is at the core
of many of these tasks and as such has attracted a large
amount of research.

The two primary sensors used for vehicular 3D object
detection are LiDAR and cameras. LiDAR sensors have
become a popular choice, as this sensor can sense the
depth of an object more accurately than a camera which
leads to more accurate 3D detections [15]. There are four
general categories of LiDAR 3D object detectors: Point based
models such as PointRCNN [16] and PointFormer [17], Grid
based models such as SECOND [18] , PointPillar [19] and
PIXOR [20], Point-Voxel based models such as Fast Point
R-CNN [21] and Pyramid R-CNN [22], and Range based
models such as LaserNet [23] and RangeDet [24]. The voxel-
based and point-voxel based LiDAR detection models produce
the highest levels of accuracy; however, many grid based
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methods are used for real-time vehicular perception due to
their exceptional inference latency.

For camera based 3D object detectors, there are five
general categories: Image-only monocular based models
such as CenterNet [25] and MonoFlex [26], Depth-assisted
monocular based models such as Pseudo-LiDAR [27] and
MonoDTR [28], Prior-guided monocular based models such
as 3D-RCNN [29] and MoNet3D [30], stereo based models
such as Stereo R-CNN [31], YOLOStereo3D [32] and
PLUMENET [33], and multi-camera based models such as
DETR3D [34] and ImVoxelNet [35]. Although there have
been improvements in 3D object detection accuracy in camera
based models, especially stereo and multi-camera models,
their performance still lags behind LiDAR models both in
terms of performance and latency [36] [37]. However, since
cameras are currently so much more prevalent on vehicles
today as compared to LiDAR, additional research for camera
based 3D object detection may continue to be of use going
forward.

B. Collaborative Vehicular Perception
While the area of individual vehicular perception will continue
to advance, a new paradigm of collaborative vehicular
perception has also emerged that offers levels of perception
that are not achievable by any single vehicle. As in individual
vehicular perception, datasets to study collaborative vehicular
perception have been created such as OPV2V [38], DAIR-
V2X [39], and V2XSet [40]. These datasets provide synchro-
nized sensor data for two or more vehicles all driving within
the same area. As such, many new collaborative perception
models have been proposed within the last few years. Several
different collaboration methods have been proposed, from the
more traditional fusion techniques proposed in F-Cooper [41]
and CoCa3D [42] to the graph based methods of V2VNet [43],
DiscoNet [44] and MP-Pose [45]. However, attention based
methods such as AttFusion [38], CoBETV [46] and VIMI [47]
have begun to show more optimal levels of performance. Until
very recently, collaborative perception research including all
work listed up to this point have been homogeneous in terms
of sensing capabilities, but more work has begun to emerge
which investigate collaborative perception for heterogeneous
sensing with models such as HM-ViT [48] and HEAL [49]
that can accept different sensor modalities from different
vehicles.

One aspect of collaborative perception that we are inter-
ested in is ensuring that latency requirements for end-to-end
collaborative perception are met given dynamic networking
conditions, and there have been some methods that have
been created with this task in mind. FPV-RCNN [50]
proposes a keypoint feature selection and fusion strategy
and Where2Comm [51] proposes a spatial-confidence aware
communication mechanism which both aim to reduce the
amount of data that is transmitted from vehicles. There are
also collaborative perception models such as LCRN [52] and
SyncNet [53] that provide methods to mitigate the effects

of wireless communication loss or delay on collaborative
perception accuracy. However, none of these works consider
the variable availability of vehicular computing and sensing
in real-world scenarios, which is the focus of this work.

C. Vehicular Edge Computing
With the emergence of these vehicular perception methods,
a new need for computing has been created in vehicular
environments. Edge computing is one avenue to provide
additional computing for vehicles that has shown promise in
aiding these perception tasks and this has opened up an entire
area of research dedicated to determining how to optimally
offload data to the edge in different situations [54].

In order to optimize the edge offloading problem, many
works have employed more classical models such as convex
optimization [55], mixed integer nonlinear programming [56],
game theory [57] [58] [59], Markov decision process [60],
heuristics [61], and other numerical optimization methods
[62] [63] [64]. More recently more complex machine learning
models have been introduced and new methodologies for
this task partitioning and offloading problem that involve
convolutional neural networks [65], federated learning [66],
and reinforcement learning [67] [68] [69] have been created.
However, none of these proposed methods consider both
accuracy and latency in terms of the optimizations.

In our previous work [70], we have explored real-time
collaborative perception in edge enabled vehicular environ-
ments for the case of homogeneous sensing and computing.
In this paper we aimed to expand that work by introducing
a new model which includes variable levels of sensing and
computing, individual decisions for each vehicle rather than
a single system-level decision for all vehicles, and containing
an adaptive latency requirement formulation as opposed to a
static one.

III. Heterogeneous Sensor Fusion in Mobile Edge
Environments
In this section, an overview of the subject environment will
be examined. Then, the different trade-offs that create the
decision space for the associated collaborative perception
problem will be explained. Finally, the problem formulation
will be presented that will serve as the basis for the remainder
of this paper.

