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ABSTRACT  As Advanced Driver Assistance Systems (ADAS) become increasingly intelligent, facial 

expression recognition (FER) has become a significant requirement for the purpose of monitoring a driver’s 

emotional state as well as fatigue level. An automobile system with FER is very useful in improving 

transportation safety by recognizing the driver’s state to provide timely alerts and potentially reduce the 

likelihood of accidents. While deep neural networks (DNN) based systems have achieved high accuracy in 

FER in recent years based on data collected under good laboratory environments, recognizing real-world 

facial expressions remains challenging due to variations in lighting and head pose especially prevalent in the 

driving scenario. In this paper, we propose an attention-based multi-modal and multi-view fusion FER model 

that can accurately recognize facial expressions regardless of lighting conditions or head poses, using image 

data of various modalities including RGB, Near-infrared (NIR), and Depth Maps from different viewpoints. 

The model is developed on a novel facial expression dataset we collected that includes multiple modalities 

captured from multiple viewpoints, with varying lighting conditions and head poses. Our multi-modal and 

multi-view fusion approach shows superior performance compared with models that use data from a single 

modality/view. The model achieves an accuracy of over 95% when recognizing drivers' facial expressions in 

real-world scenarios, even in poor lighting conditions and different head poses. 

INDEX TERMS  Attention mechanism, driver emotion monitoring, deep neural networks, facial 

expression recognition, multi-modal multi-view fusion 

I. INTRODUCTION 

Facial expression, which presents abundant human emotional 

information, is one of the most fundamental features to 

understand the human psychological state. Therefore, 

automatic facial expression recognition (FER) has been 

increasingly studied in recent years due to the importance of 

facial expressions in deriving human emotions and potential 

applications in various areas such as human-machine 

interfaces [1], social robotics [2], medical treatment [3], and 

advanced driver assistance systems (ADAS) [4][5]. 

In conjunction with the development of intelligent vehicle 

technologies, FER is becoming an increasingly essential part 

of ADAS in assisting safe driving. According to the Critical 

Reasons for Crashes Investigation Survey by the National 

Highway Traffic Safety Administration (NHTSA), the critical 

reason leading up to the crash is assigned to driver-related 

reasons, which comprise almost 94% of crashes. The main 

factors of the driver-related reasons include errors in 

recognition, decision, and performance caused by distraction, 

fatigue, and aggressive driving [6]. According to a 

psychological study [7], a driver’s emotional state plays an 

important role in safe driving, especially for the negative 

emotions such as sadness and anger that will highly influence 

driver’s behavior and thus increase the risk. Besides, fatigue 

driving is also a significant and potential cause of dangerous 

driving [8]. Facial expressions are not only outward signs of 

inner emotional feelings, but also a natural and immediate 

means to communicating fatigue. Therefore, recognizing 

driver’s facial expressions is essential for driver surveillance 

to improve driving safety. While FER has been extensively 
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studied for usage scenarios outside the intelligent 

transportation/vehicle such as human-machine interfaces, 

these approaches are not effective for driver use case and use 

in ADAS, because they are not effective in different 

lighting/head pose conditions. Despite extensive research in 

FER, the majority of existing approaches are tailored for 

controlled environments and fail to perform effectively in real-

world driving scenarios. These limitations are particularly 

pronounced under conditions with varying lighting and head 

poses, which are common in a driving environment. Current 

FER models, developed using datasets with fixed lighting and 

head poses, struggle to maintain accuracy in these variable 

conditions, thereby limiting their applicability in ADAS. 

Addressing these gaps by developing models robust to such 

variations is crucial for enhancing driver monitoring systems. 

In recent years, more and more studies have been done in 

the FER task, where seven basic emotional expressions 

defined by Ekman [9] (anger, disgust, fear, happiness, neutral, 

sadness, and surprise) are classified. Many publicly available 

datasets are collected based on these basic emotions. The most 

used datasets include extended Cohn-Kanade (CK+) [10], the 

Oulu-CASIA dataset [11], JAFFE [12], and CMU Multi-PIE 

[13]. Publicly available datasets are essential for advancing 

facial expression research. However, these public datasets 

only contain data collected from laboratory environment with 

just a fixed head pose and a good lighting condition. These 

limitations restrict the generalizability and robustness of 

emotion recognition algorithms developed using these 

datasets, as they may perform well under ideal conditions but 

struggle in more complex, real-world environments. In the 

context of driver monitoring systems, for example, real-world 

driving circumstances introduce a variety of challenges, 

including significant illumination variations inside the vehicle 

and frequent head movements by the driver. These factors can 

lead to substantial inaccuracies in face detection and facial 

feature extraction, which are critical for reliable FER. As a 

result, models trained on these traditional datasets often 

perform poorly when deployed in real-world situations, where 

the variability in lighting, head pose, and other environmental 

factors is far greater than in controlled lab conditions. This 

highlights the need for new datasets and approaches that better 

capture the complexities of real-world environments, 

particularly those encountered in intelligent transportation 

systems. By addressing these challenges, future research can 

develop more robust FER models capable of accurately 

recognizing facial expressions in diverse and dynamic settings.  

In our preliminary work [14], we developed a multi-modal 

facial expression dataset consisting of three modalities of 

images collected simultaneously, namely RGB images, Near-

Infrared (NIR) images, and Depth Maps, with different 

illumination conditions emulated. Among these modalities, 

NIR images and Depth Maps are not affected by the ambient 

illumination conditions. In addition, we proposed a robust 

multi-modal fusion model to accurately detect facial 

expressions regardless of lighting conditions. However, the 

data was collected in a laboratory environment with various 

illumination conditions manually simulated, and the multi-

modal fusion model did not address the head pose variation 

challenge. Considering the difference between real-world 

lighting and simulated lighting, in this work, we first expand 

the multi-modal facial expression dataset collected in the lab 

(Lab Data) with more samples and realistic illumination 

conditions. 

Recently it has been shown in the area of face recognition 

that utilizing multi-view data captured by multiple cameras 

simultaneously is an effective method for addressing pose 

variations and their inherent challenges [15]. In this work, we 

aim to detect driver’s facial expressions in real-world 

environments accurately regardless of illumination conditions 

or driver’s head pose. Besides the multi-modal data collected 

in the lab, we also develop a novel multi-modal and multi-

view facial expression dataset. This dataset features images 

collected from two cameras at different viewpoints 

simultaneously in a real-world vehicle environment (Vehicle 

Data). Both cameras can capture three modalities of images, 

i.e., RGB images, NIR images, and Depth Maps. The images 

are collected under both good and poor illumination 

conditions with four different head poses. We then propose a 

robust attention-based multi-modal multi-view fusion 

(AMMF) model to recognize facial expressions accurately 

robust to the lighting conditions and head poses. 

The main contribution of this paper includes: 

(1) We create a novel multi-modal facial expression 

dataset (Lab Data) consisting of data collected with various 

illumination conditions in laboratory environments. This 

dataset enables the development of a multi-modal fusion 

model that demonstrates improved and more robust FER 

accuracy under different controlled lighting scenarios. 

(2) We create a novel multi-modal multi-view facial 

expression dataset (Vehicle Data), specifically collected in 

real-world vehicle environments, capturing a wide range of 

illumination conditions and dynamic head poses. This dataset 

addresses the complexities and challenges of FER in 

naturalistic driving scenarios, providing a foundation for 

evaluating model performance in real-world settings.  

(3) We propose the AMMF method, an attention-based 

multi-modal multi-view fusion model, designed to integrate 

data from multiple modalities and viewpoints. This method 

exhibits high robustness and accuracy across diverse 

illumination and head pose conditions, particularly in the 

challenging contexts of both controlled laboratory and real-

world vehicle environments. 

In the remainder of this paper, Section II describes the 

related work. In Section III, we give an overview of the dataset 

collected in-lab (Lab Data) and in-vehicle (Vehicle Data) and 

describe the data collection and pre-processing steps. In 

Section IV, we explain our proposed AMMF model. 

Experimental results are given in Section V, and conclusions 

are discussed in Section VI. 
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II. RELATED WORK  

Based on Convolutional Neural Networks (CNNs) and image-

based methods, deep neural network algorithms such as [16] 

and [17] have demonstrated state-of-the-art FER recognition 

accuracy of over 95% for the CK+ and JAFFE datasets. 

