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Abstract—In this paper, we explore the feasibility of solar-4
powered road-side unit (SRSU)-assisted vehicular edge computing5
(VEC) system, where SRSU is equipped with small cell base station6
(SBS) and VEC server, both of which are powered solely by solar7
energy. However, the limited capacity of solar energy, VEC server’s8
computing, and SBS’s bandwidth resources may prohibit vehicle9
users (VUs) from offloading their vehicular applications to VEC10
server for better service quality. We address this challenge by11
dynamically determining vehicular task partitioning and offload-12
ing, VEC server’s system configuration, and vehicular application13
level adjustment decisions. We aim at minimizing the end-to-end14
delay of vehicular applications while maximizing their application15
level performance (e.g., accuracy). We also implement an object16
detection vehicular application on an edge computing platform17
and measure the corresponding energy consumption, computation18
delay, and detection accuracy performance to establish empirical19
models for the SRSU-assisted VEC system. We then propose a20
dynamic programming-based heuristic algorithm which jointly21
makes the task partitioning and offloading, as well as system and22
application-level adaption decisions in real-time. We build a simu-23
lation framework with the above empirical models to evaluate the24
proposed algorithm. The simulation results show that our proposed25
approach can significantly reduce the end-to-end delay while max-26
imizing the detection accuracy compared to existing techniques.27

Index Terms—Vehicular applications, edge computing, task28
partitioning, task offloading, split computing, renewable energy,29
solar power, road side unit.30

I. INTRODUCTION31

THE rapid advancement in vehicular technology in recent32

years has enabled the modern vehicles to be equipped33

with a wide range of vehicular applications, many of which are34

based on compute-intensive machine learning based algorithms.35

The vehicular local computing (VLC) units often cannot satisfy36

the computing demands of such applications, due to limited37

computing resources, or contention with other applications. A38

promising solution to resolve this problem is using the emerging39
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new generation of Road-side Units (RSUs), consisting of a 40

small cell base station (SBS) and a vehicular edge computing 41

(VEC) [1], [2] server. The VEC servers being one hop wireless 42

distance away from the Vehicle Users (VUs), provide much 43

lower communication delay compared to using conventional 44

cloud computing resources, or even mobile edge computing 45

units in wireless networks. VEC servers, although inferior to 46

cloud or mobile edge computing servers, have more computing 47

capabilities than individual VLC resources in most vehicles. By 48

VUs offloading the compute-intensive vehicular applications 49

like object detection to RSUs, VUs can receive better service 50

quality and improve driving experience. 51

However, transportation systems need dense deployment of 52

RSUs, especially in urban areas, to support the high density of 53

VUs. The dense deployment will significantly increase the cel- 54

lular networks’ energy consumption, thus worsening the carbon 55

footprint. Recent studies have projected 110 million tons of car- 56

bon dioxide equivalent (CO2e) emitted by the operation of base 57

stations in global cellular networks in 2030 [3], [4]. Therefore, 58

the future dense RSUs should be deployed without increasing 59

the cellular network’s greenhouse gas emission burden. In our 60

previous work [5], we proposed the use of Solar-powered RSU 61

(SRSU), which consists of SBS, VEC server, and a self-sustained 62

solar energy system. Note that in an SRSU, the generated solar 63

energy is limited and fluctuating. If solar energy cannot meet 64

the SRSU’s power demand, the SRSU will need to reduce its 65

computing and communication loads by preventing some of the 66

VUs from offloading their applications to the VEC server. 67

In this work, we assume that each VU has a VLC node which 68

can be supplemented with VEC resource to execute the VU’s 69

application. To efficiently utilize the computation resources of 70

VLC node and VEC server, we consider a dynamic offloading 71

scenario, where different subtasks of an application can be cho- 72

sen to be either executed locally at the VLC node, or offloaded to 73

a VEC server. The dynamic offloading decisions will depend on 74

current computing, communication, and energy resources of the 75

serving SRSU, as well as the VLC node capacity and channel 76

condition for each VU. 77

In our previous work [5], we aimed at minimizing the disrup- 78

tion of vehicular applications due to the limited solar energy 79

supply in real-time by optimally partitioning and executing 80

the application tasks to either VLC nodes or VEC servers. 81

The vehicular application is considered as disrupted when its 82

delay requirement cannot be satisfied. However, the proposed 83

method does not consider the potential latency improvement 84
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under an energy constraint by dynamically changing the sys-85

tem configuration of the VEC server. In one of our recent86

studies [6], we showed the average computation delay can87

be further optimized satisfying a given energy constraint by88

appropriately configuring the CPU and GPU frequencies of the89

VEC server. Additionally, the proposed offloading method in [5]90

does not consider the potential delay improvement achievable91

by adapting application-level performance parameters. For ex-92

ample, machine vision based vehicular applications can lower93

their processed image quality for reducing the size of the data for94

offloading to further minimize the transmission delay, however,95

with possible impact on application-level performance, such as96

object detection accuracy.97

In this paper, given the current channel condition and VLC98

node capacity of each VU, as well as the current computing,99

communication and energy resources of the SRSU, we aim at100

minimizing the end-to-end delay of the vehicular application101

and maximizing the application’s performance. We propose102

to dynamically determine the task partitioning and offloading,103

VEC server’s system configuration, and VUs’ application-level104

performance adaptions. The decisions are calculated in real-time105

to accommodate the rapidly changing locations and channel106

conditions of the VUs. To show in real-world the benefit of107

our proposed method, we consider a vehicular object detection108

application, which is an essential building block for various com-109

plex vehicular applications such as Advanced driver-assistance110

systems (ADAS), path planning, and navigation. We implement111

the object detection application using SSD-MobileNetV2 [7]112

on an edge computing platform Nvidia Jetson TX2 Board [8].113

With extensive experiments, we establish empirical energy114

consumption, end-to-end delay, and detection accuracy mod-115

els, which are used in simulation-based evaluations for the116

proposed method. The simulation results show that our pro-117

posed approach can significantly reduce the end-to-end delay118

while maximizing the detection accuracy compared to existing119

strategies.120

The main contributions of this work are summarized below.121

1) To the best of our knowledge, this is the first work to122

optimize delay and accuracy performance of a vehicular123

object detection application for the SRSU-assisted VEC124

system using task partitioning and offloading, as well as125

joint system and application-level adaptations.126

2) Specifically, we develop a technique which determines in127

real-time the optimal VEC server’s hardware configura-128

tion, image quality for detection, and task partitioning and129

offloading decisions for an SRSU-assisted VEC system.130

3) Using a real-world edge computing platform, we establish131

empirical models of the energy consumption, computing132

capacity, end-to-end delay, and accuracy for an SRSU-133

assisted VEC system.134

4) To demonstrate the effectiveness of the proposed tech-135

nique, we develop a simulation framework consisting136

of real-world solar generation, urban traffic traces, and137

the above empirical models. The simulation results show138

that the proposed approach significantly improves the139

end-to-end delay and accuracy compared to existing140

techniques.141

II. RELATED WORK 142

There have been many studies on computation task offloading 143

for vehicular edge computing [9]–[12]. These studies focus on 144

task offloading strategies which leverage computing resources 145

at the edge to minimize the task completion delay [9], [11], [12], 146

while maximizing the edge computing resource utilization [10] 147

or the number of offloaded tasks [9]. Their approaches address 148

the challenges in highly varying bandwidths under the constraint 149

on computation delay [11] or vehicle’s energy consumption [12] 150

for real-time applications. However, these techniques do not 151

study the trade-off between leveraging VLC node and VEC 152

server, and hence can not be used for task partitioning according 153

to the computing capacities of both VLC node and VEC server. 154

Since in our considered scenario, both the capacities of VLC 155

node and VEC server are limited, these resources need to be 156

carefully allocated to computation tasks to achieve real-time 157

computation delay. 158

To facilitate computation capacity-aware task offloading, [13] 159

proposed a learning-based task partitioning and scheduling al- 160

gorithm which partitions and assigns subtasks among multiple 161

VEC servers to minimize the completion delay and handover- 162

induced service disruption. The technique requires data ex- 163

change between multiple RSUs, which will cause prohibitively 164

large communication delay when applied to our high-data vol- 165

ume vehicular perception applications. [14]–[16], on the other 166

hand, study the optimal computation task partitioning between 167

VEC server and VLC node by proposing joint task partition- 168

ing and offloading as well as SBS communication and VEC 169

server computation resource allocation methods. Among these 170

studies, [14] and [15] aim at minimizing the system cost in 171

terms of utilized communication and computation resources, 172

under delay constraints while [16] jointly minimizing the task 173

execution delay and the utilized VEC server’s computing re- 174

sources. However, the partitioning techniques proposed in these 175

studies cannot be applied to subtasks with task dependencies as 176

they assume the computation tasks can be arbitrary partitioned, 177

offloaded, and executed in parallel. 178

To consider task dependency during partitioning and offload- 179

ing, [17], [18] divide the sequential convolution layers of a 180

Deep Neural Network (DNN) into several independent subtasks. 181

These subtasks can be executed in parallel on multiple edge 182

nodes to minimize task completion time [17] or the utilized 183

edge server memory [18] as well as the communication overhead 184

for task offloading. However, the proposed parallel partitioning 185

techniques cannot leverage the potential reduction of communi- 186

cation delay with sequential partitioning. On the other hand, [19] 187

and [20] enable local devices to early stop a DNN and offload 188

the result to edge server. The edge server can choose to adopt 189

the result or further execute the rest layers of the DNN. [19] 190

aims at minimizing the execution delay and [20] aims at mini- 191

mizing the utilized communication and computing resources on 192

local and edge devices while maximizing the object detection 193

results transmitted to the edge server under communication 194

resource constraint. [21] proposes a real-time task partitioning 195

and bandwidth allocation strategy to maximize the throughput 196

(i.e. the number of processed data per second) using limited edge 197
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TABLE I
SUMMARY OF KEY NOTATIONS AND ABBREVIATIONS