A. Overview
To begin the discussion of heterogeneous vehicular environ-
ments, consider the example shown in Fig. 1. This figure
shows vehicles with different levels of sensing and computing
driving in the same street environment; vehicles can transmit
sensor data to the edge as well as receive action decision
and perception results as shown by the dashed lines. Table
1 shows the capacities of the different types of vehicles
that are being considered for this work to populate these
heterogeneous vehicular environments. By having vehicles
communicate with edge computing and communication nodes,
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FIGURE 1: Overview of an edge-enabled heterogeneous vehicular environment that contains vehicles with different levels
of computing and sensing capabilities as well as edge nodes for vehicles to communicate with and collaboration to occur.
Type 1 vehicles, which do not contains external sensors, can still receive the collaborative perception results but do not
transmit data to the edge.

information can be shared between vehicles without any sort
of vehicle-to-vehicle (V2V) communication. Additionally,
decision processes at the edge node can determine which
vehicles should be selected to participate in the collaborative
perception; all vehicles in the area should have the results of
the collaborative perception broadcast to them irrespective
of whether they can participate in the sensor fusion process
or not. If situations are encountered where the number of
vehicles dramatically increases causing congestion on the
roads and wireless networks, then less vehicles can be selected
to participate in generating the collaborative perception to
lighten the networking and computing load. Designing a
system in this way allows for every vehicle to potentially
benefit while only needing a limited number of vehicles to
generate the collaborative perception. This also creates an
inherent scalability, as collaborative perception generation
can continue to operate even as the total number of vehicles
and variations in the network conditions increase.

TABLE 1: The four vehicle types we are considering in this
work.

Vehicle Type Available Sensors Computing Availability

Type 4 Camera, LiDAR Yes

Type 3 Camera Yes

Type 2 Camera No

Type 1 None No

B. Trade-offs
In terms of the end-to-end heterogeneous sensor fusion
process for collaborative perception in vehicular edge en-
vironments, there are a number of different trade-offs that
create decisions which can affect the performance of the
collaborative perception. The trade-offs discussed in this

section will only pertain to participating vehicles, which we
define as any vehicle that has at least one sensor and can thus
participate in the generation of the collaborative perception.
The four specific trade-offs that will be investigated in this
work are vehicle selection, feature extraction model, collabo-
rative perception scheme, and the amount of computational
offloading. In this section, each one will be discussed as well
as its effect on collaborative perception performance.

1) Vehicle Selection
In a heterogeneous vehicular environment, there are vehicles
of potentially many different types that coexist in the
environment, but not all vehicles need to participate in
every second of generating the collaborative perception for
a particular edge computing node. There are a number of
factors that can affect why one vehicle should be chosen
over another, and there are two factors in particular that
are going to be considered in this work. One is the sensing
available on the vehicle; a vehicle that contains a powerful
sensor suite composed of a large number of high-fidelity
sensors will likely produce an accurate representation of its
surroundings and therefore should have a higher probability
of being chosen to participate in the collaborative perception
compared to vehicles with less capable sensing suites. The

TABLE 2: Changes in perception accuracy measured in
mAP caused by different feature extractors and number of
participating vehicles for the HEAL [49] sensor fusion model.

Number of Participating Vehicles 1 2 3 4

PointPillars (LiDAR) .7532 .9234 .9361 .9394

SECOND (LiDAR) .7554 .9302 .9426 .9456

ResNet-101 (Camera) .2043 .4602 .4614 .4656

EfficientNet (Camera) .3778 .5237 .5344 .5356
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other is the wireless communication conditions between the
vehicle and the edge node. If there are some vehicles with a
weak or non-existent wireless link to the edge nodes, then
these vehicles should avoid being chosen despite having high
quality sensors available.

To quantify why one particular vehicle might be chosen
over another, consider the results presented in Table 2. In
this table, the mean average precision (mAP) accuracy values
are shown for the HEAL [49] collaborative sensor fusion
model when different feature extractors are used for cases of
1-4 participating vehicles. Several conclusions can be drawn
from these results. One is that for the 3D object detection
task, LiDAR based methods perform much better than camera
based methods, which should make LiDAR enabled vehicles
more likely to be chosen to be a participating vehicle. Another
result to point out from this table is that there are diminishing
returns for perception accuracy as the number of participating
vehicles increases; each new participating vehicle introduces
less new information on average than the one before it and as
such every additional mAP gain from an additional vehicle’s
sensor data is less than the previous. As a result, if there
are certain vehicles without sufficient computing or a bad
wireless link then those vehicles may not be chosen, as the
increase in overall accuracy from the contribution of their
sensor data may not be worth the additional latency required
especially if there are already 2 or more vehicles already
participating.

2) Feature Extraction
Every participating vehicle will have one or more external
sensors, and there are many different ways that the visual
features needed for perception tasks can be extracted from
this sensor data. While some object detection models are
created to be efficient, in general the more accurate models
are more heavyweight and have higher inference latency
and may require powerful computing in order to run in
real-time [14]. Including multiple types of feature extraction
within the collaborative perception model creates this trade-
off between accuracy and latency, which will act as one of
the many knobs that can be controlled in this system. As
shown in Table 2, the chosen sensor type and the associated
feature extraction methods can have a significant effect on
the resultant perception accuracy.

3) Collaborative Perception Scheme
Another knob in the realm of accuracy and latency trade-
offs is the collaborative perception scheme. For this work,
we will consider the collaborative perception schemes of
intermediate collaboration and late collaboration. In general,
an object detector typically consists of two key components:
the feature extractor, which pulls visual features from the raw
sensor data, and the detection head, which uses these extracted
features to determine the locations of bounding boxes. In

FIGURE 2: Overview of the collaboration scheme of inter-
mediate fusion.