Ouellet [18] achieved 94.4% recognition accuracy on the CK+ 

dataset using cascaded CNN and Support Vector Machine 

(SVM) techniques. Despite the fact that most approaches 

focus on static images, it is also valuable to obtain temporal 

information from successive frames. The effectiveness of 

training networks on image sequences [19] has been 

demonstrated using widely accepted benchmarks, such as 

CK+ and MMI [20]. In the past decade, success of a novel 

attention mechanism [21] implemented in Natural Language 

Processing inspired researchers to introduce the technique into 

computer vision tasks. Attention can be considered a dynamic 

selection process in a computer vision system, which is 

achieved by weighting features according to their importance 

[22]. Attention mechanism has benefited many computer 

vision tasks, including FER, e.g., Meng [23] achieved 99% on 

the CK+ dataset using video-based attention networks. Public 

facial expression databases such as RAF-DB [24], CK+, and 

JAFFE have been widely used in the development and 

benchmarking of FER models. For example, the CK+ and 

JAFFE datasets offer a range of posed expressions captured in 

controlled laboratory environments, making them valuable for 

developing models that perform well in static and controlled 

settings. However, these public datasets are primarily single-

modality and do not adequately address the challenges posed 

by real-world driving environments, such as varying lighting 

conditions and dynamic head movements. While RAF-DB 

provides a large collection of annotated facial images collected 

from real-world environments with variability in head poses 

and lighting conditions, it lacks data captured under low 

lighting conditions and extreme head poses, which are 

common in real-world driving scenarios. Furthermore, these 

datasets lack the synchronized multi-modal data necessary for 

robust FER in applications like driver monitoring systems. In 

contrast, our multi-modal multi-view dataset is specifically 

designed to capture the complexities of real-world driving 

scenarios, integrating RGB, NIR, and depth modalities to 

address these challenges effectively. While the existing CNN-

based and attention-enhanced methods have shown 

impressive results on controlled datasets like CK+ and JAFFE, 

their effectiveness diminishes in real-world environments. 

These approaches typically rely on static images or carefully 

curated video sequences captured under optimal conditions, 

limiting their applicability in dynamic scenarios, such as those 

encountered in driver monitoring systems. Our proposed 

approach addresses these shortcomings by incorporating 

multi-modal and multi-view data, which allows for robust 

facial expression recognition even under varying lighting 

conditions and different head poses. Additionally, our model 

leverages an advanced attention mechanism specifically 

designed to handle the complexities of real-world driving  

 

FIGURE 1. (a) Facial expression data collection set-up in lab and (b) an 
example of collected images  

TABLE 1. Lab Data summary 

Subject Number 32 (12 female) 

Age 20-55 years 

Expression Anger, Disgust, Fear, Happiness, 

Neutral, Sadness, Surprise, Yawning 

Data Sequence Modality RGB/NIR/Depth 

Duration 4sec - 10sec 

Frame Rate RGB 30 fps 

NIR/Depth 15 fps 

Lighting Condtion Good lighting, Low lighting, Dark 

 

environments, ensuring higher accuracy and reliability 

compared to traditional methods. 

In order to address problems caused by illumination 

changes for FER systems, Jeong et al. [5] collected the KMU-

FED dataset, where NIR images of seven basic expressions are 

collected in a vehicle. Zhao et al. [11] collected the Oulu-

CASIA dataset, which contained both NIR and RGB images, 

and demonstrated that NIR images could provide more robust 

FER results concerning variations in illumination than RGB 

images. However, the KMU-FED dataset contains only NIR 

images, and the RGB and NIR images are not synchronized in 

the Oulu-CASIA dataset, which makes it impossible to fuse 

information from these different modalities to develop a multi-

modal fusion model that is more reliable. In the realm of driver 

emotion recognition, Du et al. [25] demonstrated the 

effectiveness of fusing visual data together with physiological 

signals, such as heart rate, to improve drivers' facial expression 

recognition. However, physiological signals are not always as 

reliable or easily obtainable in real-world driving scenarios, 

especially in the context of non-intrusive monitoring systems. 

A multi-modal fusion model of thermal and RGB images 

was developed by Wang and He [26] using the NVIE [27] 

dataset, which contains synchronized RGB and thermal 

infrared images of the seven basic emotions. They 

accomplished a more accurate recognition by combining the 

two modalities compared to using RGB images alone with a 

1.35% accuracy improvement. However, temperature changes 

in the environment make thermal-infrared imaging unstable. It 

should be noted that thermal infrared imaging is passive and 

its images are solely based on heat radiation, while NIR 

Imaging can produce images similar to visible images and 

hence is more appropriate for performing the FER task. While 
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these studies demonstrate the benefits of multi-modal 

approaches in FER, they still face significant challenges in 

real-world applications. For instance, the lack of 

synchronization between different modalities, as seen in the 

Oulu-CASIA dataset, limits the effectiveness of fusion models. 

Additionally, the reliance on thermal infrared imaging, which 

is sensitive to environmental temperature changes, introduces 

instability in recognition performance. Furthermore, the focus 

on frontal-view images across these datasets does not 

adequately address the variability in head poses that is 

common in real-world driving scenarios. Our proposed 

approach overcomes these limitations by integrating 

synchronized multi-modal data, including RGB, NIR, and 

depth images, captured from multiple viewpoints. This not 

only ensures more stable and accurate FER under varying 

lighting conditions and head poses but also enhances the 

robustness of driver monitoring systems in diverse and 

dynamic environments.  

The advantages of multi-modal fusion are further evaluated 

on the Driver Monitoring Dataset (DMD) [28], which is a 

multi-modal dataset for driver monitoring, containing RGB, 

NIR, and depth image modalities, as well as capturing various 

driver monitoring scenarios from multiple camera views. 

Studies conducted on the DMD dataset have demonstrated the 

advantages of fusing multiple modalities for improved driver 

action recognition accuracy. The DMD dataset’s multi-modal 

nature, combined with its focus on real-world conditions such 

as varying lighting environments and dynamic head poses, 

makes it particularly relevant to our study. By leveraging the 

DMD dataset, we are able to rigorously evaluate the 

effectiveness of our proposed attention-based multi-modal 

multi-view fusion model. This evaluation not only highlights 

the model's robustness and accuracy but also underscores its 

practical applicability in real-world driver monitoring systems. 

Although DMD is primarily focused on driver monitoring, its 

multi-modal nature and the proven benefits of modality fusion 

make it a valuable resource for exploring practical 

applicability and potential impact of our proposed approach in 

context of driving monitoring. 

The use of multi-view data has become a promising 

approach to handle the inherent challenges brought by pose 

variations [15]. The term multi-view data refers to data 

collected by multiple cameras at different viewpoints 

simultaneously. By utilizing multiple viewpoints, the 

disadvantages of a single viewpoint are mitigated since the 

system has access to more information. In the study of face 

recognition, it has been proved that the fusion of multi-view 

face images can improve recognition accuracy [15] [29].  

To our best knowledge, there are no multi-modal and multi-

view facial expression datasets with various illumination 

conditions and head poses nor multi-modal and multi-view 

fusion methods developed for the FER task. As shown in  

 
1 The multi-modal multi-view facial expression datasets were created by 

MESDAT lab at University of California, San Diego. The dataset will be 

released upon publication of this manuscript. 

 

FIGURE 2. Facial expression data collection set-up using multiple 
cameras in vehicle  

TABLE 2. Vehicle Data summary 

Subject Number 16 (4 female) 

Age 20-55 years 

Expression Anger, Disgust, Fear, Happiness, 

Neutral, Sadness, Surprise, Yawning 

Data Sequence Modality RGB/NIR/Depth 

Duration 4sec - 10sec 

Frame Rate RGB 30 fps 

NIR/Depth 15 fps 

Camera Device IntelRealSense Camera 

Slim Camera 

Lighting Condition Daylight (good lighting):  

⚫ with/without shadow/sunshine,  

⚫ different illumination intensity 

Night (low lighting): 

⚫ different illumination intensity 

Head Pose (Where 

the driver is facing) 

Right mirror, Front, Rearview mirror, 

Left mirror 

 

Section V, models using single modality and/or view provides 

inferior performance compared to our proposed model fusing 

multi-modal multi-view data for FER under varying 

illumination and pose conditions. Therefore, we construct a 

novel multi-modal and multi-view facial expression dataset, 

consisting of data collected in-lab (using one camera) and in-

vehicle (using two cameras) with realistic illumination 

conditions and various head poses. Furthermore, we propose 

an attention-based multi-modal and multi-view fusion model 

to recognize facial expressions accurately based on video 

input, which is robust to the illumination conditions and head 

poses. 

III. MULTI-MODAL MULTI-VIEW FACIAL EXPRESSION 
DATASET 

Considering the differences between the real-world and 

laboratory environment and limitations of the existing public 

dataset, we conduct the facial expression data collection in 

both laboratory and real-world vehicle environments, namely, 

Lab Data and Vehicle Data.1 Besides seven basic expressions, 

the data also includes the yawning expression. Yawning is 

considered a primary indicator of driver fatigue. [8] The  
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Slim camera 

    

Intel camera 

    
 

Head pose 
Facing right 

mirror 

Facing 

rearview 

mirror 

Facing front 
Facing left 

mirror 

(a) Example images under different head poses 

    
Daylight (good lighting) Night (poor lighting) 

(b) Example images under different lighting conditions 

FIGURE 3. Example images captured by two cameras under different (a) 
head poses and (b) lighting conditions 

 

dataset includes yawning expressions as one of the target 

facial expressions, enabling our model to detect this key sign 

of fatigue which is necessary for fatigue surveillance for 

drivers. The Lab Data consists of images of three modalities 

(RGB images, NIR images, and Depth Maps) captured by a 

single camera under different lighting conditions. The Vehicle 

Data consists of images captured by two cameras from two 

viewpoints, both of which can capture three modalities of 

images. The data collected in-vehicle includes natural lighting 

conditions and four head poses. Data pre-processing and 

augmentation is performed before feeding the data into the 

model. 