computing and communication resources. Although these task198

partitioning methods consider both the computing capacities199

in VLC nodes and VEC servers during decision making, they200

are not applicable to VEC servers whose operations are not201

only constrained by the limited communication and computing202

resources, but energy availability.203

The authors in [22] propose a joint task offloading and user204

association strategy for the multi-user mobile edge computing205

system to minimize the overall energy consumption of the users206

and edge server. However, firstly, the proposed method does207

not consider task dependency as they assume multiple mutually208

independent tasks in each user. Secondly, the challenges of209

minimizing the SRSU’s energy consumption is different from210

the challenges of operating the SRSU under limited energy211

availability, as the computing and communication resources212

of SRSU will also be constrained due to the lack of energy.213

Both [23] and [24] consider renewable energy powered edge214

server. In [23], task partitioning and offloading as well as215

the utilization of renewable energy is determined online using216

Lyapunov optimization to maximize the number of offloaded217

tasks. The authors in [24] propose an online learning technique218

for partitioning and offloading of the incoming tasks as well219

as autoscaling of the computing capacity for the edge servers220

to jointly minimize the application delay, battery deprecation,221

and back up power usage. The learning technique is used to222

predict the system’s long-term channel rate and workload states.223

However, these techniques do not consider the task dependency224

graph, and the corresponding transmitted data size is linear to the225

partitioned load. In practice, the computation loads of subtasks226

in a task graph are discrete and do not possess such linearity rela-227

tionship with the input data. Therefore, the proposed theoretical228

approaches can not be applied to our problem.229

To the best of our knowledge, this is the first study to230

consider not only the compute and communication-intensive,231

delay-sensitive dependency-aware task partitioning and offload-232

ing with the collaboration of VLC node and VEC server, but the233

challenges of utilizing limited communication, computing, and234

energy resources of an SRSU.235

III. SYSTEMS OVERVIEW 236

In this section, we introduce an overview of the SRSU- 237

assisted VEC system, including vehicular applications, solar 238

energy-driven communication, and computing paradigms. For 239

ease of reference, we list the key notations in Table I. 240

A. Network and Channel Models 241

We consider an SRSU-assisted VEC system consisting of one 242

serving SRSU b and multiple served VUs. The SRSU is equipped 243

with a communication module SBS and a computation module 244

VEC server. The operation time is divided into multiple time 245

slots. Note that the following modellings and discussions are 246

within a single time slot t, for simplicity, we do not attach super- 247

script t for each variable. We denote the duration of time slot t as 248

τ . For each time slot, there exists a set of VUs I = {1, 2, . . ., I} 249

in the coverage area of the SRSU b and the VUs’ locations will 250

vary in different time slots due to the mobility of the vehicles. 251

For each VU i ∈ I , we denote ηb,i =
ρi∗gb,i
N0

as the current 252

signal-to-noise ratio (SNR) of uplink transmission from VU i 253

to the SBS of SRSU b. ρi is the transmit power of VU i, gb,i is 254

the uplink channel gain, and N0 is the noise level. The uplink 255

transmission rate from VU i to SBS b can be represented as, 256

rb,i =Wi ∗ log2(1 + ηb,i) (1)

where Wi is the bandwidth allocated by SBS to VU i and the 257

interference from other VUs is negligible with the use of Orthog- 258

onal Frequency-Division Multiplexing (OFDM) technology. We 259

ignore the inter-cell interference by assuming it is mitigated 260

by inter-cell interference coordination (ICIC) technologies, e.g. 261

Fractional Frequency Reuse (FFR) [25]. We assume the wireless 262

communication between the SBS and the VUs use C-V2X pro- 263

tocols [26] and the available bandwidths are evenly distributed 264

among the VUs which require uplink transmission. We model 265

the uplink channel gain, gb,i, by using B1 Manhattan grid lay- 266

out [27] as the pathloss and slow fading, and the Nakagami-m 267

distribution [28] as the fast fading, which have been widely used 268



4 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 00, NO. 00, 2021

Fig. 1. Task dependency graphs of (a). Radar signal-based lane departure
warning system (b). DNN-based object detection and classification application
for the cameras.

by the industry [29], [30] and are shown to be sufficient to model269

vehicular communication channels [28].270

Compared to the uplink data of the vehicular applications,271

e.g., the captured images or radar point clouds, whose data sizes272

are usually more than several KBytes (images) or even several273

MBytes (point clouds) [31], the data sizes of the vehicular274

applications’ computation results are very small. The compu-275

tation results, such as the bounding boxes for object detection,276

classification, and fusion as well as basic safety messages (BSM)277

for collision detection, are less than 1 KBytes in terms of data278

size. Moreover, the downlink data rate is usually higher than279

the uplink data rate due to the higher transmission power [32].280

Therefore, we ignore the impact of downlink data transmission281

in our study.282

We assume the duration of time slot, τ , to be small enough283

so that rb,i is unchanged within one time slot [5]. Note that rb,i284

will still change across different time slots due to the mobility285

of VU.286

B. Vehicular Task Model287

Most vehicular applications involve computation tasks that288

can be expressed as a dependency graph of sequential subtasks.289

For example, Fig. 1 shows two dependency graphs of radar and290

camera-based vehicular applications. In Fig. 1(a), the detection291

range determination block decides the range of distance to292

perform the energy detection on the radar signal. Lane interval293

estimator and lane detector are applied if enough signal energy is294

detected. If a lane is present and the application detects possible295

departure due to the vehicle’s speed, a departure warning will296

be sent to the driver [33]. In Fig. 1(b), the image captured by297

the camera will be decided and resized to be the input feature298

for the DNN-based object detection and classification, where299

we use SSD-MobileNetV2 [7] as an example. In Fig. 1(b), conv.300

is the convolution layer, which is the most common layer in301

SSD-MobileNetV2. If any object is detected, the application will302

return the coordination of the bounding boxes for the detected303

object.304

We assume that at each time slot, every VU generates a305

computation task that consists of a set of K = {1, 2, . . .,K}306

sequentially dependent subtasks, as shown in Fig. 2. That is,307

the data input of subtask k depends on the data output of308

subtask k + 1. Therefore, subtask k + 1 can start only after the309

completion of subtask k. For each subtask k ∈ K of VU i, we310

Fig. 2. Subtask breakdown of a vehicular application.

assume ωk,q,i is the input data size and ω(k+1),q,i is the output 311

data size, where q is an application adaptation parameter. For 312

example, if the considered vehicular application is vehicular 313

machine vision, such as object detection and classification, q 314

can be the encoding bitrate of the input image. 315

Each subtask can be executed locally in the VLC node or, 316

offloaded and executed at the VEC server. In such cases of 317

computation offloading to edge, data at the task-splitting point, 318

e.g. subtask k′, needs to be transmitted over the wireless com- 319

munication channel, such that the first {1, 2, .., k′} subtasks are 320

executed at the VLC node and the remaining {k′ + 1, . . .,K} 321

subtasks are executed at the VEC server. 322

C. Performance Metrics 323

Herein, we consider the performance metrics for object detec- 324

tion, which is a critical component in various complex vehicular 325

applications as mentioned above. Therefore, we primarily focus 326

on two object detection performance metrics - the end-to-end 327

delay and the accuracy. 328

End-to-end delay: The end-to-end delay in our study is de- 329

fined as the summation of the computing delay of each subtask 330

in K and the communication delay of transmitting the required 331

data for computation offloading. Therefore, the end-to-end delay 332

of VU i can be represented as, 333

di =

K∑
k=1

Tk,i + Ttx,i (2)

where Tk,i is the computing delay of subtask k. Ttx,i is the 334

transmission delay for offloading subtask k′ and its subsequent 335

subtasks to the VEC server, that is, for transmitting the input of 336

subtask k′ with data size ωk,′q,i. Therefore, Ttx,i can be defined 337

as
ωk,′q,i
rb,i

. Ttx,i = 0 if all the subtasks of VU i are executed 338

locally. 339

Note that as we focus on optimizing the end-to-end delay 340

in this study, without loss of generality, we assume the data is 341

processed frame-by-frame in the vehicular application, that is, 342

subtask 1 starts processing the next input data after subtask K, 343

which is the last subtask in K, finishes processing the previous 344

input. Therefore, queuing delay is negligible in the network. 345

Accuracy: The accuracy of the object detection ai of VU i can 346

be represented as a function of the application level adaption 347

parameter q, namely, ai = a(qi), where qi is the parameter q 348

used by VU i. In this paper, we take compression level of the 349

input image (i.e. the encoding bitrates of the jpeg compressed 350

image) as an example of the application adaptation parameter. 351

We measure the accuracy in terms of the intersection over union 352

(IoU). IoU is the intersection over union of the areas of the 353
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bounding boxes of the detected objects in the input image with354

respect to the result of the uncompressed base image.355

Assume for image m, the bounding box area of the detected356

objects in the base image (i.e., at q = 1, the lowest possible com-357

pression level) isNm
1 , and the bounding box area of the detected358

objects in the corresponding input image (with compression359

level q′) frame isNm
q′ . The accuracy of this input image is defined360

as: (Nm
1 ∩Nm

q′ )/(N
m
1 ∪Nm

q′ ). Without loss of generality, we361

define the overall accuracy of images at image quality q′ by362

averaging the accuracy over M different frames,363

a(q′) =
1
M

M∑
m=1

(Nm
1 ∩Nm

q′ )