FIGURE 3: Overview of the collaboration scheme of late
fusion.

intermediate collaboration, the fusing of data from different
sources is performed after extracting features but before the
detection head as shown in Fig. 2. The combined features are
then processed together to make detection decisions, allowing
the model to learn from all data sources simultaneously and
leverage complementary information. On the other hand, late
collaboration which is shown in Fig. 3 refers to combining
the outputs of separate detection models, each working
on data from a different source. Intermediate collaboration
generally provides richer, more integrated information for
decision making, leading to better detection performance on
average compared to late collaboration; the latency of late
collaboration is less than that of intermediate though as the
collaboration method is usually more lightweight, such as
non-maximum suppression, compared to the more complex
collaborative detection heads in intermediate schemes [71].

4) Computational Offloading
The final trade-off that we are considering in this work is
the use of computational offloading. Since an edge node is
utilized as the location of the collaboration for collaborative
perception, there is always some level of offloading that is
required for each time step in this process. In this work, we
will consider two different levels of offloading which we
term full offloading and minor offloading, and the differences
can be seen in Fig. 4. With full offloading, the sensor
data is compressed and transmitted to the edge where all
computational processes will occur. In minor offloading,
some of the computation will occur in the vehicle depending
on whether intermediate or late fusion is used. In cases
of participating vehicles that do not have computational
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FIGURE 4: The four different cases of computational
offloading that are being considered which determine the
location of the computing and what data is being transmitted
from the vehicle to the edge.

resources, full offloading must be chosen in order to contribute
to the collaborative perception. Vehicles with computational
resources will have the option to choose either minor or
full offloading; the offloading procedure chosen does not
affect perception accuracy but can have a large effect on
latency. Since the amount of data transmitted from the
vehicle to the edge in minor offloading is much less than
full offloading, choosing minor offloading will be the best
decision in most cases. However, there are some situations
where full offloading will be more optimal, such as when there
is a significant difference in the computing power between
the vehicle and the edge or if there are exceptionally high
levels of throughput. Additionally, since the data sizes for
the bounding boxes produced by object detection are smaller
than the feature extraction results, the transmission latency
for late fusion will be less than that of intermediate fusion
for minor offloading.

C. Problem Formulation
In this work, the state of the vehicles within the edge-enabled
connected vehicle environment is defined as follows:

S = {sv1 , sv2 , ..., svn} (1)

Each element in S, svi , is a vehicle that contains three states:

svn = {rn, sn, cn} (2)

rn is the current throughput between the vehicle and the
edge (in Mbps) and sn is the current vehicle speed (in Kmph).
cn is the computing and sensing type ∈ [1, 2, 3, 4], as defined
in Table 1. The goal of this work is to select the best action at
each time step of the collaborative perception process given
the current state information. An action (A) is defined as
follows:

A = {acp, av1 , ..., avn} (3)

A contains a set of instructions for each participating
vehicle, avi , as well as a set of collaboration parameters, acp.

The only collaboration parameter that we consider in this
work is the collaborative perception scheme and as such acp
is defined as follows:

acp = {0, 1} (4)

In this binary encoding, acp = 0 corresponds to late
fusion and acp = 1 corresponds to intermediate fusion. The
individual vehicle instructions are defined as:

avn = {pn, on} (5)

The action decision for each vehicle contains two instruc-
tions. One of these is related to the perception model (p) and
the other is related to the offloading level (o). The perception
model representation is defined as:

pn = {0, 1, ..., l} (6)

In this encoding, there are l possible feature extractors for
this particular vehicle and the value of l will depend on what
sensors the vehicle is equipped with; the more sensors that
are available on the vehicle, the more possible values of l
there will be since more potential feature extraction models
that can be utilized. Each value of l is associated with a
particular feature extraction model. The option of pn = 0
correlates with the vehicle not participating in collaborative
perception and thus not transmitting its perception data; this
option will always be chosen for Type 1 vehicles but may be
chosen for Type 2, 3 or 4 vehicles if the conditions warrant
it. The other action for each vehicle is the offloading level,
which is defined as:

on = {0, 1} (7)

In this binary encoding, we define on = 0 as minor
offloading and on = 1 as full offloading. In cases of vehicles
that do not have on-board computing, this value will not
factor into the action decision for this vehicle since on = 1
automatically.

For every time step, the set of all possible actions that can
be executed is defined as follows:

A = {A1, A2, ..., Ak} (8)

In this equation, A contains all possible actions (Ai) that
can be chosen given the current distribution of vehicles that
are available to participate. Every action selected will produce
an associated end-to-end latency value and collaborative
perception accuracy value that we will define as follows:

fAP (Ai | S) = mAPi (9)

fL(Ai | S) = Li (10)

Essentially, every possible action (Ai) will have a re-
sulting latency Li (measured in seconds) and collaborative
performance accuracy mAPi (measured in mean average
precision). Although accuracy should be maximized, a real-
time constraint should also be applied to the maximization
formulation to ensure that the chosen actions can meet a
given latency requirement τ . As such, we will define the
proposed optimization problem as follows:
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FIGURE 5: An overview of our proposed HAdCoP framework which consists of three sub-models: the APF model, the
action decision model, and the adjustable sensor fusion model. Each sub-model can be chosen and configured by the user to
match the desired use case.

max
A|S

mAPi (11a)

s.t. Li < τ (11b)

In order to define a singular metric that can be used
for performance evaluation, a service delivery value is first
defined as follows:

Di =

{
1, if Li < τ

0, otherwise
(12)

In this equation, we have defined successful service delivery
(Di) as the end-to-end collaborative perception process,
including all data transmissions, completing in an elapsed
time less than τ . Subsequently, we define the metric of
effective mean average precision (EmAP) as follows:

EmAPi = (Di)× (mAPi) (13)

Since Di ∈ [0, 1], optimizing this new metric produces an
equivalent optimization formulation as the one presented in
Equation (11) can be restated as follows:

max
A|S

(EmAPi) (14)

This EmAP metric accurately reflects this optimization
problem considering that the goal is to produce the most
accurate perception possible while still ensuring the latency
requirement is met which also maximizes reliability since
any failure to deliver makes EmAP = 0.