A. LAB DATA COLLECTION AND DATASET SUMMARY  

The laboratory data collection is based on the experimental 

setup shown in Fig. 1(a). Using Qualcomm Technologies' 

SLiM 3d structure light sensor prototype (Slim Camera), 

images of the subject's upper body are captured, including 

RGB images (320x640 pixels), NIR images (184x324 

pixels), and Depth Maps (124x216 pixels). The Depth Map 

indicates the distance between the camera and the subject. 

The relative position of the camera and the subject is similar 

to the relative position of the rearview mirror and the driver 

in a car. During the data collection, participants are 

instructed to imitate and make facial expressions associated 

with specific emotions. In order to achieve more realistic 

posed expressions, a set of slides that introduce emotionally 

rich scenarios are presented as simple instructions. When 

making happy facial expressions, for instance, the subject is 

asked to imagine that he/she will take a vacation for one 

month. Three modalities of images are collected 

simultaneously. Instead of just collecting data under good  

illumination condition, we also collected data with natural 

and poor lighting conditions. Note that NIR images and 

Depth Maps are not affected by the ambient illumination 

conditions, so they stay the same regardless of lighting. Each 

facial expression sequence is manually annotated and 

extracted from the raw data. Examples of the collected 

images are shown in Fig. 1(b). Table 1 is a summary of the 

laboratory dataset. 

B. VEHICLE DATA COLLECTION AND DATASET 
SUMMARY 

Considering the difference between artificial and natural 

lighting conditions, besides laboratory data, we also 

collected subjects’ facial expressions data in a parked vehicle 

in a parking lot on campus under natural lighting conditions. 

As stated in Section I and II, utilizing multiple cameras to 

collect multi-view data is beneficial to handle the 

information loss caused by head pose variations. Hence to 

develop models robust to various driver’s head poses, we set 

up two cameras inside the vehicle. As shown in Fig. 2., the 

IntelRealSense camera (Cam 1) [30] is fixed around the left 

mirror on the driver’s window, and the Slim Camera (Cam 2) 

is fixed around the rearview mirror. The reason we use two 

different cameras is to avoid wave interference between the 

NIR sensors that project light of same frequency [31]. Both 

cameras are facing the driver. The multiple cameras set-up 

ensures that at least one of the cameras can obtain abundant 

face information under various head poses a driver normally 

has. To get data under various lighting conditions, the 

participants are asked to complete data collection at different 

times, such as noon or evening. The data collection 

experiment is similar to that conducted in-lab, where the 

participant will be asked to make eight kinds of facial 

expressions. 

There are four kinds of head poses: left mirror, front, 

rearview mirror, and right mirror, which are the directions 

the subject faces in the vehicle. Both cameras can capture 

images of three modalities, as shown in Fig.2. There are two 

kinds of illumination conditions for the vehicle data, namely 

“Daylight” and “Night”, which are good and dark lighting. 

Note that as opposed to Lab Data, there can be various 

illumination conditions both in Daylight and Night data, like 

faces partially covered with shadows during daylight, or 

different levels of illumination during night. Fig. 3. shows 

some example images captured by two cameras under 

different head poses and lighting conditions. Table 2 is a 

summary of the vehicle dataset. Note that while head pose is 

acknowledged as a challenging factor in FER, our study 

primarily focuses on detecting facial expressions robust to 

various environmental conditions, such as varying lighting 

and different head poses. Our multi-modal multi-view fusion 

method ensures reliable detection of facial expressions, even 

under challenging real-world conditions, making it suitable 

for driver monitoring systems. 
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FIGURE 4. Face alignment and extraction for RGB images under good 
lighting 

 

FIGURE 5. Face extraction for NIR, Depth Map and RGB images 
captured by Slim Camera  

 

FIGURE 6. Face extraction for images captured by IntelRealSense 
Camera 

 

The data collected from two cameras are synchronized 

using the “clap method”. The subject is asked to clap several 

times during the data collection process, and both cameras 

will capture the claps. By aligning the frames where the 

subject’s palms are just struck together, we can align the 

timestamps of the images captured by two cameras. 

C. DATA PRE-PROCESSING 

The data we collected are aimed to develop a model to detect 

the driver's facial expressions so that we can infer his/her 

emotion, thus only the face region that exhibits the facial 

muscle movements is useful. The raw data is pre-processed 

by (1) cleaning the dataset and (2) identifying and extracting 

the face image. The raw data is collected as video clips per 

expression. During data cleaning process, we exclude 

content without the target expression from each clip, 

particularly at the beginning and the end of the clip, when the 

facial expression has not yet been posed. 

The face extraction procedure is necessary in order to 

obtain the most useful information from the raw data. A face 

normalization algorithm [32] for RGB images collected by 

the two cameras in good lighting conditions is implemented 

to detect and align facial landmarks so the face can be 

normalized. The process of face alignment and 

normalization is shown in Fig. 4. The image is first rotated 

in-plane so that the line connecting the centers of the two  

 
FIGURE 7. Temporal data augmentation 

 

eyes is horizontal. During the face cropping step, the distance 

between the mouth center and the centers of the eyes is 40% 

of the cropping window and the midpoints of the two centers 

are in the middle of the cropping window. The major 

advantage of face alignment and cropping over directly 

detecting a face from the bounding box provided by a face 

detector is that we can eliminate the noise introduced by head 

movements. 

However, for the NIR images, Depth Map and RGB 

images under poor lighting collected by the Slim Camera, it 

is difficult to detect the landmarks accurately because of their 

low quality. So instead, we detect and align faces from NIR 

images. Based on the cropping bounding box obtained from 

the NIR image, we can extract the face part from its 

corresponding Depth Map and RGB image, shown in Fig. 5. 

Similarly, for the data collected by the Intel Camera, we 

align the face bounding box in the NIR image to the 

corresponding RGB image (under poor lighting) and Depth 

Map, the process is shown in Fig.6. Finally, all the cropped 

face images are resized to 224x224. 

D. DATA AUGMENTATION 

According to the related study in facial expression 

recognition, training networks based on sequence data and 

analyzing temporal dependency between frames can further 

improve the performance [19]. We propose performing FER 

from consecutive frames to enhance model robustness. To 

achieve this, the above collected images are augmented by 

window slicing subsequences of consecutive frames to 

increase the number of data samples. The process is referred 

to as temporal augmentation, as shown in Fig.7. For each 

RGB clip, which lasts around 2-3 seconds, we extract 30-

frames clips continuously with 15 frames overlapping 

between clips. For the NIR and Depth Map modality, we 

extract frames from them according to the timestamp  



                                                 J. Chen et al: Attention-Based Multi-Modal Multi-View Fusion Approach for Driver Facial Expression Recognition 

 7 

 
(a) Example images of DMD  

Frontal 
view 

  

Side 
view 

  
 RGB NIR 

(b) Example images of the pre-processed DMD Fatigued-related data 

FIGURE 8. Example images of (a) DMD and (b) pre-processed fatigue-
related data from DMD 

 

information from augmented RGB clips, so that each input 

clip is well synchronized among the modalities. Given the 

frame rate of NIR and Depth Map is around half of RGB’s 

frame rate, each clip has 15 frames for the two modalities. 

We train our proposed model described in the next section 

using the pre-processed and augmented data. 

E. ADDITIONAL DATASET: DRIVER MONITORING 
DATASET 

To evaluate our approach, we also utilized the Driver 

Monitoring Dataset (DMD) in addition to the lab and vehicle 

datasets. The DMD is designed specifically for driver 

monitoring research, which also contains multi-modal data 

captured from multiple views (front, back and left), making 

it highly relevant to the problem we are addressing. The 

dataset consists of 37 subjects (10 female, 27 male) with 

varying ages, ethnicities, and eyeglasses usage. The dataset 

covers various scenarios such as distraction actions, fatigue 

and drowsiness, gaze allocation to interior regions, and 

different driver's hands' positions and interactions with 

inside objects. Example images of the DMD are shown in 

Fig. 8 (a). 