(Nm
1 ∪Nm

q′ )
(3)

where M is a large whole number. Note that (0 < a(q′) < 1).364

QoS Utility: The quality of service (QoS) of vehicular appli-365

cations aims to have lower delay and higher accuracy. However,366

higher accuracy is usually achieved by larger data size, that367

potentially impacts the end-to-end delay, which is a function of368

data transmission time and computation delay at the VLC node369

and VEC server as expressed in (2). Therefore, the system needs370

to consider a trade-off between end-to-end delay and accuracy.371

In this paper, we define a joint performance metric, QoS utility,372

which we represent as a weighted function of the end-to-end373

delay and accuracy. For each VU i, the QoS utility is defined as,374

QoSi = α
dn
di

+ (1 − α) ∗ a(qi) (4)

and the average QoS utility of all the current VUs is,375

ˆQoS =
1
I

∑
i∈I

QoSi (5)

where dn is the term used to normalize di to the same range376

of a(qi). For example, if the value of a(qi) is between 0 and377

1, dn will be determined as the smallest possible value of di.378

α (0 < α < 1) is the trade-off factor between the end-to-end379

delay and accuracy, and is determined by the service provider.380

Higher value of α means the QoS utility emphasizes more381

on the performance of end-to-end delay and vice versa. For382

example, for the SRSUs deployed along a highway, where383

end-to-end delay is critical to driving experience due to high384

vehicle speed, the service provider can choose higher value of α385

to focus more on reducing the end-to-end delay than very high386

accuracy. Meanwhile, because the moving patterns of vehicles387

on the highway are stable and easy to track across multiple388

consecutive frames, detection accuracy can be compensated by389

object tracking techniques so that the impact of the trade-off in390

accuracy will not affect the driving safety.391

D. Energy Consumption and Harvesting at SRSU392

The energy consumption of the SRSU ER consists of the393

energy consumed by its VEC server and SBS. We denote ES394

and EB be the energy consumed by the VEC server and SBS,395

respectively. Therefore,ER = ES + EB . Note thatES depends396

on the load and CPU-GPU configuration ce of VEC server.397

The load of VEC server is a function of the offloaded subtasks,398

TABLE II
CHOSEN CPU AND GPU CONFIGURATIONS TO EMULATE THE COMPUTING

CAPACITY OF VLC NODE AND VEC SERVER

therefore, ES for the current time slot can be represented as, 399

ES = ES,idle + Ec (6)

where ES,idle is the idle energy consumption and Ec is the 400

energy consumed for executing the offloaded subtasks. 401

On the other hand, the energy consumption of the SBS can be 402

represented as the following, 403

EB = EB,idle +
∑
i

P (rb,i) ∗ Ttx,i (7)

where P (rb,i) is the base-band signal processing power con- 404

sumption at SBS for uplink transmission at datarate rb,i. Ttx,i 405

is the transmission time (i.e. the time when SBS is actively 406

processing the uplink signal at datarate rb,i). 407

At the beginning of each time slot, we let Et be the amount 408

of energy harvested from the solar panel of SRSU b and can 409

be immediately used by the SRSU. Therefore, the energy con- 410

sumption of VEC server and SBS should satisfy, 411

ER = EB + ES ≤ Et (8)

In the following section, we build the empirical system models 412

for the vehicular tasks, performance metrics and energy con- 413

sumption with real-world control parameters, e.g., application 414

adaptation parameter, computing configurations and load, that 415

instills the non-linear behaviors in the aforementioned system 416

models. 417

IV. EMPIRICAL SYSTEM MODEL 418

We emulate the SRSU-assisted VEC system by using a setup 419

of Nvidia Jetson TX2 boards which are power-efficient em- 420

bedded AI computing devices [8], and use NI USRP B210 421

radios for communications. We operate the Nvidia Jetson TX2s 422

at different CPU-GPU configurations to emulate the different 423

computing capacities of the VEC server and VLC nodes. We list 424

the corresponding hardware configurations in Table II, including 425

CPU and GPU frequencies and the number of available CPU and 426

GPU cores. Note that the CPU and GPU frequencies listed in 427

Table II are chosen from the available frequencies allowed by 428

the Nvidia Jetson TX2 board. 429

We mimic different computing capacities of the VEC server 430

with two configurations, VEC_config1 and VEC_config2, by 431

choosing two sets of available CPU-GPU configurations of the 432

Nvidia Jetson TX2 board. Each set consists of a collection 433

of CPU and GPU frequencies that the VEC server can tune 434
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Fig. 3. Task dependency graph of object detection using SSD-MobileNetV2,
showing data size and compression level.

to operate at depending on current performance and energy435

requirements.436

Similarly, for VLC nodes, we emulate their computing ca-437

pacity by choosing two different CPU-GPU configurations,438

VLC_config1 and VLC_config2. For the disparity of com-439

puting capacity between the edge and local computing de-440

vices, we choose the lowest available GPU frequency for441

both VLC_config1 and VLC_config2. Additionally, we assume442

VLC_config1 and VLC_config2 can only access two and one443

CPU cores, respectively, on the Nvidia Jetson TX2 board,444

while both edge configurations can access six CPU cores. Fi-445

nally, for the CPU frequency of VLC_config1, we choose the446

lowest frequency listed among the available CPU frequencies447

of VEC_config1, and likewise, we determine the CPU fre-448

quency of VLC_config2 as the lowest CPU frequency listed for449

VEC_config2.450

As mentioned earlier, while we use object detection using a451

vehicle camera as an example of the real-time vehicular applica-452

tion, our work can be easily extended to other types of vehicular453

applications as well. We use SSD-MobileNetV2 [7] for object454

detection due to its lightweight computations, favorable for455

real-time applications. In this section, first we provide the task456

model for object detection with SSD-MobileNetV2 and show457

the impact of corresponding application adaptation parameter,458

i.e. compression level, on the data size in the task pipeline and459

accuracy. Second, we will present the empirical model for the460

computing delay at the VLC node and VEC server w.r.t. differ-461

ent system settings. Third, we will demonstrate the empirical462

model for energy consumption of the SRSU, including energy463

consumption at the SBS and VEC server, by extending the464

theoretical models described in the previous section, considering465

different system configurations and load conditions.466

A. Object Detection Task Model and Impact of Compression467

The task graph considered for object detection is shown in468

Fig. 3. After the vehicle camera captures a 1080p image, the469

image is decoded and resized into a 2-dimensional 300 by 300470

matrix input and forwarded to the neural network of SSD-471

MobileNetV2 for object detection. For the sake of simplicity,472

we choose a combination of functional blocks as one subtask,473

as shown in the dotted boxes A and B (i.e., the following two474

subtasks, Decoding & Resizing and Neural Network Inference),475

for the rest of this study. However, note that our approach is476

not limited to two subtasks and is scalable for more subtask477

scenarios.478

As the application adaptation parameter, we use compression479

level q ∈ Q, which is applied to camera, to control the encoding480

TABLE III
INPUT DATA SIZE OF EACH SUBTASKS AT DIFFERENT COMPRESSION LEVEL

TABLE IV
ACCURACY AT DIFFERENT COMPRESSION LEVELS

bitrate and hence the data size of images.Q is the set of available 481

compression levels. The impact of compression level is two-fold. 482

Higher compression level reduces the size of the input image, 483

thus reducing the dataflow transmission time to forward to the 484

next node in the task pipeline, but it also affects the accuracy of 485

the object detection. 486

Table III shows the data size along the processing flow of 487

the object detection using a compressed 1080p jpeg image, 488

under different values of q. Note that ω2,q,i is the decoded 489

300x300 pixels image, therefore, its size is not impacted by the 490

encoding bitrate compression level. 491

Table IV shows the corresponding impact on accuracy for 492

different values of q for a set of 70 image frames of 1080p 493

resolution. We choose the base image when the compression 494

level is 1 with 100% encoding bitrate. Thus the accuracy for 495

q = 1 is 1.0 based on Eq. 3 and it decreases with the increasing 496

values of q. Note that the lowest accuracy in Table IV (i.e. qi = 497

4), is just 10% less than the accuracy of the base image. However, 498

even with a 10% decrease, the accuracy of SSD-MobileNetV2 499

is still higher than some of the other object detectors, e.g., 500

YOLOV2 [34], which has been largely used for autonomous 501

vehicles as mentioned in literature [35], [36]. Therefore, our 502

study can still meet the same driving safety performance as 503

other vehicular object detection studies even with the trade-off 504

in accuracy. 505

B. Computing Delay and Impact of Computing Capacity 506

Here, we empirically model the computing delay for the object 507

detection using the different computing capacities of VLC node 508

and VEC server. Note that VLC node will run the application 509

for a single VU and thus its computing capacity is impacted by 510

CPU-GPU configurations only as mentioned in Table II. How- 511

ever, the VEC server runs applications for multiple VUs and 512

thus is impacted by both its CPU-GPU configurations and the 513

load in terms of the number of application instances. Now, based 514

on Fig. 3, there are two subtasks in the task graph. Therefore, 515

K = 2, and T1 is the DR delay (execution delay of Decoding 516

and Resizing subtask) and T2 is the inference delay (execution 517

delay of neural network inference), which together constitutes 518

the computing delay. 519

1) Computing Delay at the VLC Node: We implement the 520

object detection subtasks in Fig. 3 on the Nvidia Jetson TX2 521

board and measure T1 and T2. Table V shows the observed 522
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Fig. 4. (a) DR delay T1 and (b) Inference delay T2, under different number of running instances and VEC server’s computing capacities.