IV. Methodology
In this section, the core methodology for heterogeneous col-
laborative perception in real-time vehicular edge environments
will be presented. The HAdCoP framework is the center
of this methodology, as this is what defines the data flow
and fusion process and is where the discussion will begin.
Afterwards, each component of this model will be discussed
individually. Finally, a discussion on the dataset selection

and generation used to create the training and testing data
for the performance evaluation is provided.

A. Heterogeneous Adaptive Collaborative Perception
An overview of the Heterogeneous Adaptive Collaborative
Perception (HAdCoP) framework can be seen in Fig. 5. There
are three submodels within the HAdCoP framework that
control the three main processes. The APF model first takes
the set of configurable parameters (U ) and the current state
(S) as input. Then, the latency threshold for the current time
step (τ ) is computed. This threshold, along with the state
information, is passed to the action decision model, which
determines the action (A∗) to be executed for the current time
step. As defined in Section III-C, an action contains the overall
collaborative perception scheme as well as the instructions
for each vehicle which determine what object detection or
feature extraction tasks if any need to be computed on the
vehicle and what type of data to be transmitted to the edge;
the combination of all data the participating vehicle have
been instructed to offload to the edge (V ∗) is immediately
ingested by the adjustable sensor fusion model once it is
received at the edge.

The output of the adjustable sensor fusion model is the
collaborative perception results (C∗) for the current time
step and this is broadcast to all vehicles in the area. At the
next time step, the process will start over again with the
current state information being transmitted to the edge. This
framework allows for dynamic adaptation of the collaborative
perception model and corresponding frequency of results
generation to match the environment as the vehicle sensor
and computing distributions and wireless conditions change
over time.

This proposed framework defines the data transfer process
between each of the different submodels, but the selection
of each particular model can be chosen by the user. This
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modular approach allows the proposed framework to have
the potential to be applied to any number of vehicular use
cases by changing the three models within it. For the subject
heterogeneous collaborative perception problem, we utilize
a previous work for the adjustable sensor fusion model, but
have proposed new models to serve as the APF model and
the action decision model which will be discussed in the
subsequent subsections.

B. Adaptive Perception Frequency Model

TABLE 3: Summary of Key Notations with Descriptions

Notation Description

T Estimated Latency Lower Bound
τ Perception Latency Threshold
TMO T for cases of minor offloading
TFO T for cases of full offloading
LMO Expected computing latency for minor offloading
LFO Expected computing latency for full offloading
LC Context Latency Estimation
RA2 Maximum average throughput between all sets of two vehicles
DC Data size of the compressed sensor data
DE Data size of the encoded sensor data
C Number of vehicles with on-board computing
n Number of participating vehicles
o Number of vehicle objects (3D bounding boxes) in previous frame
v Current average speed
c Ratio of vehicles with on-board computing
s Ratio of vehicles with LiDAR sensors
α Object weight parameter
β Vehicle speed parameter
γ Vehicular computing parameter
δ Vehicular sensing parameter

The first submodel within the HAdCoP framework is the
Adaptive Perception Frequency (APF) model. The purpose
of this model is to compute the lowest realistically achievable
latency threshold that the end-to-end collaborative perception
process can execute in given information about the current
state. The motivation for this is that vehicular environments
are highly dynamic and can experience very sudden changes
due to the high-speed nature of vehicles. To this end,
the latency threshold should be as low as it can be at
all times. However, there are situations where a lack of
vehicles with computing, advanced sensing, or poor wireless
communication conditions causes the amount of time required
for the end-to-end collaborative perception process to increase.
In these cases, the latency threshold should be increased so
that there is sufficient time to compute the collaborative
perception results for the current time step before sensor
data ingestion begins for the next time step. In this way, the
optimal amount of data can be processed in a useful way
and perception delays as well as idle time are reduced.

The APF model contains two steps: computing a weighted
lower bound threshold value (T ) and binning this threshold to

produce the final latency threshold τ . The main reason why
T is being binned is due to the nature of sensors operating
on fixed frequencies (e.g. 1Hz, 10Hz, 30Hz, etc.); in order to
keep the different types of sensor synchronized, only certain
frequencies that all sensors can utilize should be chosen.

There are two terms that will be defined which create the
framework of the APF model and these are the lower bounds
for cases involving vehicular computing (minor offloading)
TMO and for cases involving no vehicular computing (full
offloading) TFO. These are defined as follows:

TFO = LFO +
2DC

RA2
(15)

LC =
α

(o + 1)
+

β

(v + 1)
+

γ

(c + 1)n
+

δ

(s + 1)n
(16)

TMO = LMO +
2DE

RA2
+ LC (17)

The variables mentioned in the terms of both equations
can be found in Table 3. TFO is fairly straightforward, since
it is just the expected value of the computation latency added
to a best-case estimation of the time it would take for data
transmission. TMO has a similar set of first terms, though their
values will be much lower than TFO since LMO < LF0 and
DE < DC . This case of having the potential to utilize minor
offloading results in more potential actions that can be chosen
which can lead to more optimal action decisions if the state
information can be effectively represented in determining an
achievable latency threshold. As such, four configurable terms
are included to represent the effects of object density, vehicle
speeds, and the distribution of sensors and computing in
participating vehicles, and these terms are summed to create
an estimated context latency LC . The associated parameter
values for these terms form the set of configurable parameters
for the HAdCoP framework (U = [α, β, γ, δ]). Now that TMO

and TFO have been defined, the APF model is defined as
follows:

T =

{
TFO, if C < 2

min(TMO, TFO), otherwise
(18)

τ =


.1, if T < .1

.2, if .1 ≤ T < .2

.5, if .2 ≤ T < .5

1, otherwise

(19)

There are two terms in Equation (18) that correspond
to two cases that can be encountered in connected vehicle
environments. The top term in Equation (18) is used when
there are fewer than two vehicles with on-board computing
capacities (C) available. In this case for the collaborative
perception results to be generated, at least one participating
vehicle must utilize full offloading, and as such, the data
transmission will dominate the required total latency and TFO

will best reflect the lower bound for the latency. The bottom
term in Equation (18) shows what will happen in cases where
minor offloading could be utilized and in most cases TMO
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will be chosen, but in certain cases with very high wireless
throughput TFO may produce a lower value and be chosen
instead. Equation (19) states the four perception frequency
values we are considering for HAdCoP and specifies which
values of T correspond to which values of τ . Since T is a
theoretical lower bound, τ is just the value of T that has
been rounded up to the nearest bin value.

C. Action Decision Model
The action decision model is the second submodel. It
is the core of the HAdCoP framework as this is what
determines the selected set of actions to produce accurate,
real-time collaborative perception. As is consistent with
the problem formulation presented in Section III-C, the
goal of this model is to maximize EmAP. To accomplish
this, we have created a Context-aware Latency Prediction
Network (CaLPeN) which is shown in Fig. 6. The idea
behind this network is to have multiple individual neural
networks, which we have termed I-Nets, for each vehicle’s
set of state and potential action instruction combinations to
produce a latent space representation for each combination.
These latent space representations are then concatenated
and have an additional feature appended to them, which
is the collaborative perception scheme acp, to form the set of
intermediate data (ID). This ID is the input to the collaborative
neural network, or C-Net, which classifies the ID to predict
which of the associated actions will meet the required latency.
The action within this set of actions that were predicted to
meet the latency requirement that has the highest expected
perception accuracy is chosen as A∗.

The input to the CaLPeN model is a (1 × 12) element
vector S = {sv1 , sv2 , sv3 , sv4} that contains the state vehicle
state information for the four vehicles from the current time
step as described in Section III-C. Each vehicle’s associated I-
Net input is created by concatenating copies of that particular
vehicle’s state to every one of the 2l combinations of possible
instructions that the vehicle can execute to create the batch of
data vectors {[svn , a1], [svn , a2], ..., [svn , ab]} that is of total
size (2l × 5) for each vehicle. Each I-Net will produce an
output of size (2l×1) and these are concatenated together to
form an output of size (2l × 4); copies of this concatenated
output are created with each having a possible value of
acp appended onto it and then each of these copies are
concatenated together. Since we have defined acp to contain
only binary values, the ID that is the input to the C-Net is
of size (4l × 5). The output of the C-Net is the predicted
optimal action A∗ which is of size (1 × 9): four sets of
vehicle instructions which contain an offloading and feature
extraction instruction and one element to indicate the chosen
collaborative perception scheme.

The value of l that is used is that of the participating
vehicle with the highest amount of sensors; we describe our
chosen sensor and model configurations in Section V-A which
lead to a value of l = 4, but the batch sizes that define the
first dimension of the data that moves through the CaLPeN

FIGURE 6: An overview of our proposed CaLPeN model that
will act as the action decision model in HAdCoP. Each vehicle
has its state/action combinations processed on a I-Net before
the final C-Net determines which action should be chosen.
Each computational block depicted contains the input/output
size for the fully connected (FC) layers and channel size for
any batch normalization (BN) layers or activation functions
and the data sizes are listed before/after each block.
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have been described in terms of l to be generalizable to other
selections of sensors and associated feature extraction models.
While each of the I-Nets have the same neural network
architecture, they are trained separately and as such do not
share parameter weights. This entire network is trained end-
to-end for 5 epochs using the Adam optimizer [72] and the
binary cross-entropy loss function. For the proposed CaLPeN,
it is assumed that there are at least 4 vehicles available to
participate in the collaborative perception; if there are ever
less than 4 vehicles available, then null states will be used
in place of the missing vehicles.

D. Adjustable Sensor Fusion Model
The final submodel of HAdCoP is the adjustable sensor fusion
model. Any multi-source sensor fusion model that can be
configured to accept any type of sensor input would be able to
act as the adjustable sensor fusion model. Fortunately, some
collaborative perception models have been created in recent
years that fit this criteria. For this work, we are not attempting
to create our own adjustable sensor fusion model but have
leveraged a recent work in this area instead. We are using
the Heterogeneous Alliance (HEAL) framework [49] as the
adjustable sensor fusion model. This model has been shown
to produce state-of-the-art results in collaborative 3D object
detection and has been designed specifically to accept any
type of sensor data as input. For each sensor input, multiple
feature extractors can be made available due to the backward
alignment of new agents in the collaborative training process.
Additionally, this model is also lightweight enough that it
can be executed in real-time on most modern GPUs.