In this paper, we apply our proposed multi-modal multi-

view fusion method on the DMD dataset to assess the quality 

of facial expression recognition in relation to the driver fatigue 

level detection and monitoring specifically. This focus is 

 

FIGURE 9. AttentionNet structure (𝒇𝒊: feature vector of the 𝒊𝒕𝒉 image 

extracted by ResNet-18; 𝒘𝒊
′: normalized self-attention weights for the 𝒊𝒕𝒉 

image) 

 

primarily due to the critical impact of fatigue-related 

expressions on driving safety. Additionally, the DMD, 

designed for driver action recognition, mainly captures 

fatigue-related expressions, rather than a diverse range of 

facial expressions. Among all the subjects in the DMD, 10 

have drowsiness activities data recorded, which can be 

categorized as three levels of fatigue: safe driving (level 0, eye 

open), yawning w/wo hands (level 1) and sleepy driving (level 

2, eye close). The RGB and NIR data captured by the front and 

left views are used. We implement the same pre-processing 

and augmentation methods stated in previous sections on the 

DMD. Specifically, the face normalization algorithm based on 

facial landmarks is implemented on the frontal view RGB data 

to detect and align facial landmarks so the face can be 

normalized. For the side- view RGB data and NIR data, we 

implement the face detection and extraction directly. Example 

images of the DMD fatigued-related data after preprocessing 

are shown in Fig. 8 (b). Since the frame rate of the RGB and 

NIR data is the same (30FPS) for the DMD, we extract 30-

frames clips continuously with 15 frames overlapping 

between clips for both modalities for the temporal data 

augmentation.  

 

IV. PROPOSED MODEL 

In this section, we introduce a robust attention-based multi-

modal multi-view fusion model. We train an attention-based 

CNN as a feature extractor using consecutive frames as input 

for each modality, using the pre-processed and augmented 

data. Based on the features extracted from different image 

modalities by the backbone network, an attention-based 

multilabel classifier is trained to classify facial expressions. 
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FIGURE 10. Multi-modal multi-view fusion model structure. The data from each modality is input to the corresponding backbone network (AttentionNet). 
Each modality is represented by the weighted average feature extracted after the feature embedding and attention module of the backbone. These 
features are then fused by concatenation and fed to a multilabel classifier for facial expression classification. This design enhances accuracy by 
effectively combining information from multiple modalities and viewpoints. 

A. BACKBONE NETWORK TRAINING 

In this subsection, we discuss the structure of the backbone 

network as well as the training process. In recent years, 

enhanced computational power has resulted in the dominance 

of deep convolutional neural networks (CNNs) in image 

classification. In particular, ResNet [33] achieves state-of-the-

art results in many image classification benchmarks, which 

addresses the degradation problem that occurs as the depth of 

the network increases. Most of the well-known deep CNNs 

only take a single image as input. However, as we stated in 

Section II, taking a temporal window of consecutive frames as 

input to train the network has been shown to give better 

performance in the context of FER. One effective method for 

the deep 2D-CNNs to fulfill the video-level FER task is frame 

aggregation, where features are typically extracted from each 

frame in a video clip by the CNN and then aggregated to input 

to a classifier to get results. In the video-based FER task, the 

attention mechanism, which enables the model to assign 

weights according to the feature’s importance, is beneficial if 

added to the aggregation process. The above is true because 

some frames exhibit more significant emotional 

characteristics while others do not, as can be seen in example 

input samples in Fig.9.Considering the effectiveness of the 

ResNet structure and the attention mechanism, for this work, 

we utilize AttentionNet [23] as the backbone network to 

extract features from image sequences. The backbone network 

structure is shown in Fig.9. There are two main components in 

the network, namely feature embedding and attention module. 

To better represent features using AttentionNet we utilize a 

transfer learning technique, i.e., fine-tuning the model which 

is pre-trained on the CK+ facial expression dataset [10]. 

Specifically, we use the AttentionNet pretrained on the CK+ 

dataset as the initial model for fine-tuning. Considering the 

differences between our target datasets (Lab Data and Vehicle 

Data) and the CK+ dataset, we retrain the last two residual  

 

layers in the ResNet-18 and the last fully connected layer 

during the fine-tuning process. By initializing the backbone 

network with the pretrained model, we can capitalize on the 

knowledge acquired from the CK+ dataset and adapt it to the 

specific characteristics of our target datasets. The input data is 

continuous frames, e.g., a clip of RGB data (30 frames). 

ResNet-18 is first used to extract features from each frame. 

Then the fully connected layer together with a sigmoid 

function, assign self-attention weights for each feature vector 

by: 

 

𝑤𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑞𝑇𝑓𝑖) ,  (1) 

 

where 𝑞𝑇 is the parameters of the FC layer, 𝑓𝑖 represents the 

feature vector of the 𝑖
𝑡ℎ

 image. Then weights are normalized 

by the following equation so that sum of the weights equals 1: 

 

𝑤𝑖
′ =

𝑤𝑖

∑ 𝑤𝑗
𝑛
𝑗=1

  .   (2) 

 

The feature vector is multiplied by its corresponding 

normalized attention weight. The weighted average feature is 

obtained by summing all the weighted feature vectors, and 

then will be fed into an FC layer to classify facial expression.  

The AttentionNet is trained separately for each modality. 

The Lab Data is divided into 10 folds, and the Vehicle Data is 

divided into 5 folds for cross-validation for person-

independent cross-validation experiments, that is, validate 

data of three randomly selected subjects and train on the rest 

of the data. Our study consisted of two types of training tasks 

to examine model performance in the general use case as well 

as in the driving-related case. In the 'General case', our study 

focuses on the recognition of all 8 expressions, as we aim to 

provide a comprehensive evaluation of our proposed FER 

method. This broader scope is essential for demonstrating the  
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FIGURE 11. Attention-based multilabel classifier for Vehicle Data multi-modal multi-view fusion (S-xxx: modality from Slim Camera, I-xxx: modality 
from Intel Camera) 

 

generalizability and applicability of our method across various 

contexts and emotional states. In contrast, the 'Driving case' 

specifically targets driving-related scenarios where only a 

subset of expressions, namely "Neutral", "Anger", 

"Happiness", and "Yawning", are considered. We focus on 

these expressions because they are the most relevant emotions 

to be detected concerning driver attention, safety, and overall 

driving performance. For each case, we train backbone 

networks for each modality respectively, namely 

AttentionNet-RGB, AttentionNet-NIR and AttentionNet-

Depth, which enable effective feature extraction from each 

modality. 

B. SELF-ATTENTION BASED MULTI-MODAL MULTI-
VIEW FUSION MODEL 

In this subsection, we present the overall structure of a multi-

modal multi-view fusion model, where features from multiple 

modalities and viewpoints are combined to improve the 

robustness of the model under various lighting conditions and 

head poses. In the field of multi-modal fusion, data fusion is a 

common method of integrating information from different 

modalities to obtain better knowledge [34]. Fusion on feature 

level (early fusion) and decision level (late fusion) are the two 

most known forms [35]. In this work, we propose an ensemble 

approach based on feature-level multi-modal multi-view 

fusion. Fig. 10 shows the overall architecture of our proposed 

model. Note that for the Lab Data, only a single camera 

viewpoint data will be used. Features are extracted separately 

by the backbone networks from each modality under each 

viewpoint and fused. The fused features will be used to train a 

classifier to get the output. The backbone networks and the 

classifier are trained separately. In the multi-modal multi-view 

fusion model shown in Fig.10., each data input sample from 

different modalities and viewpoints is synchronized. The data 

from each modality is represented by the weighted average 

feature extracted from the attention module of its backbone 

network (as can be seen in Fig.9.), which is trained on the data 

of the corresponding modality. The features from various 

modalities are then concatenated parallelly and fed to a 

multilabel classifier. As shown in Fig.10., by concatenating 

features parallelly, we add one feature vector after another 

parallelly and get a 2-D feature vector (5  × 6) with one 

modality for each row. 

An ensemble of a deep neural network (DNN) and a 

multilabel classifier has been frequently used in multi-modal 

classification tasks [36][37]. The DNN first extracts the 

features from different modalities separately, and then a 

multilabel classifier is trained on the merged features. In our 

work specifically, we first extract the features of each modality 

under each viewpoint from its corresponding backbone 

network, then train the concatenated features on the classifiers 

to recognize facial expressions. For the Lab Data multi-modal 

fusion model, where only 3 modalities are fused, we use a 

CNN classifier as the multilabel classifier, which consists of 

one 1-d convolutional layer followed by a rectified linear unit 

(ReLU) activation layer, a 1-d max-pooling layer and a fully-

connect layer. To address challenges caused by various 

illuminations as well as head poses, for the multi-modal multi-

view fusion model developed on the Vehicle Data, 6 

modalities from the two cameras are used for fusion, namely 

Intel-RGB, Intel-NIR Intel-Depth, Slim-RGB, Slim-NIR and 

Slim-Depth. Studies on the multi-modal classification have 

illustrated that multi-modal networks are often prone to be 

unstable and overfitting due to their increased capacity of the 

modalities [38]. Hence to make the multi-modal multi-view 

fusion model on the Vehicle Data more robust, we propose an 

attention-based multilabel classifier, which can assign weights 

to the features from each modality under each viewpoint 

according to their importance. For instance, when the lighting 

is good and the driver is facing the left mirror (towards the  
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TABLE 3. Recognition Accuracy Results on Lab Data under Different 

Lightings: Using Single Modality and Multi-modal Fusion 

General case  
Modality 

Lighting 
RGB NIR Depth 

Multi-modal 
fusion 

Good lighting 66.61% 60.72% 47.68% 68.32% 
Poor Lighting 60.71% 66.08% 43.80% 64.01% 

Dark 39.26% 54.38% 52.63% 54.46% 
Overall 63.59% 60.95% 47.53% 66.86% 

Driving case 
Modality 

Lighting 
RGB NIR Depth 

Multi-modal 
fusion 

Good lighting 95.91% 91.36% 76.02% 96.98% 
Poor Lighting 91.57% 92.71% 82.29% 95.51% 

Dark 55.38% 86.24% 77.98% 89.32% 
Overall 92.35% 91.17% 76.92% 96.35% 

The overall recognition accuracy considering all the lighting is highlighted with 

yellow shade 

 

Intel Camera), the data captured by the Intel Camera should be 

paid more attention to. 