TABLE V
BREAKDOWN OF THE END-TO-END DELAY OF OBJECT DETECTION USING

DIFFERENT VLC COMPUTING CAPACITIES

computing delay of each subtask for processing an image frame523

under the VLC configurations listed in Table II. Note that the524

minimum computing delay of the object detection at the VLC525

node is higher than 0.130 s, which is not fast enough for the526

0.1 s requirements for vehicular applications to react to the fast527

changing traffic condition [37]. Therefore, offloading some of528

the subtasks to the VEC server, which has higher computing529

capacity than VLC node, can reduce the computing delay, and530

thus, potentially reduce the end-to-end delay. In the next sub-531

section, we demonstrate the empirical model of the computing532

delay at the VEC server.533

2) Computing Delay at the VEC Server: We model the com-534

puting delay of subtasks on the VEC server empirically by535

observing T1 and T2 under different VEC server load condi-536

tions. Fig. 4 shows the DR delay T1 and the inference delay of537

neural network inference T2, under the conditions of different538

VEC server capacities and different number of instances of DR539

and the neural network subtasks. Note that the CPU and GPU540

frequencies used in Fig. 4 are listed in Table II. In Fig. 4(a), the541

DR delay does not change between different GPU frequencies542

because the execution of DR does not use any GPU resource.543

On the other hand, Fig. 4(b) shows that the relationship between544

the inference delay and the increasing CPU-GPU frequencies545

as well as the number of application instances is not easy to546

represent by simple linear and quadratic models. Therefore,547

such knowledge of nonlinear correlation between delay and548

computing capacity shown in Fig. 4 is necessary for accurate549

delay performance optimization.550

C. Energy Consumption Model551

1) Energy Consumption at the VEC Server: In our empirical552

study, we observe the major factors that impact the energy553

consumption at the VEC server are the server’s CPU-GPU554

configuration, the number of offloading VUs (i.e. the running 555

application instances), and the offloaded computation loads. 556

Fig. 5(a) shows the energy consumed per second of a Jetson 557

TX2 board as VEC server while a number of VUs offload 558

both DR and the neural network inference simultaneously. The 559

measurement is taken under different CPU-GPU configurations. 560

The energy consumption is linearly increasing with the CPU 561

frequency and number of offloading VUs. However, the increas- 562

ing rate varies when the Jetson board is operated with different 563

GPU frequencies. In reference to Fig. 4(a), we can see that al- 564

though higher CPU and GPU frequencies lead to less computing 565

delay, the corresponding energy consumption will be higher. 566

Under the condition when the SRSU lacks of available energy, 567

VEC server needs to reduce its operating CPU-GPU frequency 568

while sacrificing the computing delay of the offloaded subtasks. 569

Fig. 5(b) shows the energy consumed per second while multiple 570

VUs offload only the neural network subtask. While it shows 571

similar trend of increasing energy consumption as Fig. 5(a), 572

its absolute value is less than Fig. 5(a) under fixed CPU-GPU 573

frequency settings and number of instances, because only one 574

of the subtasks (i.e. neural network inference) is executed. 575

2) Energy Consumption at the SBS: To measure the energy 576

consumed by the wireless communication at the SRSU, we 577

use the same experimental settings as in [38], with one Jetson 578

board and one NI USRP B210 radio to emulate the SBS. The 579

wireless channel is established by srsLTE tool [39], which is 580

used to create an LTE link between SRSU and VU. We create 581

different values of uplink data-rate using iperf and measure the 582

corresponding energy consumption on the Jetson TX2 board and 583

the NI USRP B210 radio. The result of the consumed energy 584

per second is reported in Fig. 5(c). Note that due to hardware 585

limitations, the maximum uplink datarate achievable over LTE 586

by our experimental setting is 6 Mbps. Therefore, we use curve 587

fitting approach for the energy consumption model of the SBS 588

at high data rate conditions. It can be observed that the energy 589

consumption P (rb,i) is linear to the uplink data rate rb,i, that is, 590

P (rb,i) = 0.14rb,i, with the idle power = 4.5 W. Based on (7), 591

we consider the following energy consumption model for EB . 592

EB = 4.5τ + 0.14
∑
i

rb,i ∗ ωk,′q,i

rb,i

= 4.5τ + 0.14
∑
i

ωk,′q,i (9)
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Fig. 5. Energy consumption per second of (a) left, VEC server executes instances of both DR and the neural network inference and (b) center, VEC server
executes various instances of the neural network inference under different VEC server’s computing capacities, and (c) right, SBS under different uplink data rates.

whereωk,′q,i is the data size per frame required to be transmitted593

corresponding to splitting point of subtasks for offloading.594

V. OVERALL APPROACH AND PROBLEM FORMULATION595

A. Task Partitioning and Offloading596

From the above real-world system models, we can observe597

that to optimize a single VU’s end-to-end delay, we can offload598

all of its subtasks to the more powerful VEC server. However,599

an inferior wireless channel quality can potentially increase the600

communication delay and thus increase the end-to-end-delay601

resulting in low QoS utility. Hence, partitioning a task at a point602

that reduces the data size is desirable, in order to reduce the com-603

munication delay. Moreover, when multiple VUs try to offload604

all their subtasks to one VEC server simultaneously, the resource605

constraint at the VEC server may increase the average computing606

delay and can potentially violate the energy constraint in (8).607

Therefore, we need an optimal offloading strategy that allows608

VUs to selectively offload part of their subtasks based on their609

transmission rate, local computing capacity, and current VEC610

server load, as well as energy constraint.611

In this paper, we consider the following three partitioning and612

offloading strategies denoted by yi, for a VU with the considered613

object detection application (1) yi = 1: Full Offloading, (2)614

yi = 2: Partial Offloading, and (3) yi = 3: Encoded Partial615

Offloading. We also denote yi = 0 as the Local Only strategy,616

where all the subtasks are executed at the VLC node. The high617

level block diagrams of these strategies are shown in Fig. 6,618

where the blocks represent each subtask. Blue blocks indicate619

the subtask is executed locally and green blocks indicate the620

subtask is executed at the VEC server. Red dash arrow indicates621

where the wireless uplink data transmission between the VU and622

the VEC server happens.623

For Full Offloading, strategy, VU will transmit the captured624

image (i.e. with sizeω1,q,i) to the SRSU, and hence, offload both625

of the DR and neural network inference to the VEC server. On the626

other hand, for Partial Offloading strategy, VU will first execute627

DR subtask at VLC node, then offload the decoded as well as628

resized 2-dimensional input image features (i.e. with size ω2,q,i)629

to SRSU, and let the VEC server execute the neural network630

inference. However, note that the data size after decoding is631

Fig. 6. Possible task partitioning and offloading strategies in object detection
application using SSD-MobileNetV2.