E. Dataset Selection
There are no datasets that contain perception data (real or
synthetic) from multiple moving vehicles in the same area
along with the corresponding wireless communication data for
the links from the vehicles to the edge or cell towers. However,
there are datasets that contain multi-source vehicular sensor
data and vehicular communications separately. As such, our
approach to creating training and testing datasets that could
be used to study this heterogeneous collaborative perception
task was to combine information from a perception dataset
and information from a wireless communication dataset to
simulate the intended environment. The chosen perception
dataset is OPV2V [38]. This is one of the largest collaborative
perception datasets (11,464 frames) with a focus on 3D
object detection that contains 4 or more vehicles driving
simultaneously equipped with both camera and LiDAR
sensors. For the wireless dataset, we utilized 5G wireless
traces from moving vehicles that have been published for
research purposes [73]. This dataset contains throughput,
channel and context information for 5G networks and contains
over 50 unique wireless traces from moving vehicles.

To generate training and testing data for this work,
segments from both perception and wireless communication
datasets were selected to form two distinct scenarios that can

demonstrate the robustness of our methodology. The wireless
communication dataset contains 16 traces from a moving
vehicle performing a file download/upload, and 8 traces
were selected to form two datasets of 4 vehicles. From each
wireless trace, 600 data points of wireless throughput were
chosen, each containing the vehicle’s wireless throughput
and speed; for each of these data points of the wireless
data, a corresponding set of OPV2V perception data is
associated with it forming a complete dataset needed to
explore collaborative perception in real time in vehicular
edge environments. The two sets of wireless traces along
with the vehicle speeds and object counts for the testing
datasets can be seen in Fig. 7. We name these two testing
datasets Scenario 1 (S1) and Scenario 2 (S2) respectively.
These two segments of perception and networking data were
specifically chosen to simulate two distinct scenarios with
S2 having higher average throughput and vehicle speeds
compared to S1 but with higher variance and lower levels of
surrounding object density.

Each vehicle in the OPV2V dataset contains the same
sensor suite that contains both LiDAR and cameras, but
we are interested in studying environments that are closer
to the real world and the heterogeneous sensing that is
encountered on the streets today and that may be on the
roads in the future decades. To combat this, we have
defined two different distributions of vehicular sensing and
computing to simulate what may be encountered in vehicular
environments. Currently, there are few vehicles that contain
high-definition 360-degree LiDAR sensors on the road today,
but this type of sensing has become a staple of vehicular
perception research over the last decade due to its superior
performance in 3D perception tasks compared to camera or
radar/ultrasound [74]. As such, LiDAR sensors are expected
to appear in production vehicles in the next decade as
demand for continued improvements in automotive safety
increases [75]. Although it is unknown what the distribution
of sensors will look like on the roads of the future, we model
two different scenarios of vehicular sensing distributions
to use for testing purposes: One for near-future use cases
where LiDAR sensing and powerful computing suites are still
sparsely populated in real-world street environments which
we term computing and sensing conditions 1 (CSC1) and
another for a level of sensing and computing for the more
distant future where advanced sensing and computing on
vehicles is more ubiquitous which we have termed computing
and sensing conditions 2 (CSC2). A visual representation
of these two distributions can be seen in Fig. 8, using the
vehicle type definitions from Table 1. For each data point
in the networking and perception data S1/S2, 4 vehicles are
sampled from the chosen computing and sensing distribution
to determine the set of vehicles for each data point. By taking
the combinations of the two different vehicle distributions and
two different sets of associated wireless and perception data,
4 total datasets are produced: CSC1-S1, CSC1-S2, CSC2-
S1, and CSC2-S2. Each of these datasets contain 600 data
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(a) S1 - Wireless Throughput (b) S1 - Vehicles Speeds (c) S1 - Object Densities

(d) S2 - Wireless Throughput (e) S2 - Vehicle Speeds (f) S2 - Object Densities

FIGURE 7: The wireless throughput and associated vehicle speeds and object densities for the S1 and S2 testing datasets.

(a) Computing and Sensing Conditions 1
(CSC1) - Vehicle Type Distribution

(b) Computing and Sensing Conditions 2
(CSC2) - Vehicle Type Distribution

FIGURE 8: Distribution of vehicle types for the two created computing and sensing conditions.

points which are split 80%/20% (480/120 data points) to form
training and testing sets respectively for the action decision
models.

Additionally, an associated set of latency thresholds have
been produced by the proposed APF model for each of these
4 testing datasets. The values for τ for each of these cases
can be seen in Fig. 9 and will be used for the performance
evaluation in the action decision model comparison. As is
consistent with the APF model formulation discussed in
Section IV-B, the cases of higher wireless throughput produce

lower threshold values than those with lower throughput. The
values for CSC1 are less than that of CSC2 as well due
to the increased presence of LiDAR sensors and on-board
computing in CSC2. The parameter values used to generate
these values of τ were α = .25 , β = .25 , γ = .75 and
δ = .25. These values were generated by doing a parameter
sweep for all for parameters values in the range [0, .25,
.50, .75, 1] and choosing the associated parameter values
that performed best over the entire training set in terms of
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(a) τ for the CSC1-S1 testing dataset (b) τ for the CSC2-S1 testing dataset (c) τ for the CSC1-S2 testing dataset (d) τ for the CSC2-S2 testing dataset

FIGURE 9: Plots shows how the perception latency threshold value τ changes over time for the 4 testing sets.

minimizing the distance between T and the true latency value
Ttrue under the constraint that T > Ttrue.