The structure of the attention-based classifier is shown in 

Fig.11. The input data is features of each modality extracted 

from its backbone network. A 1-D CNN consisting of a 1-d 

convolutional layer followed by a ReLU activation layer and 

a 1-d max-pooling layer is first used to extract embeddings 

from the features of each modality. Specifically, the feature 

vector of each modality is first convolved with 8 different 

filters by the 1-d convolutional layer and the output is 

processed by a ReLU activation function and a max-pooling 

operation. The final output is reshaped to a 1-d vector as the 

final embedding of each modality. Similar to the attention 

module we have introduced in our backbone network 

AttentionNet (Fig. 9), the fully connected layer with a sigmoid 

function assigns self-attention weights for each modality’s 

embeddings. Take the RGB modality from Slim camera as an 

example: 

 

𝑤𝑆−𝑅𝐺𝐵 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑞𝑇𝑓𝑆−𝑅𝐺𝐵)  ,  (3) 

 

where 𝑞𝑇 is the parameters of the FC layer, 𝑓𝑆−𝑅𝐺𝐵  represents 

the embeddings of the Slim RGB modality extracted by the 

1D-CNN. Then weights from all the modalities are then 

normalized so that sum of the weights equals 1. The attention 

mechanisms incorporated in our model play a crucial role in 

enhancing the accuracy and robustness of facial expression 

recognition, particularly in challenging real-world 

environments. By dynamically weighting features across 

different modalities and viewpoints, the attention module 

prioritizes the most relevant information, allowing the model 

to focus on critical facial features even under varying 

conditions, such as poor lighting or non-frontal head poses. 

The weighted average embedding is obtained by summing 

the weighted embeddings from all modalities, which will be 

concatenated to the original embeddings as a new fusion. This 

step is beneficial in improving the model performance to avoid 

information loss if just using the weighted average embedding 

for classification (Conventional attention classifier). The 

comparison results of the CNN classifier without attention 

mechanism, Conventional attention classifier and our 

proposed AMMF classifier will be analyzed in Section V. 

 
(a) General Case 

 
(b) Driving Case 

FIGURE 12. The Overall Recognition Confusion Matrices of the Multi-
modal Fusion Model on Lab Data (a) General Case (b) Driving Case 

V. EXPERIMENTAL RESULTS 

In this section, we first provide the facial expression 

recognition results of the backbone networks (AttentionNet) 

trained on each single modality. Then we present an overview 

of the facial expression recognition results of our multi-modal 

fusion model on the Lab Data and multi-modal multi-view 

fusion model on the Vehicle Data, where features from 

different modalities and viewpoints are combined and trained. 

The results are presented in the form of facial expression 

recognition accuracy, when considering all the eight 

expressions (General Case) and the driving-related 

expressions, “Neutral”, “Anger”, “Happiness” and “Yawning” 

(Driving Case), under different lighting conditions and head 

poses. 

A. ANALYSIS ON LAB DATA 

This subsection presents the experiment results of models 

trained on the Lab Data, which consists of data captured by 

one camera under three lighting conditions. As described in 

Section IV-A, the AttentionNet enhanced by transfer learning 
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technique is used as the backbone network. The backbone 

networks are trained as a classifier first on data of a single 

modality. The results of the backbone networks trained on 

each modality are shown in Table 3, where the model 

performance under different illumination conditions is also 

presented. The overall recognition accuracy achieved in the 

RGB data proves that the AttentionNet trained as the backbone 

network can well represent facial expression features. 

However, the performance gets worse for the RGB data as the 

lighting decreases. As stated in Section I and II, recognizing 

facial expressions based on RGB images only in real-world 

environments is still challenging, as it is very likely that the 

RGB modality may fail to provide required information under 

poor illumination. Hence, in addition to the RGB images, we 

also make use of NIR images and Depth Maps. The results of 

the AttentionNet trained on these two modalities are shown in 

Table 3. The recognition accuracy in NIR and Depth Map data 

under good lighting is lower than that in RGB data since they 

do not have as much information due to lower image 

resolution and frame rate. However, the NIR and Depth Map 

data is relatively more robust to the illumination changes than 

RGB data, especially in a dark environment. 

The results of the fusion of three modalities are also shown 

in Table 3. As stated in Section IV-B, RGB, NIR and Depth 

Map features are extracted separately from the backbone 

networks, as shown in Fig. 10. The concatenated features are 

fed into the CNN classifier. As shown in Table 3, we can get 

a higher recognition accuracy by fusing three modalities than 

just using RGB-only or any single modality under almost all 

kinds of lighting conditions. Especially under dark lighting 

condition, while 39.26% and 55.38% accuracy can be 

achieved using RGB-only modality in the general case and 

driving case respectively, using all 3 modalities improves 

accuracy to 54.46% and 89.32% for the general and driving 

cases respectively.  

The accuracy in the general case is lower than that in the 

driving case. The observed difference in recognition accuracy 

between the two cases can be attributed to the reduced number 

of expressions in the driving case. By limiting the 

classification task to only four expressions, the model is more 

likely to achieve higher accuracy rates, as it has fewer classes 

to differentiate between. In the general case, the model needs 

to recognize all 8 expressions, which introduces additional 

complexity and challenge, resulting in a lower recognition 

accuracy. In order to better understand the model's 

performance, we utilized confusion matrices, which are 

common tools in machine learning to visualize the 

performance of an algorithm. Each column of the matrix 

represents the instances of a predicted class, while each row 

represents the instances of an actual class. Higher values on 

the diagonal of the confusion matrix correspond to correct 

predictions, while off-diagonal values indicate errors in 

classification. Upon comparing the confusion matrices (shown 

in Fig.12.) of the multi-modal fusion model between the 

general case and driving case, we observe that the general case 

poses greater challenges due to the presence of facial 

expressions that are more prone to confusion, such as 'Fear', 

'Disgust', and 'Sad'.  For example, 27% of samples with the 

'Fear' expression in the general case often misclassified as 

'Disgust', and 'Sad' is frequently misidentified as 'Anger', as 

indicated by the higher off-diagonal values in the confusion 

matrix. 

While the results achieved on the Lab Data have proved the 

effectiveness of multi-modal fusion in improving model 

robustness and performance under various illumination 

conditions, we need to further ensure the fusion method is also 

effective for addressing the head pose variation challenge. 

B. ANALYSIS ON VEHICLE DATA  

This subsection presents the experiment results of models 

trained on the Vehicle Data, which consists of data captured 

by two cameras under two kinds of lighting conditions and 

four kinds of head poses. Following a similar approach to the 

experiments conducted on the Lab Data, the backbone 

networks (AttentionNet) are first trained as classifiers using 

single modality data from one camera viewpoint. The features 

extracted by the backbone networks are then concatenated and 

fed into the multi-modal multi-view fusion classifier. Fig. 13. 

provides an overview of the overall recognition accuracy 

considering all lighting conditions and head poses when using 

single modality/view, multi-modal fusion under a single view, 

and multi-modal multi-view fusion, illustrated as a bar plot. 

The subsequent tables will discuss the detailed results of 

recognition accuracy under different lighting conditions and 

head poses for each method.  

The results of the AttentionNet trained on each modality are 

shown in Table 4. The lighting conditions influence the single-

modality model the same way as illustrated in Lab Data, that 

the RGB-only models are more easily affected than NIR and 

Depth Map by the lighting. As shown in Table 4. the 

performance of the RGB-only models gets worse if the 

lighting decreases. The single modality results under different 

head poses are as expected. When the subject is facing the 

rearview mirror or right mirror, which is the direction of the 

Slim Camera, the models trained on Slim Camera’s data 

achieve higher accuracy except for the Slim-Depth modality 

While under the left mirror head pose, the models trained on 

Intel Camera’s data perform. better except for the Intel-NIR 

modality. This is due to the laser speckle noise in Intel-NIR 

images and the low Slim-Depth image quality. 

Similar to the experiments done on the Lab Data, we 

develop the multi-modal fusion model using multi-modal data 

captured from just one camera viewpoint. The RGB, NIR and 

Depth Map features from the same viewpoint are extracted 

separately from the backbone networks. The features are then 

concatenated and fed into the CNN classifier. The multi-modal 

fusion results of a single camera viewpoint are shown in Table 

5. As shown in Tables 4 and 5, we can still conclude that the 

multi-modal fusion under one viewpoint outperforms just 

using any single modality under almost all kinds of lighting  
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(a) 

 
(b) 

FIGURE 13. Overall Recognition Accuracy Results Plot of Single Modality, Multi-modal Fusion and Multi-modal Multi-view Fusion on Vehicle Data (a) 
General Case (b) Driving Case 

 

conditions. For example, in the driving case, while only the 

highest accuracy of 81.38% and 87.96% accuracy can be 

achieved using a single modality for the two viewpoints 

separately by Intel-Depth and Slim-NIR, the multi-modal 

fusion improves accuracy to 89.31% and 90.05%, respectively. 