TABLE VI
ENCODED DATA SIZE FOR TRANSMISSION OF ENCODED PARTIAL OFFLOADING

STRATEGY WITH DIFFERENT COMPRESSION LEVELS

several times larger than the encoded image, which is not feasible 632

for transmission in real-time unless the transmission rate is 633

very high. Therefore, in this paper, we propose another partial 634

offloading strategy: Encoded Partial Offloading. 635

In Encoded Partial Offloading strategy, at VLC node, VU 636

will encode the resized image feature again to a jpeg image 637

with the same resolution as the smaller resized image (i.e. 638

300x300 pixels in the studied example) before transmission. 639

Subsequently, the VEC server will decode the received image to 640

the 2-dimensional image feature and then send to the neural 641

network inference for object detection. Compared to Partial 642

Offloading strategy, Encoded Partial Offloading strategy incurs 643

overhead of execution of extra encoding at the VLC node and 644

extra decoding at the VEC server, with the trade-off for a high 645

gain in reduction of communication delay due to highly reduced 646

data size. The data size of the 300x300 resized image feature 647

after encoding is shown in Table VI, where ωc
2,q,i is the encoded 648

data size of ω2,q,i. 649

1) Impacts of Offloading Strategies to End-to-End Delay: 650

Previously we have separately modeled T1, T2 at the VLC node 651

and the VEC server, and Ttx under different data rates and 652
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transmitted data sizes. In this section we model the end-to-end653

delay combining the offloading strategies and the above empir-654

ical models. While all of the offloading strategies (i.e. yi > 0)655

offload the neural network inference to the VEC server, only656

Full Offloading strategy offloads the DR subtask. Therefore, we657

model T1 for DR as a function of the number of Full Offloading658

users h and T2 for the neural network inference as a function659

of the number of total offloading users n, where h =
∑

i:yi=1 1660

and n =
∑

i:yi>0 1.661

We use T l
1(cl,i) and T e

1 (ce, h) to denote DR delay on VLC662

node and VEC server, respectively, given h, VLC node con-663

figuration cl,i and VEC server configuration ce ∈ C. C is the664

set of available CPU-GPU configurations for the VEC server.665

Similarly, T l
2(cl,i) and T e

2 (ce, n) denote the inference delay,666

respectively, given n, VLC node configuration cl,i and VEC667

server configuration ce. Therefore, the end-to-end delay of VU668

i using yi offloading strategy can be modeled as,669

di(yi, qi, n, h, ce, cl,i) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T l
1(cl,i) + T l

2(cl,i); if yi = 0

T e
1 (ce, h) + T e

2 (ce, n) +
ω1,qi,i

ri,b
; if yi = 1

T l
1(cl,i) + T e

2 (ce, n) +
ω2,qi,i

ri,b
; if yi = 2

T l
1(cl,i) + T e

2 (ce, n) + T l
3(cl,i) + T e

4 +
ωc

2,qi,i

ri,b
; if yi = 3

(10)
where T l

3(cl,i) is the encoding delay for a smaller resized670

300x300 pixels jpeg image given the VLC node configuration671

cl,i, and T e
4 is the decoding delay for the same resized image672

at the VEC server. Based on our observation, T3 is 0.003 s and673

0.007 s, respectively, for VLC configuration VLC_config1 and674

VLC_config2. We have measured that given the worst VEC675

server configuration, T e
4 is 0.003 s, which is very small com-676

pared to T1 (i.e. decoding and resizing for 1080p jpeg image).677

Therefore, we set T e
4 to 0.003 s and ignore the impact of ce to678

the value of T e
4 .679

Similarily, with the above offloading strategies, based on (8)680

and 9, we model the empirical total energy consumption of681

SRSU ER as,682

ER(ω,
′ n, h, ce) = ES(n, h, ce) + EB(ω

′)

=
τ

n
(hE′

1(n, ce) + (n− h)E′
2(n, ce)) + 4.5τ + 0.14ω′

(11)
where ω′ is the summation of the data size that needs to be683

transmitted depending on the decisions of yi and qi, ∀i ∈ I. E′
1684

is the energy consumption of the VEC server shown in Fig. 5(a),685

and E′
2 is the energy consumption shown in Fig. 5(b).686

Since not all of the n VUs will offload both of the subtasks687

simultaneously, for the sake of simplicity, we assume the overall688

energy consumption is the interpolation of the corresponding689

energy consumption values when all of the n VUs offload both690

subtasks (i.e. E′
1(n, ce)) and when all of the n VUs offload just691

the neural network (i.e. E′
2(n, ce)). The above empirical models692

are specifically for SSD-MobileNetV2-based object detection693

applications. For other types of applications, once the action694

space of yi is defined and the delay, accuracy, and energy695

Fig. 7. Overview of the SRSU-assisted VEC system, including offloading
request and decision flows.

consumption models are established correspondingly, our work 696

can be applied to those vehicular applications. 697

B. Overall Approach and Problem Formulation 698

We assume that at each time slot, each VU will send an 699

offloading request for this application. The request will include 700

information of the local computing capacity cl,i, available com- 701

pression levels Q, and the subtask composition of K. The SRSU 702

will take the above information, along with the available solar 703

energyEt, bandwidthW , and VEC server configurations C, and 704

make optimal offloading decision yi as well as compression level 705

qi for each VU i. We assume the SRSU already knows the delay 706

and accuracy models like Table IV and Fig. 4. The decisions 707

will be sent to each VU by the SBS as the offloading instruction. 708

In the meantime, SRSU will need to decide the VEC server’s 709

CPU-GPU configuration ce for operation. 710

Fig. 7 depicts the whole process. In Fig. 7, blue arrow shows 711

the flow of offloading requests from VUs to the SRSU, with the 712

included information listed in blue boxes; green arrow shows 713

the flow of SRSU’s information, which is listed in green boxes 714

including channel conditions, bandwidth, solar energy, and VEC 715

server’s computing availabilities; red arrows indicate the flow 716

of decisions for the SRSU and VUs. The objective of this 717

paper is to determine in real-time the VEC server’s operating 718

configuration ce and the optimal offloading strategy yi as well 719

as the compression level qi for each VU i to maximize the 720

average QoS utility of all the VUs in I at any given time 721

slot. The decision is made at the beginning of the time slot. 722

The optimization problem for each time slot can, therefore, be 723

formulated as, 724

maximize
yi,qi:i∈I,ce

ˆQoS (12a)

subject to ER ≤ Et (12b)

Wi =Wj , ∀i, j : yi > 0, yj > 0 (12c)∑
i:yi>0

Wi ≤W (12d)

∑
i:yi>0

1 ≤ NV EC (12e)

where Constraint 12b is the energy consumption constraint of 725

SRSU. Constraint 12c states that the utilized bandwidth is evenly 726
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Fig. 8. Overview of the time domain flow of both application execution frames
and task partitioning as well as offloading decisions in the SRSU-assisted VEC
system.

distributed among the VUs who are offloading. Constraint 12d727

ensures that the overall utilized bandwidth does not exceed the728

available bandwidth of the systemW . Constraint 12e shows that729

the total number of offloading VUs can not exceed the maximum730

capacity of the VEC server, which is also equivalent to the731

maximum number of application instance NV EC that the VEC732

server can run simultaneously due to the computing capacity733

and computer memory limitations. For example,NV EC = 6 for734

the Jetson TX2 board running SSD-MobileNetV2-based object735

detection applications.736

Fig. 8 shows the time domain flow of the SRSU-assisted VEC737

system. For each VU, Fm represents the execution of the mth738

frame of the application to process the mth input camera image739

in the current time slot t, and the width of the Fm box shows its740

end-to-end delay. The small colored blocks in each Fm box are741

the subtasks for the application, where blue and green blocks742

indicate that the corresponding subtask is executed locally at743

the VLC or offloaded to the VEC, respectively. The orange744

boxes represent the execution of the offloading decision making.745

The offloading decision making for the next time slot takes the746

current states of VUs’ request information and SRSU’s resource747

capacities, then returns the optimal offloading decisions as well748

as compression levels at the beginning of the next time slot.749

Since the partitioning and offloading decisions are made at the750

beginning of a time slot, the duration of the current time slot, τ ,751

should be determined by the following equation,752

τ ≥ max{max
i∈I

di, Tdecision}, (13)

so that no computation task will occupy any computing and753

communication resources when the next time slot begins. Note754

that for VU i, di is upper bounded by di(0, qmax, 0, 0, 0, cl,i) =755 ∑K
k=1 T

l
k(cl,i), which is the local execution delay (yi = 0) in756

(10), where cl,i is the VLC configuration and k is the index of757

each subtask. Tdecision is the delay of making optimal parti-758

tioning and offloading decisions, which depends on the VEC759

computing capacity and complexity of the decision making.760

We will show with experimental result in latter section that τ761

is mostly bounded by the Tdecision of our proposed decision762

algorithm with reasonable size of VLC and VEC computing763

capacities, and can be small enough to ensure an unchanged 764

data rate, rb,i. 765

VI. SOLUTION METHODOLOGY 766

Note that in our problem formulation 12, the decision vari- 767

ables yi, qi, ∀i ∈ I and ce are integers while ˆQoS is a non- 768

linear function of the above variables. Therefore, problem 12 769

is an NP-hard nonlinear integer programming problem [40]. 770

The complexity of exhaustively listing all the possible values 771

of yi, qi and ce, and tracking for the solution which gives the 772

maximum objective value isO(Y IQI). Where Y is the number 773

of possible choices for partitioning and offloading (including 774

Local Only strategy),Q is the number of compression levels for 775

application level adaption of each VU, and I is the total number 776

of VUs. If there are only a few VUs in the area, exhaustively 777

search can provide optimal solution with a low time-complexity. 778

However, the complexity of this problem grows exponentially 779

with the number of VUs. Moreover, since we are considering 780

vehicular users, the number of VUs changes over time, and it is 781

very likely that there are tens of vehicles in the coverage area of 782

an SRSU (e.g. during the peak hour of a highway). This leads 783

to prohibitively expensive time-complexity for the exhaustive 784

search approach. Therefore, in this work, we propose a dynamic 785

programming-based heuristic algorithm to solve problem 12. 786

For a given instance of problem 12, and assuming 787∑
i:yi>0 1 = N ′, ce = c′, where both N ′ and c′ are fixed inte- 788

gers, we consider a matrix f with dimension I ∗N ′ ∗N ′ ∗N ′ ∗ 789

N ′. f(i, n, h, u, v) represents the maximum average QoS utility 790

achievable considering VU set {1, 2, . . ., i} and allowing nVUs 791

offloading. On the other hand, h, u, and v are the numbers of the 792

offloading VUs using Full Offloading, Partial Offloading, and 793

Encoded Partial Offloading strategies, respectively. The core 794

formula of this dynamic programming strategy is in (14), 795

f(i, n, h, u, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0; if n 
= h+ u+ v