V. Experimental Results
In this section, the remaining details of the research setup
as well as the experimental results will be presented. These
remaining details include the chosen collaborative sensor
fusion models as well as information about how we are
evaluating accuracy and latency and the specific hardware
that was used. A comparison study is also presented providing
the performance values for different action decision models
including our proposed CaLPeN model in addition to other
machine learning and heuristic models.

A. Collaborative Sensor Fusion Evaluation
Now that the datasets have been generated, the performance
results for the collaborative sensor fusion are evaluated in
terms of accuracy and latency. As mentioned in Section IV-D,
we are using HEAL [49] as the adjustable sensor fusion model,
which is based on a neural network architecture. However,
each feature extractor needs to correspond to a particular 3D
object detection method and two methods were chosen for
each sensor type. For LiDAR sensors, the PointPillars [19]
(pn = 3) and SECOND [18] (pn = 4) 3D object detection
models were used. For camera sensors, two instances of the
lift-splat-shoot [76] 3D object detection model were used:
one using a modified ResNet-101 [77] (pn = 1) feature
extractor and another using an EfficientNet-B0 [78] (pn = 2)
feature extractor. Since there are two different LiDAR feature
extractors and two different camera feature extractors, the
value of l as defined in Section III-C will be l = 4 for type
4 vehicles, l = 2 for types 2 and 3, and l = 0 for type
1. To evaluate the accuracy, we tested all combinations of
feature extractors for each individual vehicle and averaged the
results over the entire OPV2V testing dataset to mitigate the
performance differences between different segments of the
dataset and establish the general trends that appear between
different sensing and feature extraction combinations on
overall accuracy.

The execution latency of the adjustable sensor fusion model
is determined by the hardware it is executed on as well as the

parameters of inference (i.e. what feature extractors are being
used and how many vehicles are participating). By including
computational offloading to a mobile edge computing node,
it is assumed that the computational power of the edge is
greater than that of the vehicles in order to make this trade-off
feasible. While some vehicles do have some very limited
amount of computing, we are only going to consider vehicles
with > 1 TFLOPS of computing to be considered as having
computing in terms of the vehicle types to ensure that the
vehicle can at least execute the lightest of the collaborative
perception models in real time. To model the computing
power of vehicles with available computing for the testing
data, a NVIDIA RTX 1080Ti GPU (11.3 TFLOPS) is used to
model the computing capacity of a vehicle that has computing
and for the computing power of the edge, an NVIDIA RTX
4090 GPU (82.6 TFLOPS) is used. For the HEAL model,
there are two main steps to the intermediate collaborative
perception inference which is 1) individual vehicle feature
extraction and alignment and 2) collaborative pyramid fusion
and detection head. Step 1) can be executed on the vehicle or
on the edge while step 2) always occurs at the edge. Inference
latency results for step 1) for both the vehicle and the edge can
be seen in Fig. 10 and the inference latency results for step
2) at the edge as a function of how many vehicles participate
is seen in Fig. 11. For late collaborative perception, step 1)
is just individual vehicle 3D object detection while step 2) is

FIGURE 10: Average inference latency values for various
feature extractors tested on NVIDIA RTX 1080Ti (vehicle)
and RTX 4090 (edge) GPUs.
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TABLE 4: The EmAP performance values for each of the potential action decision models.

Action Decision Model CSC1-S1 CSC2-S1 CSC1-S2 CSC2-S2

CaLPeN .7780 .9283 .7695 .9328
RF .7313 .8749 .7272 .9001

LR .6468 .7753 .6529 .8385

VIA [60] .7136 .8572 .6908 .8577

HMAOA [61] .3890 .5337 .2255 .4432

LL .7359 .8770 .7139 .8697

HA .4774 .4989 .0942 .2622

non-maximum suppression on the union of all vehicles 3D
detections which was estimated to take 2ms.

B. Action Decision Model Comparison
With all the accuracy and latency values for the collaborative
sensor fusion established, it is now possible to generate
performance values for our CaLPeN model in terms of
EmAP. To demonstrate the robustness of our model, we have
implemented several other methods and baselines to compare
against the performance of our model. All models that have
been tested are classifiers and for this comparison they receive
the same input data of size (1× 12) as described in Section
IV-C; this input data will be copied and concatenated with the
4l possibilities of the nine element combinations within an
action selection to create a total input data size of (4l × 21).
The output of these action decision models will then be a set
of binary labels of size (4l × 1) which subsequently has the
same argmax function that is the last block of the C-Net
within CaLPeN applied to it in order to select the associated
action from the output with the positive label that has the
maximum sensor fusion accuracy. The result of this process
will be a predicted action A∗ for each of the comparison
action decision models that produces an associated EmAP
value. This process is repeated over all 4 testing cases and
the results are presented in the remainder of this section.

The CaLPeN model we proposed utilizes machine learning
and we wanted to use other models that also utilize machine

FIGURE 11: Average inference latency values for the
collaboration detection head as a function of participating
vehicles tested on NVIDIA RTX 4090 (edge) GPU.

learning to compare against. The first of these that we tested is
logistic regression (LR), which serves as the most lightweight
option in this category, but one that still fits the problem
formulation well; logistic regression tends to work better
in classification problems compared to linear regression.
Additionally, we wanted to employ an ensemble model that
can capture some of the nonlinearity and patterns in the
training data that more complex machine learning models
are able to achieve and for this we chose the random forest
(RF).