However, multi-modal fusion using data from just one 

viewpoint is of limited help for addressing the challenges of 

head pose variation. For instance, the accuracy of the multi-

modal fusion model using only Intel-Camera viewpoint for the 

right mirror head pose and the accuracy of the multi-modal 

fusion model using only Slim-Camera viewpoint for the left 

mirror head pose is much lower than that under the other head 

poses.  

As stated in Section IV-B, to tackle the challenges caused 

by various illuminations and head poses, we utilize all 6 

modalities from both camera viewpoints to develop the multi-

modal multi-view fusion model using the Vehicle Data. 

Features of each modality from each viewpoint are extracted 

separately from the backbone networks. Considering the 

increased information capacity of multi-modal multi-view 

fusion, we feed the concatenated features into the attention-

based classifier as stated in Section IV-B. We also  
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TABLE 4. Recognition Accuracy Results on Vehicle Data under Different Lightings and Head Poses using Single Modality from Each Camera 
Viewpoint 

(a) General case
(1) Intel-Camera viewpoint 

Intel-RGB 

Head pose 

Lighting 
Overall Front Rearview 

mirror 
Right 
mirror 

Left mirror 

Overall 49.38% 55.41% 46.05% 41.55% 54.52% 

Daylight 55.99% 66.44% 53.48% 41.46% 62.79% 

Night 43.29% 45.36% 39.12% 41.63% 46.99% 

Intel-NIR 

         Head pose 

 Lighting 

Overall Front 

window 

Rearview 

mirror 

Right 

mirror 

Left mirror 

Overall 47.71% 51.10% 47.56% 42.32% 49.84% 

Daylight 48.35% 49.54% 45.62% 44.42% 53.88% 

Night 47.13% 52.53% 49.37% 40.34% 46.15% 

Intel-Depth 

         Head pose 
 Lighting 

Overall Front 
window 

Rearview 
mirror 

Right 
mirror 

Left mirror 

Overall 51.46% 54.64% 57.31% 43.31% 50.49% 

Daylight 49.26% 48.38% 53.71% 44.42% 50.46% 

Night 53.50% 60.34% 60.67% 42.27% 50.52% 

(2) Slim-Camera viewpoint  

Slim-RGB 

Head pose 

 Lighting 

Overall Front 

window 

Rearview 

mirror 

Right 

mirror 

Left mirror 

Overall 55.93% 56.04% 62.58% 59.87% 44.66% 

Daylight 60.73% 61.67% 65.99% 67.43% 47.56% 

Night 51.45% 51.05% 59.41% 52.78% 41.82% 

Slim-NIR 

Head pose  

Lighting 

Overall Front 

window 

Rearview 

mirror 

Right 

mirror 

Left mirror 

Overall 59.59% 65.36% 59.52% 58.11% 55.29% 

Daylight 58.91% 62.14% 61.40% 58.77% 53.36% 

Night 60.22% 68.22% 57.78% 57.48% 57.17% 

Slim-Depth 

Head pose  

Lighting 

Overall Front 

window 

Rearview 

mirror 

Right 

mirror 

Left mirror 

Overall 37.30% 40.83% 37.11% 38.91% 32.18% 

Daylight 36.41% 42.62% 33.11% 41.00% 29.07% 

Night 38.14% 39.23% 40.95% 36.90% 35.25% 

(b) Driving case

(1) Intel-Camera viewpoint 

Intel-RGB 

Head pose  
Lighting 

Overall Front 
window 

Rearview 
mirror 

Right 
mirror 

Left mirror 

Overall 74.86% 80.20% 72.22% 66.18% 80.31% 

Daylight 82.18% 88.75% 77.33% 69.92% 92.56% 

Night 68.00% 72.45% 67.32% 62.5% 69.17% 

Intel-NIR 

Head pose  

Lighting 

Overall Front 

window 

Rearview 

mirror 

Right 

mirror 

Left mirror 

Overall 75.26% 80.99% 73.81% 64.08% 81.50% 

Daylight 76.47% 82.50% 69.64% 66.95% 86.78% 

Night 74.12% 79.62% 77.82% 61.25% 76.70% 

Intel-Depth 

Head pose 

 Lighting 

Overall Front 

window 

Rearview 

mirror 

Right 

mirror 

Left mirror 

Overall 81.38% 82.77% 81.75% 76.26% 84.45% 

Daylight 80.00% 80.42% 78.14% 78.39% 83.06% 

Night 82.68% 84.91% 85.21% 74.17% 85.71% 

(2) Slim-Camera viewpoint 

Slim-RGB 

Head pose 

 Lighting 

Overall Front 

window 

Rearview 

mirror 

Right 

mirror 

Left mirror 

Overall 83.72% 84.72% 92.25% 89.74% 68.03% 

Daylight 85.89% 87.22% 93.50% 94.06% 68.88% 

Night 81.68% 82.58% 91.05% 85.54% 67.21% 

Slim-NIR 

Head pose 
 Lighting 

Overall Front 
window 

Rearview 
mirror 

Right 
mirror 

Left mirror 

Overall 87.96% 90.39% 87.67% 90.47% 83.40% 

Daylight 85.89% 85.90% 86.59% 91.10% 80.08% 

Night 89.92% 94.27% 88.72% 89.83% 86.64% 

Slim-Depth 

Head pose 
 Lighting 

Overall Front 
window 

Rearview 
mirror 

Right 
mirror 

Left mirror 

Overall 62.07% 64.90% 65.12% 67.65% 50.52% 

Daylight 60.70% 62.11% 62.20% 71.61% 47.08% 

Night 63.38% 67.30% 68.00% 63.75% 53.94% 

The overall recognition accuracy considering all the lightings and head poses is highlighted with yellow shade in this and subsequent tables. 

 

experimented with two other classifiers for ablation study: (1) 

the CNN classifier used in Lab Data and (2) the attention-

based classifier but just using the weighted average 

embedding (Conventional attention classifier). The results are 

shown in Table 6. 

As shown in Tables 4, 5 and 6, by fusing different 

modalities from all the viewpoints, all the three classifiers 

achieved much higher overall recognition accuracy compared 

with models trained on any single modality or multi-modal 

fusion model trained on any single viewpoint. The multi-

modal multi-view fusion also outperforms any single modality 

in almost all (lighting, head pose) combinations. For example, 

our proposed AMMF classifier achieved 69.60% and 96.22% 

considering all lighting conditions and head poses, in the 

general and driving cases respectively, while the highest 

accuracy achieved by a single modality from one single 

viewpoint (Slim-NIR) can only reach 59.59% and 87.96% and 

the highest accuracy achieved by the multi-modal fusion 

model using one single viewpoint can only reach 62.03% 

(Intel multi-modal fusion) and 90.05% (Slim multi-modal 

fusion)  in the two cases. Multi-modal multi-view fusion also 

succeeds in improving accuracy under various lighting 

conditions and head poses, especially the more challenging 

scenarios. For instance, when the driver is facing the left 

mirror under poor lighting, while only 57.17% and 86.64% 

accuracy can be achieved using a single modality from one 

single viewpoint in the general and driving cases, the multi-

modal multi-view fusion improves accuracy to 66.82% and 

95.12%, which is also higher than that achieved by the multi-

modal fusion model using one single viewpoint. The results 

indicate that fusing multi-modal and multi-view data collected 

by cameras from different viewpoints successfully addresses 

the challenge brought by various illumination conditions as 

well as head poses. 
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TABLE 5. Recognition Accuracy Results on Vehicle Data under Different Lightings and Head Poses using Multi-modal Fusion of 3 Modalities from One 
Viewpoint 

(a) General case
(1) Intel-Camera viewpoint 

Intel multi-modal fusion 

Head pose 

Lighting 
Overall Front Rearview 

mirror 
Right 
mirror 

Left mirror 

Overall 62.03% 64.46% 66.09% 53.70% 63.76% 

Daylight 63.06% 62.04% 67.42% 54.21% 68.49% 

Night 61.08% 66.67% 64.85% 53.22% 59.46% 

(2) Slim-Camera viewpoint  

Slim multi-modal fusion 

Head pose 

 Lighting 

Overall Front 

window 

Rearview 

mirror 

Right 

mirror 

Left 

mirror 

Overall 60.99% 63.20% 63.88% 62.95% 53.62% 

Daylight 62.92% 65.48% 66.44% 65.38% 54.29% 

Night 59.19% 61.18% 61.51% 60.68% 52.95% 

(b) Driving case
(1) Intel-Camera viewpoint 

Intel multi-modal fusion 

Head pose  

Lighting 

Overall Front 

window 

Rearview 

mirror 

Right 

mirror 

Left mirror 

Overall 89.31% 91.88% 90.87% 80.88% 93.11% 

Daylight 87.78% 90.83% 87.85% 78.81% 93.39% 

Night 90.76% 92.83% 93.77% 82.92% 92.86% 

(2) Slim-Camera viewpoint 

Slim multi-modal fusion 

Head pose 
 Lighting 

Overall Front 
window 

Rearview 
mirror 

Right 
mirror 

Left mirror 

Overall 90.05% 94.09% 94.23% 91.00% 80.74% 

Daylight 91.47% 94.27% 94.72% 94.07% 82.99% 

Night 88.71% 93.94% 93.77% 88.01% 78.54% 

TABLE 6. Recognition Accuracy Results on Vehicle Data under Different Lightings and Head Poses using Multi-modal Multi-view Fusion of All the 
Modalities from Both Viewpoints 