0; if i = 0

0; if i, h, u, or v < 0

max(Ay, ∀y ∈ Y); otherwise

(14)

where Y is the set of all the possible values of yi, and Ay is 796

defined in the following. For y = 0, 797

A0 = P l
i + f(i− 1, n, h, u, v) (15)

is the QoS utility when including VU i in the considered VU set 798

while VU i is not offloading any subtask, where P l
i is the QoS 799

utility using VLC node of VU i. For y > 0, 800

Ay =⎧⎪⎨
⎪⎩
maxq Pi,y,q+f(i−1, n−1, h−1y=1, u−1y=2, v−1y=3);

if ER(w
′(i− 1, n− 1, h− 1y=1, u− 1y=2, v − 1y=3)

+ωy,q,i, n, h, c
′) < Et 0; otherwise

(16)

is the QoS utility while including VU i using yi = y (y = 1, 2, 801

or 3 in the considered use case) with compression level q∗i , 802
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which gives the maximum QoS utility Pi,y,q among all the803

possible q. Note that Pi,y,q = α ∗ dn/di(y, q, n, h, ce, cl,i) +804

(1 − α) ∗ a(q). 1y=j is an indicator function whose value is805

1 if y = j, otherwise, its value is 0. The ER < Et inequality is806

used to ensure the energy constraint, wherew′(i− 1, n− 1, h−807

1y=1, u− 1y=2, v − 1y=3) is the total data size required to be808

transmitted for VU 1 to i− 1. ωy,q,i is the data size required to809

be transmitted by VU i when using yi = y and qi = q.810

On the other hand, we use ψ(i, n, h, u, v) and π(i, n, h, u, v)811

to record the optimal offloading decision y∗i and compression812

level q∗i that correspond to the value of f(i, n, h, u, v) for VU813

i. Matrices f, ψ, π are initialized as zero matrices. We then814

recursively calculate the elements in f for v from 0 to N ′, u815

from 0 toN ′, h from 0 toN ′, n from 0 toN ′, i from 0 to I , until816

all the elements in f are updated. The optimal cumulative QoS817

utility for VU set I considering
∑

i:yi>0 1 = N ′ and ce = c′818

is then the maximum elements among f(I,N,′ :, :, :). We then819

calculate the optimal offloading and compression level decisions820

for each VU iteratively from i = I to i = 1 by using ψ and π.821

We list the steps for updating elements in f in Algorithm 1,822

which we name as Dynamic programming Algorithm for Fixed823

Offloading VU and System configuration (DAFOS). Steps 2 to 9824

execute the core function of dynamic programming and steps 14825

to 24 retrieve the recorded optimal offloading and compression826

level decisions in ψ and π.827

Note that DAFOS returns the heuristic solution of problem 12828

under the condition that
∑

i:yi>0 1 = N ′ and ce = c′. To obtain829

the solution of problem 12, all the possible values of N ′ and 830

c′ need to be considered. Therefore, we propose the follow- 831

ing System and Application aware Multiple User Offloading 832

Algorithm (SAMOA), which executes DAFOS on different N ′ 833

and c′ and returns the maximum QoS utility, the corresponding 834

offloading strategies as well as compression levels for each VU. 835

The steps of SAMOA are listed in Algorithm 2. In SAMOA, 836

steps 1 to 3 calculate the QoS utility of Local Only for each VU. 837

We start to execute DAFOS on different N ′ and c′ and pick the 838

maximum possible optimal solution between steps 6 to 9. We 839

use P̂[N,′ c′] to record the returned optimal QoS utility. We then 840

append the corresponding offloading strategies and compression 841

levels {ŷ, q̂} to L̂[N,′ c′]. After all the possible sets ofN ′ and c′ 842

are iterated, in steps 10 to 12, SAMOA will return the maximum 843

elements in P̂ as the optimal QoS utility and its corresponding 844

offloading strategies and compression levels of each VU. 845

Note that for DAFOS, the variables n, h, u, v need to iterate 846

NV EC times and (14) requires iteration of all theQ compression 847

levels and Y offloading decisions in the worst case. Therefore, 848

the complexity of DAFOS is O(I ∗N 4
V EC ∗Q ∗ Y ). On the 849

other hand, in SAMOA, DAFOS is the component that has the 850

largest complexity and DAFOS is executed NV EC ∗ C times, 851

where C is the number of possible VEC server configurations. 852

Therefore, the complexity of SAMOA is O(I ∗N 5
V EC ∗Q ∗ 853

C ∗ Y ). SinceNV EC , Q, andC are constant, the time complex- 854

ity of SAMOA isO(I), where I is total number of VUs. Hence, 855

as validated with our experimental results reported in the next 856

section, SAMOA can be executed in real-time for reasonable 857

size of VU set I. 858

VII. PERFORMANCE EVALUATION 859

We first show how SAMOA performs under different resource 860

conditions. Then, we present the online trace-driven simula- 861

tion framework and demonstrate the performance comparison 862

of SAMOA with existing approaches. Finally, we show how 863

SAMOA can be applied to more dense VU scenarios. 864
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Fig. 9. Partitioning and Offloading strategy with compression levels for individual VU under different resource availability.

A. SAMOA Performance Evaluation865

Herein, we present and analyze how our algorithm decides the866

optimal decisions in a single time slot. In Fig. 9(a), (b), (c), and867

(d), we show the evolution of offloading strategies yi as well868

as compression level qi of each VU determined by SAMOA869

in different resource availability and system parameter regions.870

The time slot duration τ is set to 1 s. For simplicity, we assume871

there are 5 identical VUs in I, all of them have an VLC node872

with VLC_config2 configuration (i.e. listed in Table V) and SNR873

value 50 dB. We consider scenarios with different bandwidth,874

energy, and VEC computation capacities as well as different875

trade-off factors α. We mimic the impact of computing load876

caused by other applications sharing the VEC server by reducing877

the CPU-GPU resources of the Jetson TX2 board. VEC server878

without external load (i.e. using VEC_config1 configuration)879

represents the condition when the VEC server is not busy com-880

puting other applications and VEC server with external load881

(i.e. using VEC_config2 configuration) means the VEC server882

is simultaneously executing other applications. On the other883

hand, vertically we vary the trade-off factor value α from 0.2884

to 0.8. The color and shape of each circle show the yi and qi885

decisions, respectively, to each VU. Blue, yellow, red, and green886

colors represent Local Only, Partial Offloading, Encoded Partial887

Offloading, and Full Offloading strategies, respectively. Circle,888

pentagon, diamond, and triangle shapes, respectively, show the889

compression levels 1 to 4 (i.e. listed in Table VI).890

Fig. 9(a) considers the scenario where α = 0.2 and VEC891

without external load, where yi changes from Local Only to892

Encoded Partial Offloading, then to Full Offloading strategy893

when the available solar energy and bandwidth increases. It894

is because compared to Full Offloading strategy, (1) Encoded895

Partial Offloading strategy needs less bandwidth as it transmits 896

the encoded image after resizing, (2) Encoded Partial Offloading 897

strategy executes the DR subtask in VLC node and transmits 898

lesser number of bits, hence requires less energy consumption 899

in VEC server. Therefore, in the regions where SRSU lacks of 900

either bandwidth or solar energy, Encoded Partial Offloading 901

outperforms Full Offloading strategy in terms of QoS utility. 902

On the other hand, with α = 0.2 and when VEC server has 903

external load (i.e. the Fig. 9(b)), the Encoded Partial Offload- 904

ing strategy dominates when the available bandwidth is below 905

100 MHz and solar energy is below 13 J. After the bandwidth 906

reaches 150 MHz, we can observe some VUs use Partial Offload- 907

ing strategy. This is because Partial Offloading strategy transmits 908

the resized image without encoding, while the reduction in 909

computing delay dominates the growth of transmission delay 910

only when the transmission rate is very high. Also, there is 911

no Full Offloading strategy observed because the computing 912

capacity at VEC server is low because of load. Thus offloading 913

with VLC node executing DR subtask first can achieve higher 914

average QoS utility. 915

In Fig. 9(c), we can observe the optimal decision involves 916

different compression levels because of higher α which indi- 917

cates more importance of delay sacrificing some accuracy. We 918

can observe that VUs offload at the highest compression level 919

(i.e. lowest image quality, the triangle shape) when both the 920

bandwidth and solar energy are in lower availability. We also 921

observe some VUs transmit at the compression level 2 (e.g. the 922

pentagon shape at 10 J, 50 MHz) when the bandwidth is higher 923

than 50 MHz and available solar energy is in medium region 924

(i.e. 10 J). In Fig. 9(d), we can also observe that VUs offload at 925

the highest compression level when the bandwidth availability 926

is low. After the available bandwidth exceeds 10 MHz, VUs 927
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Fig. 10. Impact of different offloading decisions on QoS utility under different
bandwidth resource availability when available solar energy is 13 J for 1 s time
slot and VEC server is (a) left, without external load and (b) with external load.