In addition to machine learning models, we also created two
heuristic baselines to compare against. One of these baselines
is termed highest accuracy (HA), since this baseline’s
heuristic is to choose the action from the set of all possible
actions that has the highest expected accuracy. The other
baseline is termed lowest latency (LL) and this baseline’s
heuristic attempts to choose the action which will produce
the lowest latency. It cannot be directly inferred from the
state information which action will definitively produce the
lowest resultant latency, but choosing only the two vehicles
with the highest throughput and having each of these two
vehicles use the feature extractor with the lowest expected
latency will produce the correct action in the majority of
cases and as such that is what the LL heuristic does.

The final type of comparisons we conducted were for
methodologies from a related work that were created for
an analogous task. In this way, by updating the objective
function and parameters to match our problem formulation,
these related methodologies can be used as action decision
models and compared against our proposed model. We chose
two works focused on optimizing offloading decision in
mobile edge computing environments. One work proposes
a Value Iteration Algorithm (VIA) [60] method based on
a Markov decision process and the other work proposed a
heuristic mobility aware offloading algorithm (HMAOA) [61]
to determine the optimal offloading decision.

The results of this action decision model comparison can
be seen in Table 4. A visual representation of these results
can also be seen in Fig. 12. What sticks out most in these
results is that methods which focus on maximizing a utility
function, such as accuracy, without properly factoring in a
latency constraint will not perform well for this particular
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FIGURE 12: Results of the action decision model comparison over the 4 testing sets measured in EmAP.

TABLE 5: The values for four major categories of action decisions averaged over the four testing datasets.

Action Decision Model CPS NVS OP LSP

CaLPeN .918 3.321 .095 .553

RF .788 3.031 .068 .575

LR .357 2.109 .079 .750
VIA [60] .025 2.0 .022 .623

HMAOA [61] .002 4.0 .224 .514

LL 0 2.0 .021 .731

HA 1.0 4.0 .124 .514

problem. However, with the HAdCoP framework, many
different choices are viable to use as action decision models.
With an APF model choosing achievable perception frequen-
cies, even using the LL heuristic will produce acceptable
performance values for the chosen adjustable sensor fusion
model. However, the machine learning models are the highest
performing on this task with our proposed CaLPeN model
performing the best in all 4 test cases.

To further explore how the decisions made differ between
each of the implemented action decision models, statistics
were recorded for various categories of actions taken, and
the average values for these in the four testing datasets
can be seen in Table 5. The four action categories that
are presented in this table are the Collaborative Perception
Scheme (CPS), the Number of Vehicles Selected (NVS),
the Offloading Percentage (OP) and the LiDAR Selection
Percentage (LSP). There are several observations that can
be made from this table that help explain the performances
of each of the methods tested. One thing to note is that
HMAOA and HA always selected all four vehicles (NVS
= 4.0), making it impossible to complete the collaborative
perception process in a time less than τ in all cases, which
is the main reason why these methods perform so much
worse than all the others. On the other end of the spectrum,

VIA and LL always choose only two vehicles (NVS = 2.0)
which is a safe option in terms of adhering to the latency
requirement, but will never produce optimal accuracy values.
While CaLPeN, RF, and LR all produce an NVS between
two and four showing there is dynamic selection taking place,
CaLPeN is able to make far more optimal decisions shown
by the increase in CPS, NVS and OP while still producing
a higher EmAP. Even though LR had the highest LSP, it
lost out on collaborative perception accuracy increase by not
including a third or fourth vehicle enough of the time.

VI. Conclusion and Future Work
In this work, we have presented HAdCoP, a Heterogeneous
Adaptive Collaborative Perception framework that contains
an APF model, an action decision model, and an adjustable
sensor fusion model. We have proposed a novel APF
model as well as CaLPeN, a neural network-based Context-
aware Latency Prediction Network, which is used as the
action decision model. Using HEAL [49] as the adjustable
sensor fusion model, we show that CaLPeN is capable of
outperforming the six comparison models implemented using
our four generated test datasets in terms of EmAP, beating
the next best model’s performance by 5.5% on average.

14 VOLUME 00, 2024

This article has been accepted for publication in IEEE Open Journal of Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJVT.2025.3533368

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



With these results, we have shown that as the amount of
vehicular sensing and computing increases, a collaborative
perception system’s potential does as well assuming ITS
infrastructure continues to grow to allow for the additional
computing and communication needs. There are additional
features that can be incorporated into the collaborative percep-
tion process, as well as new topics that have not yet been fully
explored. In the realm of collaborative perception, there is still
a need for protocols, both in terms of networking to ensure
all vehicles are able to transmit and receive data in addition to
security and privacy protocols to protect the identity of road
users and their data as well as prevent potential malicious
activity. New methods for multi-source sensor fusion can
help further reduce latency and increase the accuracy of the
end-to-end collaborative perception process. Additionally,
investigating how to enhance sensor data robustness to
improve collaborative perception performance in the limited
sensing and computing environments that exist today may
help propel the adoption of such technologies.

In terms of improving the performance of the proposed
HAdCoP framework, adding additional context features, such
as the expected field of view of each vehicle’s sensors, can
aid in the vehicle selection process so that vehicles that can
contribute sensor data of areas that have not been seen by
other vehicles are more likely to be chosen. Additionally,
creating a new machine learning architecture for HAdCoP
that combines all three submodels into one may help improve
both perception accuracy as well as reducing latency overhead
by improving algorithmic efficiency. The potential to include
sensor data from street infrastructure can reduce the number
of vehicles needed to participate in collaborative perception
in each time step while maintaining or even improving
the overall perception accuracy with the inclusion of new
viewpoints. Finally, adding or creating new testing data
with increased diversity in terms of weather and street
environments as well as the inclusion of real-world data
will help further validate the robustness of the proposed
framework.
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