(a) General case 

CNN classifier 

Head pose  
Lighting 

Overall Front 
window 

Rearview 
mirror 

Right 
mirror 

Left mirror 

Overall 68.96% 70.15% 70.93% 67.29% 67.40% 

Daylight 67.80% 68.50% 67.79% 66.97% 67.98% 

Night 70.05% 71.61% 73.85% 67.60% 66.82% 

Conventional attention classifier 

Head pose 
 Lighting 

Overall Front 
window 

Rearview 
mirror 

Right 
mirror 

Left mirror 

Overall 64.58% 70.26% 64.86% 61.44% 61.75% 

Daylight 64.11% 66.59% 61.94% 64.24% 63.81% 

Night 65.03% 73.52% 67.57% 58.80% 59.73% 

Proposed attention classifier 

Head pose 
 Lighting 

Overall Front 
window 

Rearview 
mirror 

Right 
mirror 

Left mirror 

Overall 69.60% 72.39% 70.49% 67.62% 67.86% 

Daylight 70.51% 72.32% 68.92% 70.62% 70.30% 

Night 68.75% 72.46% 71.97% 64.81% 65.45% 

(b) Driving case  

CNN classifier 

Head pose 
 Lighting 

Overall Front 
window 

Rearview 
mirror 

Right 
mirror 

Left mirror 

Overall 95.71% 96.74% 96.42% 95.59% 94.05% 

Daylight 95.47% 95.15% 95.93% 96.61% 94.19% 

Night 95.93% 98.11% 96.89% 94.58% 93.91% 

Conventional attention classifier 

Head pose 
 Lighting 

Overall Front 
window 

Rearview 
mirror 

Right 
mirror 

Left mirror 

Overall 96.12% 96.53% 96.42% 96.43% 95.07% 

Daylight 95.79% 94.71% 95.53% 97.46% 95.44% 

Night 96.43% 98.11% 97.28% 95.41% 94.72% 

Proposed attention classifier (AMMF) 

Head pose 
 Lighting 

Overall Front 
window 

Rearview 
mirror 

Right 
mirror 

Left mirror 

Overall 96.22% 98.16% 96.42% 94.75% 95.48% 

Daylight 97.47% 97.80% 97.15% 99.15% 95.85% 

Night 95.03% 98.48% 95.72% 90.42% 95.12% 

 

The comparison of overall recognition confusion matrices 

between our proposed multi-modal multi-view fusion model 

and the single-modality model trained on Slim-NIR is 

depicted in Fig. 14. We specifically chose to compare with the 

Slim-NIR model, given that it achieved the highest accuracy 

among all single modality models from a single viewpoint in 

our preliminary evaluations, thereby providing a robust 

benchmark for comparison. The diagonal elements in the 

confusion matrices represent the correctly classified 

expressions, providing a clear indication of the model's 

performance. The higher values along the diagonal in the 

confusion matrices demonstrate the superior performance of 

our fusion model in accurately recognizing all facial 

expressions, both in the general case and the driving case, 

underscoring the effectiveness of our fusion approach in 

achieving more robust and accurate recognition results in all 

the expression categories. The results demonstrated high 

accuracy in recognizing yawning expressions, achieving 94% 

accuracy in the general case and 99% accuracy in the driving 

scenario. The model also reliably distinguished yawning from 

other expressions, further underscoring its capability to 

accurately detect and respond to signs of driver fatigue. 

The comparison results among different multi-modal multi-

view fusion classifiers are presented in Table 6 as well. Our 

proposed attention classifier obtained the highest overall 

recognition accuracy in both general and driving case, and also 

achieved the best performance in most of the (lighting, head 

pose) combinations. The reported results demonstrate the 

effectiveness of our proposed attention mechanism utilized in 

the multi-modal multi-view fusion model as described in 

Section IV-B in achieving high model performance and 

robustness. However, the performance of the Conventional 

attention classifier, where only the weighted average feature 

of all the modalities from both viewpoints is used, is inferior 

to our proposed model and worse than the CNN classifier in 

the general case. This suggests the necessity of adding the 

attention-weighted features back to the features from original 

concatenated features, as have done in our proposed attention 

mechanism based multi-modal multi-view fusion model, so 

that the information of each single modality can be sufficiently 

utilized.  
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Proposed multi-modal multi-view fusion model Single modality (Slim-NIR) model 

(a) General Case 

  
Proposed multi-modal multi-view fusion model Single modality (Slim-NIR) model 

(b) Driving Case 

FIGURE 14. The Overall Recognition Confusion Matrices of the Proposed Multi-modal Multi-view Fusion Model and Single Modality Model on Vehicle 
Data (a) General Case (b) Driving Case 

 

The superior performance achieved by the AMMF model 

confirms that the attention mechanisms not only improve 

overall model performance but also enhance the model's 

ability to generalize across diverse and dynamic conditions, 

making it particularly suitable for real-world applications like 

driver monitoring. While the incorporation of attention 

mechanisms adds some complexity to the model, it is 

important to note that this increase is minimal. The size of the 

attention-based classifier is only 99KB, which is merely 10KB 

larger than the CNN classifier without attention. This slight 

increase in complexity is justified by the significant 

improvements in model performance and robustness, 

particularly in challenging real-world conditions. Therefore, 

the attention mechanism effectively balances the trade-off 

between model complexity and enhanced predictive accuracy, 

making it an optimal choice for applications requiring high 

reliability, such as driver monitoring systems. 

The experiment results on the Vehicle Data indicate that our 

AMMF model not only can improve the facial expression 

recognition accuracy even in an extreme lighting condition 

and head pose, but also can make the model more robust while 

the input information capacity increases. 

C. COMPARISON WITH RELATED WORKS ON VEHICLE 
DATA 

This subsection presents results of comparing our proposed 

methods with related works. To our best knowledge, there is 

no reported study of FER based on the fusion of multiple 

modalities and/or multiple views. The method in [26] used 

visible and thermal images to develop multi-modal fusion  
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TABLE 7. Recognition Accuracy Comparison with Other Fusion 

Methods on Vehicle Data 
 

Methods Accuracy 
(General case) 

Accuracy  
(Driving case) 

AMMF (Ours) 69.60% 96.22% 

SVM Decision-level fusion [26] 64.95% 92.64% 

SVM Feature-level fusion [26] 67.32% 93.59% 

Hybrid RF [39] 65.41% 91.31% 

DRL-based fusion 65.67% 92.33% 

models. However, since their model is developed on frontal 

view images with adequate illumination, their feature 

extraction method is based on accurate detection of facial 

landmarks, which is not appropriate for the dataset collected 

in the wild. This limitation potentially hinders the performance 

of their fusion methods in real-world scenarios. 

In contrast, our proposed method is designed to handle 

datasets collected in the wild, effectively fusing information 

from multiple image modalities and viewpoints. To provide a 

fair comparison, we implement the two fusion methods 

proposed by [26], namely SVM decision-level fusion and 

SVM feature-level fusion, using the features extracted by our 

backbone network. In the decision-level fusion, six linear 

SVM classifiers were employed initially to estimate 

probabilities of expressions from each modality. Subsequently, 

we combined the recognition results of all the modalities using 

another linear SVM to yield the final expression. In the 

feature-level fusion, we concatenated the feature vectors from 

all the modalities into a higher-dimensional vector, which was 

then fed into a linear SVM for classification.  

In addition to these SVM-based methods, we also explored 

a more recent state-of-the-art approach from [39], who 

proposed a random forest hybrid fusion (Hybrid RF) model for 

emotion classification using thermal images of the face and 

depth images of the body (3D gait data). While their work 

primarily focuses on human-robot interaction, the underlying 

principles of multi-modal fusion are relevant to our study on 

FER. We implemented their fusion approach using our multi-

modal multi-view dataset, adapting the model to fuse facial 

expression data across different modalities and viewpoints. 

Specifically, for a fair comparison, we implemented the 

Hybrid RF model using the same set of features extracted by 

our backbone network. These features were then used to train 

individual random forest classifiers for each modality. If the 

outputs from the different classifiers were consistent across all 

modalities, that result was taken as the final output. Otherwise, 

the features from all modalities were combined and fed into 

another random forest classifier to perform the final 

classification. This hybrid fusion strategy allows the model to 

leverage the strengths of each modality while making a more 

informed decision by combining the individual outputs.  