offload at the lowest compression level because the resulting928

transmission delay will be small enough such that high accuracy929

can be achieved.930

For the sake of consistency in the granularity of dimensions931

of the labels in Fig. 9, we did not show the condition when our932

algorithm chooses compression level 3. Actually, in Fig. 9(c),933

compression level 3 will be chosen at 10 J, 25 MHz with Full Of-934

floading strategy for 3 VUs while the rest 2 VUs use Local Only935

strategy with compression level 1. Overall, Fig. 9 demonstrates936

how VEC server’s computing capacity and different choices937

of α impact the optimal partitioning and offloading strategy938

for each VU under different resource availabilities. When the939

algorithm emphasizes more on optimizing the end-to-end delay,940

we observe some higher compression levels used by VUs for the941

trade-off between accuracy and end-to-end delay.942

While Fig. 9 shows the optimal offloading decisions by943

SAMOA, Fig. 10 shows the resulting average QoS utility that944

drives the decision for the above 5 VUs. We show two sce-945

narios (VEC with and without load) under various bandwidth946

conditions with 13 J of available solar energy and α = 0.8, and947

show the QoS utilities for various offloading decisions. Note948

that, a VU can always use Local Only strategy, if other available949

strategies are not feasible in a parameter region. Fig. 10(a)950

shows the results for VEC server without external load. The951

red curve (i.e. Encoded Partial Offloading) tops the blue curve952

(Full Offloading) when bandwidth availability is low (<5 MHz),953

while the green curve (i.e. Full Offloading strategy) dominates954

the others afterward. The observation matches the results in955

Fig. 9(c), where the Full Offloading strategy dominates at high956

solar energy and bandwidth regions. On the other hand, the957

result for VEC server with external load is shown in Fig. 10(b).958

We can observe the red curve dominates other curves until959

bandwidth reaches 150 MHz, where the yellow curve (i.e. Partial960

Offloading strategy) tops the red one. Also, the green curve is961

always lower than either red or yellow curves. The observation962

conforms with the results in Fig. 9(d).963

Impact of system and application level adaption: Next we964

present results to show the benefit of using system level as well965

as application level (i.e. compression levels) adaptions. Fig. 11966

shows the results for the scenario when the solar energy is 10 J for967

a time slot with τ = 1 s and VEC server does not have external968

load. In this figure, SAMOA-NC denotes the SAMOA algorithm969

Fig. 11. QoS utility comparison of SAMOA, SAMOA-NC, SAMOA-NR,
SAMOA-NRC under varying bandwidth availabilities at solar energy 10 J and
VEC without external load.

with no additional compression (i.e. lowest fixed compression 970

level 1), SAMOA-NR denotes the SAMOA algorithm with 971

no reconfiguration (i.e., fixed VEC server configuration with 972

highest possible CPU-GPU frequencies in VEC_config1), and 973

SAMOA-NRC denotes the SAMOA algorithm with no addi- 974

tional compression and reconfiguration, i.e., fixed compression 975

level as SAMOA-NC and the fixed VEC server configuration as 976

SAMOA-NR. 977

Including the compression and reconfiguration, the gain in 978

the performance of SAMOA is apparent. When bandwidth is 979

above 60 MHz, the average QoS utility of SAMOA is 2%, 4%, 980

and 13% higher than SAMOA-NR, SAMOA-NC, and SAMOA- 981

NRC. The difference between SAMOA and SAMOA-NRC is 982

> 10%, shows the importance of joint system and application 983

level adaptation to improve the QoS utility performance. 984

B. Real-World Trace Driven Simulation 985

Next, we present the online performance of SAMOA using a 986

simulator we have developed [41], which allows creation of re- 987

alistic trace driven movements, topology, location, and channel 988

condition for each VU at every time slot. The tool simulates the 989

vehicle’s trace in a 1000x800 m2 rectangular neighborhood in 990

Brooklyn, New York City based on historical vehicular traffic 991

data obtained from [42]. With the street topology and traces of 992

vehicles, the tool generates the SNR values from each VU to the 993

20 SRSUs located in the area. The SNR is generated by assuming 994

VU’s transmit power, ρi, is 23 dbm and using B1 Manhattan grid 995

layout [27] as the pathloss and slow fading, and the Nakagami-m 996

distribution [28] as the fast fading for the uplink channel model. 997

At each time slot, we assume each VU is associated to the 998

SRSU which corresponds to the highest signal strength. For 999

the following experiment, we pick one of the SRSUs in this 1000

area to demonstrate the simulation result. We assume each VU 1001

will have 50% of probability to have a VLC node with capacity 1002

VLC_config1 and 50% of probability to have a VLC node with 1003

capacity VLC_config2, which are listed in Table V. On the other 1004

hand, at each time slot, we assume VEC server will have 50% 1005

of probability to be without external load (VEC_config1) and 1006

50% to be with external load (VEC_config2), with the specific 1007

available CPU-GPU configurations as specified in Fig. 9. 1008
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Fig. 12. QoS utility of 4 algorithms under various scenarios of (a). left, solar panel size (b) right, bandwidth availability.

1) Compared Algorithms: We compare the performance of1009

SAMOA with two other relevant algorithms, MILP Solver [19]1010

and PFH-M [21], which are the two closest approaches to1011

SAMOA as they both allow task dependency aware partitioning1012

and offloading with limited VEC communication and computing1013

resources.1014

MILP Solver: In [19], the authors model the partitioning and1015

offloading problem as a Mixed Integer Linear Programming1016

(MILP) problem. They then propose to use existing standard1017

MILP software packages to find the optimal solution and mini-1018

mize the end-to-end delay of an DNN application.1019

PFM-H Algorithm: In [21], the authors address the challenges1020

of maximizing the throughput under limited edge computing and1021

communication resources using optimal task partitioning and1022

bandwidth allocation decisions. They formulate the problem to1023

a variant of Knapsack Problem and propose to find the heuristic1024

solution by using Performance Function Matrix based Heuristic1025

(PFM-H) algorithm.1026

Although the above two approaches consider the constrained1027

communication and computing capacities in VEC server, they1028

do not consider energy constraint. Therefore, we impose an1029

energy constraint check point after these approaches return their1030

offloading and partitioning solution. If the resulting energy con-1031

sumption violates the constraint, we ask all the VUs to execute1032

their tasks locally. We also present the performance of the naive1033

strategy, Local Only, which only allows VUs to execute their1034

tasks locally using VLC nodes.1035

2) Trace Driven Online Simulation Result: In this experi-1036

ment, we run the simulation for 1 h, starting from 9 AM. The1037

duration of each time slot is 1 s, namely, τ = 1 s. Fig. 12(a) and1038

(b) demonstrate the average QoS utility over the total simulation1039

time for all the 4 algorithms under different solar panel sizes and1040

bandwidth, respectively. The average QoS utility of the total1041

simulation time is defined as the average of the QoS Utility of1042

every VU instance in every time slot during the total simulation1043

time. In the simulated neighborhood area of Brooklyn, because1044

vehicles are dense and vehicle speed is high, the end-to-end1045

delay is very critical to driving experience. Therefore, we set1046

α = 0.8, which make SAMOA emphasizes more on the end-to-1047

end delay.1048

Impact of solar panel size: In Fig. 12(a), the x-axis shows1049

the different solar panel sizes vary from 0.1 to 0.8 m2. The1050

bandwidth of the SRSU is 20 MHz and equally distributed1051

among the offloading VUs. When the solar panel size is 0.5m2,1052

it is shown that the average QoS utility of SAMOA is the best1053

Fig. 13. PMF of the QoS utility for each individual VU using SAMOA and
MILP solver, with 20 MHz bandwidth and solar size equals (a). left, 0.3 m2 (b)
right, 0.8 m2.

among all the algorithms and is 18.4%, 24.8%, and 29.5% better 1054

than MILP Solver, PFM-H, and Local Only, respectively. On 1055

the other hand, the dash lines in Fig. 12(a) shows the end-to-end 1056

delay and accuracy values corresponding to the specific average 1057

QoS utility values. Note that except SAMOA, none of the above 1058

algorithms can achieve the 120 ms end-to-end delay and 95% 1059

accuracy simultaneously. SAMOA achieves the average QoS 1060

utility of 120 ms end-to-end delay and 95% accuracy when solar 1061

panel size is around 0.3m2. Moreover, when the solar panel size 1062

is higher than 0.55m2, SAMOA delivers an average QoS utility 1063

of 100 ms end-to-end delay and 95% accuracy. 1064

Impact of bandwidth availability: In Fig. 12(b), the x-axis 1065

shows the different available bandwidth varies from 0 to 80 MHz 1066

and the solar panel size of SRSU is 0.5m2. When the bandwidth 1067

is 40 MHz, the average QoS utility of SAMOA is the best among 1068

all the algorithms and is 16.6%, 26.3%, and 31.6% better than 1069

MILP Solver, PFM-H, and Local Only, respectively. On the other 1070

hand, except SAMOA, none of the above algorithms can achieve 1071

the 120 ms end-to-end delay and 95% accuracy simultaneously. 1072

SAMOA achieves an average QoS utility of 120 ms end-to-end 1073

delay and 95% accuracy when the available bandwidth is around 1074

2.5 MHz. Moreover, when available bandwidth is higher than 1075

35 MHz, SAMOA achieves an average QoS utility of 100 ms 1076

end-to-end delay and 95% accuracy. 1077

Empirical probability mass function (PMF) of the QoS: In 1078

Fig. 13, we show the empirical probability mass function (PMF) 1079

of the individual QoS utility for the VUs. To clearly demonstrate 1080

the gap between SAMOA and others, we compare SAMOA with 1081

the second best algorithm, MILP Solver, in Fig. 13. In Fig. 13(a), 1082

solar panel size is 0.3m2 and bandwidth is 20 MHz. Even though 1083

the energy availability is low, 45% of the VU instances can still 1084
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Fig. 14. Impact of different α values on the end-to-end delay and accuracy
performance.

achieve the QoS utility corresponds to 120 ms end-to-end delay1085

and 95% accuracy by using SAMOA algorithm while only 6%1086

of VUs achieves the same QoS utility by using MILP Solver.1087

When the solar panel size increases to 0.8 m2, in Fig. 13(b), the1088

VU instances that achieve the same QoS utility increases to 65%1089

by using SAMOA algorithm, which is 3 times larger than using1090

MILP Solver.1091

Impact of α values in delay and accuracy performance: In1092

Fig. 14, we show how the average end-to-end delay and accuracy1093

will change when α value changes from 0 to 1. For consistency1094

with Fig. 13, we also choose 20 MHz bandwidth with 0.3m2 and1095

0.8 m2 solar panel size, respectively, for comparison. When α1096

increases, the accuracy is reduced in exchange for the decreased1097

end-to-end delay. On the other hand, while the accuracy starts1098

to decrease at α = 0.5 when solar panel size is 0.8 m2, it starts1099

decreasing earlier at α = 0.2 when solar panel size is 0.3 m2.1100

Although larger solar panel size leads to a lesser tunable range1101

for α values, the delay improvement is better. For example, the1102

end-to-end delay reduces by 7% when α increases from 0.5 to1103

1 for 0.8m2 solar panel size while the delay reduces just by 2%1104

for 0.3 m2 solar panel size within the same range of α. With1105

results like Fig. 14, the SRSU operators or service providers can1106

jointly decide the optimal solar panel size and α value during1107

the SRSU deployment based on the desired delay and accuracy1108

performance.1109

C. Scalability of SRSU1110

Note that, in the empirical model and the experiment setup,1111

the maximum available number of offloading VUs NV EC is1112

6. Herein, we demonstrate the performance of SAMOA when1113

both the capacity of SRSU and the number of served VUs are1114

scaled up. We emulate the scaled up computing capacity of1115

SRSU by adding additional Jetson TX2 boards to the SRSU. The1116

bandwidth and energy availabilities are scaled up in terms of Hz1117

and Joule, respectively. At each time slot, which has duration 1 s,1118

for a given instance which has more than 6 VUs, we execute the1119

following VU distribution algorithm before executing SAMOA.1120

VU distribution algorithm will first calculate the required1121

number of Jetson boards x,1122

x = min

(⌈
I

NV EC

⌉
,

⌊
Et

10

⌋)
(17)

Fig. 15. QoS utility performance of the 4 algorithms with distributive com-
puting capacity expansion under different number of VUs.

where I is the total number of VU, NV EC is 6 in our scenario, 1123

and Et is the current available energy. We use �Et

10 � to ensure 1124

each active board has at least 10 J of energy for operation within 1125

the time slot. Then the algorithm will sort VUs by their SNR 1126

values and evenly distribute them by the sorted order into x 1127

groups. Finally, the distribution algorithm will assign each group 1128

to one Jetson board and execute SAMOA respectively for VUs 1129

in that group. For performance comparison, we use the same 1130

VU distribution algorithm for MILP Solver and PFM-H. Fig. 15 1131

shows the numerical result of these three algorithms using the 1132

distribution algorithm under different values of I . We consider 1133

all the VUs are using VLC node configuration VLC_config2 1134

and VEC servers (i.e. Jetson boards) without external load. The 1135

average QoS utility is calculated after 10 rounds of simulations, 1136

in which we randomly and uniformly generate the SNR values 1137

between 10 to 50 dB for each VU in set I. 1138

Fig. 15 shows that with the same available bandwidth and 1139

energy, SAMOA performs the best compared to the other two 1140

algorithms and Local Only even when the number of VUs is 1141

high. For example, when there are 20 VUs, SAMOA performs 1142

17.1%, 24.4%, and 27.5% better than MILP Solver, PFM-H, and 1143

Local Only approaches, respectively, with 80 MHz bandwidth 1144

and 40 J solar energy. In low resource availability when there are 1145

20 MHz bandwidth and 15 J solar energy, SAMOA’s capability 1146

will be constrained, but still performs 9.1%, 8.6%, and 9.1% 1147

better than MILP Solver, PFM-H, and Local Only approaches, 1148

respectively, for 20 VUs. 1149

Fig. 15 also shows that when the number of VUs exceeds 10, 1150

only SAMOA can achieve the average QoS utility of 100 ms 1151

end-to-end delay and 95% accuracy even when the available 1152

bandwidth and energy resources are high (i.e. 80 MHz and 40 J). 1153

SAMOA achieves the average QoS utility of 120 ms end-to-end 1154

delay and 95% accuracy at lower resource availability (20 MHz 1155

and 15 J) for up to 30 VUs. However, MILP Solver requires 1156

higher available resources to achieve the same average QoS 1157

utility for up to 30 VUs and PFM-H can only achieve the same 1158

performance for up to 17 VUs. 1159

The results in Fig. 15 clearly demonstrate the advantage of 1160

SAMOA over other approaches. Moreover, the above trade-off 1161

analysis between QoS utility and different resource availability 1162
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Fig. 16. Multi-core parallel processing of SAMOA using Nvidia Jetson TX2.

will enable the the service providers to identify the best SRSU1163

configurations given expected solar generation and VU density.1164

Run-time analysis: To measure the run-time complexity of1165

SAMOA, we implement SAMOA and the VU distribution al-1166

gorithm using Python on the Nvidia Jetson TX2 board. Since1167

the Nvidia Jetson TX2 platform allows parallel processing on1168

multiple cores, we have developed an efficient implementation1169

of SAMOA with parallel multi-core processing, as shown in1170

Fig. 16, where we parallelly distribute and execute all the c1171

DAFOS processes of a SAMOA algorithm to the M available1172

CPU cores on the edge computing platform. Note that c is1173

decided by the number of available CPU-GPU configurations.1174

In our experimental setup, c = 6 and M = 6.1175

The resulting average execution time of SAMOA, Tdecision1176

is 250 ms, allowing SAMOA-based task partitioning decision to1177

be made as frequently as every 250 ms. Note that the end-to-end1178

delays for local execution of the vehicular object detection appli-1179

cation are 131 ms and 188 ms, respectively, using VLC_config11180

and VLC_config2. Hence with reasonable size of VEC and VLC1181

configurations, this experimental result shows that the duration1182

of a time slot τ can be defined as small as 250 ms, which1183

makes the assumption of the constant data rate within a time slot1184

more realistic while ensuring the completion of all the vehicular1185

computation tasks. Note that the application’s end-to-end delay1186

is independent of the execution time of SAMOA. SAMOA is1187

executed before a time slot starts, and the resulting decision is1188

used by each VU to partition and offload the application tasks1189

for multiple subsequent executions of the application during1190

the decision time slot, till the next execution of SAMOA and1191

resulting change in partitioning decision.1192

VIII. CONCLUSION1193

In this paper, we propose a real-time system and application1194

adaptive task partitioning and offloading algorithm, SAMOA, to1195

support the computation intensive applications of the vehicles1196

using solar-powered RSU. The algorithm jointly minimizes the1197

end-to-end delay and maximizes the object detection accuracy,1198

which we jointly define as QoS utility, based on the communica-1199

tion bandwidth, computing, and energy resources availabilities1200

at the SRSU, as well as the computing capacity at the VLC1201

nodes. We establish empirical models for the computation and1202

communication capacities as well as energy consumption of1203

SRSU. With the empirical model-based simulation, we show1204

that SAMOA significantly maximizes the average QoS utility1205

compared to existing techniques under various resource avail- 1206

ability and VU density. As dense deployment of RSUs takes 1207

place in our cities and neighborhoods in the next several years, 1208

our research results will help service providers and city planners 1209

to adopt solar energy based RSUs to avoid additional impact on 1210

carbon footprint. Moreover, they will be able to use SAMOA and 1211

the simulation and analysis tools we provide to identify adequate 1212

SRSU designs, with appropriate computing, communication 1213

and solar capacities, for the expected vehicular traffic load and 1214

desired delay-accuracy performance. In future work, we plan to 1215

investigate the addition of other RE sources (e.g., wind energy) 1216

and battery to ensure energy diversity and guarantee service 1217

availability in adverse weather conditions. 1218
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