We also explored the use of Deep Reinforcement Learning 

(DRL) for multi-modal multi-view fusion, inspired by recent 

advancements in related fields. DRL, particularly Deep Q-

Network (DQN) models, has shown promise in optimizing 

decision-making processes in complex environments, such as 

cooperative edge caching and energy-efficient computation 

offloading [40][41]. While these applications are not directly 

related to FER, the principles of DRL can be adapted to 

optimize the fusion of multiple modalities and viewpoints in 

our study. 

To implement the DQN for multi-modal multi-view fusion, 

we designed the model to optimize the selection of relevant 

features from each modality and viewpoint. The DQN was 

trained using the same dataset and experimental setup as our 

primary model. The Q-network was structured to learn the 

optimal policy for feature selection, allowing the fusion 

process to adapt dynamically to varying conditions and 

maximize recognition accuracy. 

The comparison results are shown in Table 7. The results 

are presented in the form of overall recognition accuracy. 

From Table 7, we can observe that the feature-level fusion 

methods of [26], achieve 67.32% and 93.59% accuracy for the 

general case and driving case respectively. This performance 

is higher than the accuracy achieved by the individual single 

modalities, as reported in Table 4. However, our proposed 

fusion method demonstrates superior performance, achieving 

69.60% and 96.22% accuracy in the general and driving cases 

respectively, which surpasses the performance of the two 

methods from [26]. While the Hybrid RF fusion model 

performed better than the SVM decision-level fusion in the 

general case, with an accuracy of 65.41%, it was still 

outperformed by our attention-based model, which 

demonstrated higher robustness and accuracy in both the 

general and driving cases. Despite the potential of the DQN 

model, our results indicate that the attention-based fusion 

model still outperforms the DQN-based approach, achieving 

higher overall accuracy and robustness. Specifically, while the 

DQN model provided reasonable results, with an overall 

accuracy of 65.67% and 92.33% for the general case and 

driving case, respectively, it was surpassed by our attention-

based model. This suggests that the attention mechanism’s 

ability to dynamically weigh and integrate features from 

different modalities and viewpoints is more effective in 

handling the complexities of FER in real-world scenarios.  

Overall, these results demonstrate that our fusion method is 

more effective at integrating information from multiple image 

modalities and viewpoints, addressing the limitations of the 

existing methods. 

D. ANALYSIS ON DMD 

This subsection presents the experiment results of models 

trained on the DMD dataset, which consists of fatigue-related 

data captured by two cameras. Similar to the experiments done 

on the self-collected dataset, the DMD dataset is divided into 

5 folds for cross-validation for person-independent cross-

validation experiments, that is, validate data of two randomly 

selected subjects and train on the rest of the data. As described 

in Section IV-A, the AttentionNets are trained as backbone 

networks on data of a single modality from one camera  
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TABLE 8. Recognition Accuracy Results on DMD Data: Using Single 

Modality and Multi-modal Multi-view Fusion 
 

Modality Accuracy 

Frontal view RGB 93.52% 
Frontal view NIR 90.98% 
Side view RGB  82.39% 
Side view NIR 77.54% 

AMMF using all modalities 96.61% 

viewpoint. The backbone networks are trained as a classifier 

first on data of a single modality. The results of the backbone 

networks trained on each modality are shown in Table 8. 

The overall recognition accuracy achieved in the RGB and 

NIR data proves that the AttentionNet trained as the backbone 

network can still well represent facial features in terms of 

drowsiness detection on the DMD dataset. However, since the 

data in DMD are collected in good-lighting environment, it is 

impossible to analyze influence caused by poor illumination 

condition. The recognition accuracy in the side view data is 

lower than that in frontal view data since they do not have as 

much facial information. However, the DMD data has very 

limited data with various head poses, which makes it hard to 

analyze model performance under different head poses for 

different viewpoints.   

The results of the fusion of multiple modalities from all the 

viewpoints by AMMF model are also shown in Table 8. Since 

there are only four image modalities, four feature vectors are 

extracted separately and concatenated. The features are fed 

into the attention-based fusion model shown in Fig.11, where 

the input number of channels are decreased to four. As shown 

in Table 8, our proposed model can still get a higher 

recognition accuracy by fusing multiple modalities and views 

than just using any single modality. The improvement is not 

as obvious as the fusion model trained on self-collected 

datasets, due to the limitation of data with various lighting and 

head poses in the DMD dataset.  

The results achieved on the DMD dataset have 

demonstrated high accuracy in recognizing yawning 

expressions and reliably distinguishing between the three 

fatigue levels, achieving an overall accuracy of 96%. This 

performance underscores the model’s capability to accurately 

assess and respond to different stages of driver fatigue, 

proving the effectiveness of our proposed multi-modal multi-

view fusion model in relation to the driver drowsiness 

detection and driver monitoring task. 

E. IMPLEMENTATION DETAILS AND COMPUTATIONAL 
RESOURCES 

We trained our models on an NVIDIA 1080Ti GPU. For the 

backbone network, we employed the Stochastic Gradient 

Descent (SGD) method for optimization, with a momentum of 

0.9 and a weight decay of 10-4. The learning rate was 

initialized at 0.01 and divided by 10 after 10 epochs. We set 

the batch size for the backbone network training to 32. This 

training process utilized approximately 4GB of GPU memory 

and was completed in 30 epochs. 

 

 

FIGURE 15. Examples of raw and preprocessed images of additional 
real-world test samples collected from different vehicle and cloudy 
weather 

 

For the proposed attention classifier fusion network, we 

used the ADAM optimization method with a weight decay of 

10-3. The learning rate for this network was initialized at 0.001. 

This training process consumed approximately 1GB of GPU 

memory and reached completion after 100 epochs. 

The model size of the backbone network for a single 

modality was approximately 45MB, while the model size of 

the proposed attention classifier fusion network was about 

250KB. To extract features from all the modalities using the 

backbone network, the GPU memory usage was roughly 4GB, 

and the process took 0.0093 seconds for one data sample. For 

the attention classifier fusion network, the inference of 

expression using features from all modalities of one data 

sample required 575MB of GPU memory and took 0.0018 

seconds. 

F. EVALUATION ON ADDITIONAL REAL-WORLD TEST 
SAMPLES 

In addition to the primary dataset evaluations, we conducted 

further testing on extra real-world samples to assess the 

robustness of our model under varying conditions. These 

additional test data samples include driving related 

expressions (Neutral, Happy, Angry and Yawning). They 

were collected with different backgrounds and under cloudy 

weather conditions, which introduce variability in 

environmental factors such as lighting and scenery. Example 

images are shown in Fig. 15. 

To ensure a fair assessment, the same preprocessing steps 

were applied to these samples as in the main dataset, where the 

background was removed, and only the facial region was 

retained for model input. The trained model (excluding the 

fold where this subject is part of the training set) were then 

tested on these samples to evaluate their performance in these 

less controlled settings. While our single-modality 

(AttentionNet backbone) model achieved an FER accuracy of 

85.6% on the Slim-RGB data, our multi-modal multi-view 

fusion model improved FER accuracy to 95.3% on the real-

world test data. Despite the changes in background and 

lighting introduced by the cloudy weather, the model 

maintained high accuracy, comparable to the results achieved 

under the standard conditions of our main dataset. This 

demonstrates the model’s robustness and its ability to 

generalize well across different real-world scenarios, even 

when faced with additional environmental variability. 
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VI. CONCLUSIONS  AND FUTURE WORD  

This work proposed a novel multi-modal and multi-view 

fusion model for driver’s facial expression recognition based 

on image sequences from various modalities under multiple 

viewpoints. The ensemble of the AttentionNet and an 

attention-based multilabel classifier is implemented in the 

framework, where the AttentionNet effectively extracts 

features from different modalities respectively, and the 

multilabel classifier recognizes facial expressions based on 

merged information from all the modalities and viewpoints. A 

novel facial expression dataset consisting of images of RGB, 

NIR and Depth Map is created, which consists of data 

collected from both lab and real-world vehicle environment, 

with various realistic lighting conditions and head poses 

reflecting real-world driving scenarios. The results 

demonstrate that using data of multiple modalities captured 

from multiple viewpoints can achieve significant advantages 

in terms of recognition accuracy and robustness to 

illumination conditions and head poses compared to a single 

modality from one viewpoint. 

Our planned future work includes (i) further development 

and evaluation of the multi-modal multi-view fusion 

approaches based on more data collected in the real-world 

vehicle environment, considering actual driving scenarios 

such as various weather conditions and vehicle types, diverse 

drivers in terms of skin color, age, and other demographic 

factors. (ii) investigating other approaches to provide more 

accurate facial expression recognition, such as facial action 

units analysis, (iii) extending the proposed model to derive 

driver’s state of mind (SoM), where other contributors of SoM 

(e.g., distraction, fatigue, anxiety) will also be detected. 
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